On the Complexity of Fibonacci Coding
- 作者: Sergeev I.S.1
-
隶属关系:
- Federal State Unitary Enterprise “Kvant Scientific Research Institute,”
- 期: 卷 54, 编号 4 (2018)
- 页面: 343-350
- 栏目: Coding Theory
- URL: https://journal-vniispk.ru/0032-9460/article/view/166557
- DOI: https://doi.org/10.1134/S0032946018040038
- ID: 166557
如何引用文章
详细
We show that converting an n-digit number from a binary to Fibonacci representation and backward can be realized by Boolean circuits of complexity O(M(n) log n), where M(n) is the complexity of integer multiplication. For a more general case of r-Fibonacci representations, the obtained complexity estimates are of the form \({2^O}{(\sqrt {\log n} )_n}\).
作者简介
I. Sergeev
Federal State Unitary Enterprise “Kvant Scientific Research Institute,”
编辑信件的主要联系方式.
Email: isserg@gmail.com
俄罗斯联邦, Moscow
补充文件
