Problems of Information Transmission

Problems of Information Transmission is a peer-reviewed journal devoted to the studies and development of mathematical aspects of information theory and communication systems. This quarterly journal features coverage of statistical information theory; coding theory and techniques; noisy channels, error detection and correction; signal detection, extraction, and analysis; analysis of communication networks; optimal processing and routing; the theory of random processes; and bionics. Previously focused on translation, the journal now has the aim to become an international publication and accepts manuscripts originally submitted in English from all countries, along with translated works.
 

  • Official Journal of the Russian Academy of Sciences
  • Investigates all aspects of communication systems research and development
  • Covers statistical information theory; coding theory and techniques; noisy channels; error detection and correction; signal detection, extraction, and analysis; etc.
  • English translation of Problemy Peredachi Informatsii

Текущий выпуск

Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 55, № 4 (2019)

Information Theory

The Augustin Capacity and Center
Nakiboğlu B.
Аннотация

For any channel, the existence of a unique Augustin mean is established for any positive order and probability mass function on the input set. The Augustin mean is shown to be the unique fixed point of an operator defined in terms of the order and the input distribution. The Augustin information is shown to be continuously differentiable in the order. For any channel and convex constraint set with finite Augustin capacity, the existence of a unique Augustin center and the associated van Erven-Harremoes bound are established. The Augustin-Legendre (A-L) information, capacity, center, and radius are introduced, and the latter three are proved to be equal to the corresponding Rényi-Gallager quantities. The equality of the A-L capacity to the A-L radius for arbitrary channels and the existence of a unique A-L center for channels with finite A-L capacity are established. For all interior points of the feasible set of cost constraints, the cost constrained Augustin capacity and center are expressed in terms of the A-L capacity and center. Certain shift-invariant families of probabilities and certain Gaussian channels are analyzed as examples.

Problems of Information Transmission. 2019;55(4):299-342
pages 299-342 views

Coding Theory

On the Cardinality Spectrum and the Number of Latin Bitrades of Order 3
Krotov D., Potapov V.
Аннотация

By a (Latin) unitrade of order k, we call a subset of vertices of the Hamming graph H(n, k) that intersects any maximal clique at either 0 or 2 vertices. A bitrade is a bipartite unitrade, i.e., a unitrade that can be split into two independent subsets. We study the cardinality spectrum of bitrades in the Hamming graph H(n, k) with k = 3 (ternary hypercube) and the growth of the number of such bitrades as n grows. In particular, we determine all possible small (up to 2.5·2n) and large (from 14·3n−3) cardinalities of bitrades of dimension n and prove that the cardinality of a bitrade takes only values equivalent to 0 or 2n modulo 3 (this result can be treated in terms of a ternary Reed-Muller type code). A part of the results are valid for an arbitrary k. For k = 3 and n → ∞ we prove that the number of nonequivalent bitrades is not less than 2(2/3−o(1))n and not greater than \(2^{\alpha^n}\), α < 2 (the growth order of the double logarithm of this number remains unknown). Alternatively, the studied set Bn of bitrades of order 3 can be defined as follows: B0 consists of three rationals - 1, 0, 1; Bn consists of ordered triples (a, b, c) of elements from Bn−1 such that a + b + c = 0.

Problems of Information Transmission. 2019;55(4):343-365
pages 343-365 views
On Lower Bounds on the Spectrum of a Binary Code
Burnashev M.
Аннотация

We refine a lower bound on the spectrum of a binary code. We give a simple derivation of the known bound on the undetected error probability of a binary code.

Problems of Information Transmission. 2019;55(4):366-375
pages 366-375 views

Large Systems

On a Frankl-Wilson Theorem
Sagdeev A.
Аннотация

We derive an analog of the Frankl-Wilson theorem on independence numbers of some distance graphs. The obtained results are applied to the problem of the chromatic number of a space ℝn with a forbidden equilateral triangle and to the problem of chromatic numbers of distance graphs with large girth.

Problems of Information Transmission. 2019;55(4):376-395
pages 376-395 views
Search for a Moving Element with the Minimum Total Cardinality of Tests
Lebedev A., Lebedev V.
Аннотация

We consider the moving element search problem with the minimum total cardinality of tests. As a search space, we consider the set of integer points of a segment of length n. We prove that the total test cardinality of an asymptotically optimal adaptive strategy is \(n + 2\sqrt n \).

Problems of Information Transmission. 2019;55(4):396-400
pages 396-400 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».