Polar Codes with Higher-Order Memory


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We introduce a construction of a set of code sequences {Cn(m) : n ≥ 1, m ≥ 1} with memory order m and code length N(n). {Cn(m)} is a generalization of polar codes presented by Arıkan in [1], where the encoder mapping with length N(n) is obtained recursively from the encoder mappings with lengths N(n − 1) and N(nm), and {Cn(m)} coincides with the original polar codes when m = 1. We show that {Cn(m)} achieves the symmetric capacity I(W) of an arbitrary binary-input, discrete-output memoryless channel W for any fixed m. We also obtain an upper bound on the probability of block-decoding error Pe of {Cn(m)} and show that \({P_e} = O({2^{ - {N^\beta }}})\) is achievable for β < 1/[1+m(ϕ − 1)], where ϕ ∈ (1, 2] is the largest real root of the polynomial F(m, ρ) = ρmρm − 1 − 1. The encoding and decoding complexities of {Cn(m)} decrease with increasing m, which proves the existence of new polar coding schemes that have lower complexity than Arıkan’s construction.

Авторлар туралы

H. Afşer

Wireless Communications Laboratory, Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering

Хат алмасуға жауапты Автор.
Email: huseyin.afser@boun.edu.tr
Түркия, Istanbul; Adana

H. Deliç

Wireless Communications Laboratory, Department of Electrical and Electronics Engineering

Email: huseyin.afser@boun.edu.tr
Түркия, Istanbul

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2018