Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 52, № 1 (2016)

Information Theory

Remark on “on the capacity of a multiple-access vector adder channel” by A.A. Frolov and V.V. Zyablov

Bakin E., Evseev G.

Аннотация

For vector adder channel, we present an upper bound on the capacity, which coincides with the lower bound given in [1]. Thus, we prove optimality of the uniform probability distribution of symbols for γ ∈ (0, γ*] and of the twisted distribution for γ ∈ (γ*,∞), where γ is the ratio of the number of users to the number of subchannels and γ* = 1.3382.

Problems of Information Transmission. 2016;52(1):1-5
pages 1-5 views

Coding Theory

Upper bound on the minimum distance of LDPC codes over GF(q) based on counting the number of syndromes

Frolov A.

Аннотация

In [1] a syndrome counting based upper bound on the minimum distance of regular binary LDPC codes is given. In this paper we extend the bound to the case of irregular and generalized LDPC codes over GF(q). A comparison with the lower bound for LDPC codes over GF(q), upper bound for the codes over GF(q), and the shortening upper bound for LDPC codes is made. The new bound is shown to lie under the Gilbert–Varshamov bound at high rates.

Problems of Information Transmission. 2016;52(1):6-13
pages 6-13 views

Large Systems

Analysis of queues with hyperexponential arrival distributions

Tarasov V.

Аннотация

We study H2/H2/1, H2/M/1, and M/H2/1 queueing systems with hyperexponential arrival distributions for the purpose of finding a solution for the mean waiting time in the queue. To this end we use the spectral decomposition method for solving the Lindley integral equation. For practical application of the obtained results, we use the method of moments. Since the hyperexponential distribution law has three unknown parameters, it allows to approximate arbitrary distributions with respect to the first three moments. The choice of this distribution law is due to its simplicity and the fact that in the class of distributions with coefficients of variation greater than 1, such as log-normal, Weibull, etc., only the hyperexponential distribution makes it possible to obtain an analytical solution.

Problems of Information Transmission. 2016;52(1):14-23
pages 14-23 views

Communication Network Theory

Lattice flows in networks

Shmatkov V.

Аннотация

We consider flows in networks analogous to numerical flows but such that values of arc capacities are elements of a lattice. We present an analog of the max-flow min-cut theorem. However, finding the value of the maximum flow for lattice flows is based on not this theorem but computations in the algebra of matrices over the lattice; in particular, the maximum flow value is found with the help of transitive closure of flow capacity functions. We show that there exists a correspondence between flows and solutions of special-form systems of linear equations over distributive lattices.

Problems of Information Transmission. 2016;52(1):24-38
pages 24-38 views

Source Coding

Simple one-shot bounds for various source coding problems using smooth Rényi quantities

Warsi N.

Аннотация

We consider the problem of source compression under three different scenarios in the one-shot (nonasymptotic) regime. To be specific, we prove one-shot achievability and converse bounds on the coding rates for distributed source coding, source coding with coded side information available at the decoder, and source coding under maximum distortion criterion. The one-shot bounds obtained are in terms of smooth max Rényi entropy and smooth max Rényi divergence. Our results are powerful enough to yield the results that are known for these problems in the asymptotic regime both in the i.i.d. (independent and identically distributed) and non-i.i.d. settings.

Problems of Information Transmission. 2016;52(1):39-65
pages 39-65 views

Interactive function computation via polar coding

Gülcü T., Barg A.

Аннотация

In a series of papers (2011–2013) N. Ma and P. Ishwar considered a range of distributed source coding problems that arise in the context of interactive computation of functions, characterizing the region of achievable communication rates. We consider the problems of interactive computation of functions by two terminals and interactive computation in a collocated network, showing that the rate regions for both these problems can be achieved using several rounds of polar-coded transmissions.

Problems of Information Transmission. 2016;52(1):66-91
pages 66-91 views

Time series prediction based on data compression methods

Lysyak A., Ryabko B.

Аннотация

We propose efficient (“fast” and low memory consuming) algorithms for universal-coding-based prediction methods for real-valued time series. Previously, for such methods it was only proved that the prediction error is asymptotically minimal, and implementation complexity issues have not been considered at all. The provided experimental results demonstrate high precision of the proposed methods.

Problems of Information Transmission. 2016;52(1):92-99
pages 92-99 views

Erratum

pages 100-101 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».