On the Number of Edges of a Uniform Hypergraph with a Range of Allowed Intersections
- Autores: Bobu A.V.1, Kupriyanov A.E.1, Raigorodskii A.M.1,2,3
-
Afiliações:
- Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics
- Department of Innovation and High Technology
- Institute of Mathematics and Computer Science
- Edição: Volume 53, Nº 4 (2017)
- Páginas: 319-342
- Seção: Coding Theory
- URL: https://journal-vniispk.ru/0032-9460/article/view/166446
- DOI: https://doi.org/10.1134/S0032946017040020
- ID: 166446
Citar
Resumo
We study the quantity p(n, k, t1, t2) equal to the maximum number of edges in a k-uniform hypergraph having the property that all cardinalities of pairwise intersections of edges lie in the interval [t1, t2]. We present previously known upper and lower bounds on this quantity and analyze their interrelations. We obtain new bounds on p(n, k, t1, t2) and consider their possible applications in combinatorial geometry problems. For some values of the parameters we explicitly evaluate the quantity in question. We also give a new bound on the size of a constant-weight error-correcting code.
Sobre autores
A. Bobu
Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics
Autor responsável pela correspondência
Email: a.v.bobu@gmail.com
Rússia, Moscow
A. Kupriyanov
Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics
Email: a.v.bobu@gmail.com
Rússia, Moscow
A. Raigorodskii
Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics; Department of Innovation and High Technology; Institute of Mathematics and Computer Science
Email: a.v.bobu@gmail.com
Rússia, Moscow; Moscow; Ulan-Ude
Arquivos suplementares
