Refinements of Levenshtein Bounds in q-ary Hamming Spaces
- Авторы: Boyvalenkov P.1,2, Danev D.3, Stoyanova M.4
-
Учреждения:
- Institute of Mathematics and Informatics
- Faculty of Engineering
- Department of Electrical Engineering and Department of Mathematics
- Faculty of Mathematics and Informatics
- Выпуск: Том 54, № 4 (2018)
- Страницы: 329-342
- Раздел: Coding Theory
- URL: https://journal-vniispk.ru/0032-9460/article/view/166553
- DOI: https://doi.org/10.1134/S0032946018040026
- ID: 166553
Цитировать
Аннотация
We develop refinements of the Levenshtein bound in q-ary Hamming spaces by taking into account the discrete nature of the distances versus the continuous behavior of certain parameters used by Levenshtein. We investigate the first relevant cases and present new bounds. In particular, we derive generalizations and q-ary analogs of the MacEliece bound. Furthermore, we provide evidence that our approach is as good as the complete linear programming and discuss how faster are our calculations. Finally, we present a table with parameters of codes which, if exist, would attain our bounds.
Об авторах
P. Boyvalenkov
Institute of Mathematics and Informatics; Faculty of Engineering
Автор, ответственный за переписку.
Email: peter@math.bas.bg
Болгария, Sofia; Blagoevgrad
D. Danev
Department of Electrical Engineering and Department of Mathematics
Email: peter@math.bas.bg
Швеция, Linköping
M. Stoyanova
Faculty of Mathematics and Informatics
Email: peter@math.bas.bg
Болгария, Sofia
Дополнительные файлы
