Spaceability for sets of bandlimited input functions and stable linear time-invariant systems with finite time blowup behavior
- Авторы: Boche H.1, Mönich U.J.1
-
Учреждения:
- Technische Universität München
- Выпуск: Том 53, № 2 (2017)
- Страницы: 164-182
- Раздел: Methods of Signal Processing
- URL: https://journal-vniispk.ru/0032-9460/article/view/166386
- DOI: https://doi.org/10.1134/S0032946017020053
- ID: 166386
Цитировать
Аннотация
The approximation of linear time-invariant systems by sampling series is studied for bandlimited input functions in the Paley–Wiener space PWπ1, i.e., bandlimited signals with absolutely integrable Fourier transform. It has been known that there exist functions and systems such that the approximation process diverges. In this paper we identify a signal set and a system set with divergence, i.e., a finite time blowup of the Shannon sampling expression. We analyze the structure of these sets and prove that they are jointly spaceable, i.e., each of them contains an infinite-dimensional closed subspace such that for any function and system pair from these subspaces, except for the zero elements, we have divergence.
Об авторах
H. Boche
Technische Universität München
Автор, ответственный за переписку.
Email: boche@tum.de
Германия, Munich
U. Mönich
Technische Universität München
Email: boche@tum.de
Германия, Munich
Дополнительные файлы
