Движение изменяемого тела с неподвижной точкой в зависящем от времени силовом поле

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается задача о движении вокруг неподвижной точки изменяемого тела в зависящем от времени силовом поле. Указываются условия, при которых уравнения движения сводятся к классическим уравнениям Эйлера–Пуассона, описывающем движения твердого тела в поле притяжения. Обсуждаются вопросы существования первых интегралов и устойчивости установившихся движений.

Об авторах

А. А. Буров

ФИЦ ИУ РАН

Автор, ответственный за переписку.
Email: jtm@narod.ru
Россия, Москва

Список литературы

  1. Борисов А.В., Мамаев И.С. Динамика твердого тела. Гамильтоновы методы, интегрируемость, хаос. М.; Ижевск: Ин-т компьют. исслед., 2005. 576 с.
  2. Burov A.A., Chevallier D.P. On motion of a rigid body about a fixed point with respect to a rotating frame // R&C Dyn. 1998. V. 3. № 1. P. 66–76. DOI: RD1998v003n01ABEH000061
  3. Леви-Чивита Т., Амальди У. Курс теоретической механики. Т. 2. Ч. 2. Динамика систем с конечным числом степеней свободы. М.: Изд-во иностр. лит., 1951. 544 с.
  4. Виттенбург Й. Динамика систем твердых тел. М.: Мир, 1980. 294 с.
  5. Горр Г.В., Мазнев А.В., Котов Г.А. Движение гиростата с переменным гиростатическим моментом. Донецк: Изд-е ГУ Ин-т прикл. матем. и мех., 2017. 250 с.
  6. Голубев В.В. Лекции по интегрированию уравнений движения тяжелого твердого тела около неподвижной точки. М.: ГИТТЛ, 1953. 288 с.
  7. Гашененко И.Н., Горр Г.В., Ковалёв А.М. Классические задачи динамики твердого тела. Киев: Наук. думка, 2012. 402 с.
  8. Yehia H.M. Rigid BODY DYNAMICS. A Lagrangian Approach. Switzerland AG: Springer Nature, 2022. 460 p.
  9. Козлов В.В. Расщепление сепаратрис возмущенной задачи Эйлера–Пуансо // Вестн. Моск. ун-та. Сер. 1. Мат., мех. 1976. № 6. С. 99–104.
  10. Зиглин С.Л. Расщепление сепаратрис, ветвление, решение и несуществование интеграла в динамике твердого тела // Тр. ММО. 1980. Т. 41. С. 287–303.
  11. Козлов В.В. Интегрируемость и неинтегрируемость в гамильтоновой механике // УМН. 1983. Т. 38 (229). Вып. 1. С. 3–67.
  12. Yehia H.M. New integrable cases in dynamics of rigid bodies // Mech. Res. Com. 1986. V. 13. Iss. 3. P. 169–172.
  13. Яхья Х.М. Новые интегрируемые случаи задачи о движении гиростата // Вестн. Моск. ун-та. Сер. 1. Мат., мех. 1987. № 4. С. 88–90.
  14. Сретенский Л.Н. О некоторых случаях интегрируемости уравнений движения гиростата // Докл. АН СССР. 1963. Т. 149. Вып. 2. С. 292–294.
  15. Сретенский Л.Н. О некоторых случаях движения тяжелого твердого тела с гироскопом // Вест. Моск. ун-та. 1963. № 3. С. 60–71.
  16. Gavrilov L. Non-integrability of the equations of heavy gyrostat // Compos. Math. 1992. T. 82. № 3. P. 275–291.
  17. Каток С.Б. Бифуркационные множества и интегральные многообразия в задаче о движении тяжелого твердого тела // УМН. 1972. Т. 27. Вып. 2. С. 126–132.
  18. Рубановский В.Н. О бифуркации и устойчивости перманентных вращений тяжелого твердого тела с одной неподвижной точкой // Теор. и приложна мех. София. 1974. Т. 5. № 4. С. 55–70.
  19. Рубановский В.Н. О бифуркации и устойчивости стационарных движений в некоторых задачах динамики твердого тела // ПММ. 1974. Т. 38. Вып. 4. С. 616–627.
  20. Татаринов Я.В. Портреты классических интегралов задачи о вращении твердого тела вокруг неподвижной точки // Вестн. Моск. ун-та. Сер. 1. Мат., мех. 1974. № 6. С. 99–105.
  21. Gashenenko I.N., Richter P.H. Enveloping surfaces and admissible velocities of heavy rigid bodies // Int. J. Bifur. & Chaos. 2004. V. 14. № 08. P. 2525–2553.
  22. Карапетян А.В. Инвариантные множества в задаче Горячева–Чаплыгина: существование, устойчивость и ветвление // ПММ. 2006. Т. 70. Вып. 2. С. 221–224.
  23. Анчев А. О перманентных вращениях тяжелого гиростата, имеющего неподвижную точку // ПММ. 1967. Т. 31. Вып. 1. С. 49–58.
  24. Elipe A., Arribas M., Riaguas A. Complete analysis of bifurcations in the axial gyrostat problem // J. Phys. A: Math. Gen. 1997. V. 30. P. 587–601. https://doi.org/ 10.1088/0305-4470/30/2/021
  25. Гашененко И.Н. Бифуркации интегральных многообразий в задаче о движении тяжелого гиростата // Нелин. дин. 2005. Т. 1. № 1. С. 33–52. https://doi.org/ 10.20537/nd0501003
  26. Iñarrea M., Lanchares V., Pascual A.I., Elipe A. On the stability of a class of permanent rotations of a heavy asymmetric gyrostat // R&C Dyn. 2017. V. 22. P. 824–839. https://doi.org/ 10.1134/S156035471707005X
  27. Холостова О.В. Задачи динамики твердых тел с вибрирующим подвесом. Ижевск: ИКИ, 2016. 308 с.
  28. Bogoyavlensky O.I. New integrable problem of classical mechanics // Comm. in Math. Phys. 1984. V. 94. P. 255–269. https://doi.org/ 10.1007/BF01209304
  29. Brun F. Rotation kring fix punkt // Ofversigt at Kongl. Svenska Vetenskaps Akad. Forhadl. Stokholm. 1893. V. 7. P. 455–468.
  30. Brun F. Rotation kring fix punkt. II // Ark. Mat. Ast. Fys. 1907. V. 4. № 4. S. 1–4.
  31. Brun F. Rotation kring fix punkt. III // Ark. Mat. Ast. Fys. 1910. V.6. № 5. S. 1–10.
  32. Карапетян А.В. Инвариантные множества в задаче Клебша–Тиссерана: существование и устойчивость // ПММ. 2006. Т. 70. Вып. 6. С. 959–964.
  33. Зейлигер Д.Н. Теория движения подобно-изменяемого тела. Казань: тип. Казанского Императорского ун-та, 1892. 105 с.
  34. Четаев Н.Г. Об уравнениях движения подобно-изменяемого тела // Учен. зап. Казан. ун-та. 1954. V. 114. Казань: Казанский гос. ун-т. С. 5–7.
  35. Четаев Н.Г. Теоретическая механика. М.: Наука, 1987. 368 с.
  36. Sławianowski J.J. The mechanics of the homogeneously-deformable body. Dynamical models with high symmetries // ZAMM. 1982. V. 62. № 6. P. 229–240. https://doi.org/ 10.1002/zamm.19820620604
  37. Sławianowski J.J. Affinely rigid body and Hamiltonian systems on // Rep. on Math. Phys. 1988. V. 26. Iss. 1. P. 73–119. https://doi.org/ 10.1016/0034-4877(88)90006-7 10.1016/0034-4877(88)90006-7
  38. Sławianowski J.J., Kovalchuk V., Gołubowska B., Martens A., Rożko E.E. Mechanics of affine bodies. Towards affine dynamical symmetry // J. Math. Anal. & Appl. 2017. V. 446. Iss. 1. P. 493–520. https://doi.org/ 10.1016/j.jmaa.2016.08.042
  39. Burov A.A., Chevallier D.P. Dynamics of affinely deformable bodies from the standpoint of theoretical mechanics and differential geometry // Rep. on Math. Phys. 2008. V. 62. Iss. 3. P. 283–321. https://doi.org/ 10.1016/S0034-4877(09)00003-2
  40. Iñarrea M., Lanchares V. Chaos in the reorientation process of a dual-spin spacecraft with time-dependent moments of inertia // Int. J. Bifur.&Chaos. 2000. V. 10. № 05. P. 997–1018. https://doi.org/ 10.1142/S0218127400000712
  41. Iñarrea M., Lanchares V., Rothos V.M., Salas J.P. Chaotic rotations of an asymmetric body with time-dependent moments of inertia and viscous drag // Int. J. Bifur.&Chaos. 2003. V. 13. № 02. P. 393–409. https://doi.org/ 10.1142/S0218127403006613
  42. Burov A., Guerman A., Kosenko I. Satellite with periodical mass redistribution: relative equilibria and their stability // Celest. Mech. & Dyn. Astron. 2019. V. 131. Art № 1. https://doi.org/ 10.1007/s10569-018-9874-0
  43. Дружинин Э.И. О перманентных вращениях уравновешенного неавтономного гиростата // ПММ. 1999. Т. 63. Вып. 5. С. 875–876.
  44. Волкова О.С., Гашененко И.Н. Маятниковые вращения тяжелого гиростата с переменным гиростатическим моментом // Мех. твердого тела: Межвед. сб. науч. тр. 2009. Вып. 39. С. 42–49.
  45. Мазнев А.В. Прецессионные движения гиростата с переменным гиростатическим моментом под действием потенциальных и гироскопических сил // Мех. твердого тела: Межвед. сб. науч. тр. 2010. Вып. 40. С. 91–104.
  46. Мазнев А.В. Регулярные прецессии гиростата с переменным гиростатическим моментом под действием потенциальных и гироскопических сил // Докл. НАНУ. 2011. № 8. С. 66–72.
  47. Горр Г.В., Мазнев А.В. О движении симметричного гиростата с переменным гиростатическим моментом в двух задачах динамики // Нелин. дин. 2012. Т. 8. № 2. С. 369–376. https://doi.org/ 10.20537/nd1202011
  48. Горр Г.В., Мазнев А.В. О двух линейных инвариантных соотношениях уравнений движения гиростата в случае переменного гиростатического момента // Дин. сист. 2012. Т. 2 (30). № 1; 2. С. 23–32.
  49. Горр Г.В. Об одном подходе в исследовании движения гиростата с переменным гиростатическим моментом // Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки. 2021. Т. 31. Вып. 1. С. 102–115. https://doi.org/ 10.35634/vm210108
  50. Горр Г.В., Белоконь Т.В. О решениях уравнений движения гиростата с переменным гиростатическим моментом // ПММ. 2021. Т. 85. Вып. 2. С. 139–151. https://doi.org/ 10.31857/S0032823521020053
  51. Ткаченко Д.Н. Новое решение уравнений движения гиростата с переменным гиростатическим моментом под действием потенциальных и гироскопических сил // Мех. твердого тела. 2021. Вып. 51. С. 34–43.
  52. Данилюк Д.А. Об одном решении уравнений Кирхгофа–Пуассона в задаче о движении гиростата с переменным гиростатическим моментом // Мех. твердого тела. 2021. Вып. 51. С. 44–56.
  53. Данилюк Д.А., Ткаченко Д.Н. Новое решение уравнений движения гиростата с переменным гиростатическим под действием потенциальных и гироскопических сил // Ж. теоретич. и прикл. мех. 2022. № 1 (78). С. 5–15. https://doi.org/ 10.24412/0136-4545-2022-1-5-15
  54. Горр Г.В. Об одном классе полурегулярных прецессий гиростата с переменным гиростатическим моментом // Изв. РАН. МТТ. 2023. № 2. С. 115–124. https://doi.org/ 10.31857/S0572329922600414
  55. Cveticanin L. Dynamics of Machines with Variable Mass (Stability and Control: Theory, Methods and Applications) Routledge. 1998. 252 p. https://doi.org/ 10.1201/9780203759066
  56. Ong J.J., O’Reilly O.M. On the equations of motion for rigid bodies with surface growth // Int. J. Engng Sci. 2004. V. 42. Iss. 19–20. P. 2159–2174. https://doi.org/ 10.1016/j.ijengsci.2004.07.010
  57. Irschik H., Humer A. A rational treatment of the relations of balance for mechanical systems with a time-variable mass and other non-classical supplies // in: Dyn. Mech. Syst. with Variable Mass. Int. Centre for Mech. Sci. Courses and Lectures. 2014. V. 557. P. 1–50.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© А.А. Буров, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».