УДК 544.58+621.039.75

СОРБЦИЯ ¹³⁷Сs СУГЛИНКАМИ РЕСПУБЛИКИ БЕЛАРУСЬ

© 2024 г. А. А. Баклай^а, Н. А. Маковская^а, Т. Г. Леонтьева^{а, *}, Д. А. Кузьмук^а, А. С. Онищук^а, Л. Н. Москальчук^{а, δ}

^a Объединенный институт энергетических и ядерных исследований — Сосны НАН Беларуси, 220109, Минск, а/я 119 ^бБелорусский государственный технологический университет, 220006, Минск, ул. Свердлова, д. 13a *e-mail: t.leontieva@tut.by

Получена 22.02.2024, после доработки 26.05.2024, принята к публикации 14.08.2024

Установлено, что содержание основных глинистых минералов в образце суглинка месторождения Фанипольское составляет (мас%): монтмориллонит 13.6, иллит 3.3. Определено, что pH раствора в диапазоне 4—12 практически не влияет на сорбцию $^{137}\text{Cs}^+$ суглинком. Коэффициент распределения (K_d) ^{137}Cs для указанного образца суглинка при содержании K^+ в растворе до 0.01 моль/дм³ составляет более 10^3 дм³/кг, что свидетельствует об эффективной сорбции ^{137}Cs . Установлено, что суглинок имеет два типа сорбционных центров T_1 и T_2 , различающихся коэффициентом распределения и емкостью по отношению к Cs^+ . Значения сорбционной емкости центров T_1 и T_2 по цезию составляют $4.0 \cdot 10^{-5}$ и $1.2 \cdot 10^{-2}$ моль/кг соответственно, а соответствующие значения K_d Cs для указанных центров различаются в 20 раз и составляют $1.6 \cdot 10^4$ и $7.9 \cdot 10^2$ дм³/кг. Показано, что суглинок месторождения Фанипольское может быть использован в качестве буферной засыпки пункта захоронения очень низкоактивных радиоактивных отходов Белорусской АЭС.

Ключевые слова: суглинок, монтмориллонит, иллит, цезий, сорбция, сорбционные центры.

DOI: 10.31857/S0033831124050087

ВВЕДЕНИЕ

В настоящее время в Беларуси введена в эксплуатацию Белорусская АЭС (БелАЭС) с реактором типа ВВЭР-1200, состоящая из двух энергоблоков. При ее работе образуются и накапливаются радиоактивные отходы (РАО) различного химического состава. В этой связи особую актуальность приобретает проблема их долговременной и безопасной изоляции в геологической среде. Для решения данной проблемы в Республике Беларусь разрабатывается концепция приповерхностного пункта захоронения среднеактивных, низкоактивных и очень низкоактивных РАО БелАЭС с использованием в составе инженерных барьеров глинистых материалов [1].

Согласно данным работы [2] элементами системы инженерных барьеров пункта захоронения радиоактивных отходов (ПЗРО) являются буферная засыпка, подстилающий и покрывающий экраны. Для их создания требуется большое количество глинистых материалов. Согласно рекомендациям МАГАТЭ, странам, эксплуатирующим АЭС, следует использовать местные глинистые материалы для снижения стоимости строительства ПЗРО [3]. В Швеции и Франции для захоронения очень низкоактивных РАО (ОНАО) в ПЗРО, расположенном в глинистых вмещающих породах (естественный барьер), в качестве материала буферной засыпки использовали песок [4]. Известно, что данный материал не является препятствием для миграции радионуклидов в буферной засыпке при захоронении ОНАО, так

как обладает низкими сорбционными свойствами по отношению к радионуклидам. Песок выполняет механическую функцию, заполняя пустоты между упаковками ОНАО во избежание проседания покрывающего экрана, и дренажную, обеспечивая отвод воды в случае ее проникновения на площадку ПЗРО.

По данным работы [1], основными радионуклидами, вносящими вклад в активность ОНАО БелАЭС, являются 137 Cs ($T_{1/2}=30.1$ года) и 60 Co ($T_{1/2}=5.3$ года). Среди них наибольшую радиационную опасность для человека и окружающей среды представляет 137 Cs. При попадании грунтовой воды в пункт захоронения ОНАО сорбция 137 Cs материалом буферной засыпки может снизиться, в частности, за счет влияния растворенных в воде катионов.

В связи с вышеизложенным для захоронения ОНАО БелАЭС в качестве материала буферной засыпки предлагается использовать запасы местного природного сырья —суглинки, которые представляют собой глинистый материал, содержащий в своем составе 15—30 мас% глинистых минералов [5]. Буферная засыпка — материал, заполняющий пустоты между упаковками РАО, предназначенный для сорбции радионуклидов и минимизации времени контакта РАО с грунтовой водой при ее проникновении в ПЗРО [6]. Кроме этого, материал буферной засыпки в будущем должен допускать возможность простого извлечения упаковок РАО в случае ликвидации ПЗРО после принятия соответствующего решения [2]. Для выполнения указанных функций

суглинок в первую очередь должен обладать хорошими сорбционными свойствами по отношению к $^{137}\mathrm{Cs}.$

Целью данной работы является оценка возможности использования суглинков Республики Беларусь в качестве буферной засыпки для изоляции ОНАО БелАЭС.

ЭКСПЕРИМЕНТАЛЬНЯ ЧАСТЬ

Для исследований использовали образцы суглинков, отобранные из промышленных месторождений Республики Беларусь и представленные в табл. 1.

Таблица 1. Образцы суглинков для исследований

Шифр образца	Наименование месторождения, место отбора				
Ф	Фанипольское, Минская обл.				
Γ	Гайдуковка, Минская обл.				
3	Заполье, Витебская обл.				
KC	Крупейский сад, Гомельская обл.				

Гранулометрический состав образцов суглинков определяли по методике, описанной в работе [7]. Минеральный состав суглинков определяли методом рентгенофазового анализа на дифрактометре Ultima-IV (Rigaku, Япония) с использованием CuK_{α} -излучения, диапазон съемки 20 от 2° до 60°, шаг $0.01-0.02^{\circ}$, время накопления сигнала не менее 0.3 с на точку. Для расшифровки рентгенограмм использовали программу Jade 6.5 (MDI) с порошковой базой данных PDF-2. Количественный минеральный состав образцов определяли методом Ритвельда в программном пакете PROFEX GUI для BGMN. Пороговое значение определения содержания минералов составляет 0.5 мас%. Содержание карбонатных минералов в образцах суглинков определяли в соответствии с ГОСТ 34467-2018 (Грунты. Методы лабораторного определения содержания карбонатов). Их исследование в суглинках проводили по трем образцам, отобранных из различных участков месторождений, и рассчитывали среднее значение величины.

Сорбционные характеристики образцов суглинков определяли на примере сорбции микроколичеств 137 Cs. Перед проведением исследований образцы суглинка высушивали в сушильном шкафу при температуре $105 \pm 5^{\circ}$ C до постоянной массы, затем растирали в ступке и просеивали через сито с размером ячеек 1 мм. Удельная активность растворов, приготовленных с добавлением радиоактивной метки 137 Cs, составляла $1.8\cdot 10^6$ Бк/дм³ (концентрация цезия $4.1\cdot 10^{-9}$ моль/дм³). В качестве имитатора грунтовой воды для приготовления модельных растворов использовали водопроводную воду г. Минска с содержанием катионов Ca^{2+} , Mg^{2+} , Na^+ и K^+ соответственно 54, 17, 8 и 4 мг/дм³, pH 7.8. Модельный раствор для исследования влияния концентрации K^+

на сорбцию 137 Cs готовили путем растворения в водопроводной воде навесок KNO $_3$ марки х.ч. Ионную силу растворов (0.01 и 0.1 моль/дм 3) устанавливали с использованием NaClO $_4$ марки ч.д.а. Для получения необходимого значения рН применяли растворы HCl и NaOH с концентрациями 0.1 моль/дм 3 .

Эксперименты по изучению сорбции 137 Сs из растворов проводили методом ограниченного объема при следующих условиях: температура $20 \pm 2^{\circ}$ С, периодическое перемешивание образца с аликвотой раствора в течение 2 мин каждые 4 ч. Время взаимодействия образца с раствором составляло 72ч, что достаточно для установления сорбционного равновесия в системе образец суглинка—раствор [8]. Исследование сорбции 137 Сs образцами суглинков проводили при изменении рН в интервале от 2 до 12. По результатам экспериментов рассчитывали коэффициент распределения ($K_{\rm d}$, дм 3 /кг) цезия по формуле

$$K_{\rm d} = \frac{A_0 - A_{\rm p}}{A_{\rm p}} \cdot \frac{V}{m},\tag{1}$$

где A_0 и $A_{\rm p}$ — исходная и равновесная удельная активность $^{137}{\rm Cs}$ в растворе, Бк/дм 3 ; V — объем раствора, дм 3 ; m — масса образца суглинка, кг.

Коэффициент распределения (K_d , дм³/кг) является основным показателем, который характеризует сорбционную способность глинистых материалов по отношению к радионуклидам.

Изотермы сорбции цезия (Cs) получали при рН 7.8 и ионной силе раствора $0.01~\rm Mоль/дм^3$, изменяя концентрацию цезия в растворе от $10^{-10}~\rm до~10^{-2}~\rm Mоль/дм^3$. Для экспериментов к раствору с радиоактивной меткой $^{137}\rm Cs$ добавляли необходимое количество стабильного $\rm CsNO_3$ марки х.ч. Содержание цезия в растворе ($C_{\rm p}$, моль/дм³) и твердой фазе образца суглинка ($C_{\rm T}$, моль/кг) рассчитывали по формулам

$$C_{\rm p} = \frac{C_{\rm 0}}{(1 + K_{\rm d} \cdot \frac{m}{V})},$$
 (2)

$$C_{_{\mathrm{T}}} = K_{_{\mathrm{d}}} \cdot C_{_{\mathrm{p}}}, \tag{3}$$

где C_0 и $C_{\rm p}$ — исходная и равновесная концентрации цезия в растворе, моль/дм³.

Исследования проводили в трех параллельных экспериментах и рассчитывали средние значения соответствующих величин. Отношение твердой и жидкой фаз во всех экспериментах составляло 10 г/дм^3 . Жидкую и твердую фазу разделяли центрифугированием при 10000 об/мин в течение 15 мин. В полученном фильтрате определяли удельную активность ^{137}Cs прямым спектрометрическим методом по линии $E_{\gamma} = 662 \text{ кэВ}$ с использованием универсального спектрометрического комплекса РУС-91M.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При использовании в качестве буферной засыпки суглинков они должны содержать в своем составе не более 10 мас% карбонатных минералов, чтобы не допустить проседания покрывающего экрана [9]. В табл. 2 приведены значения содержания карбонатных минералов в образцах суглинков, отобранных из промышленных месторождений Беларуси.

Таблица 2. Содержание карбонатных минералов в образцах суглинков

Шифр образца	Содержание карбонатных минералов, мас%
Φ	1.7 ± 0.3
Γ	19.4 ± 1.5
3	11.6 ± 1.2
KC	1.8 ± 0.4

Как видно из табл. 2, только в образцах суглинков Ф и КС содержание карбонатных минералов составляет менее 10 мас. %. Поэтому дальнейшие исследования проводили с данными образцами суглинков.

В работе [10] показано, что материал буферной засыпки сохраняет сыпучесть и не образует монолит при длительном хранении упаковок PAO, если содержание кварца с размером частиц более 0.01 мм в его составе составляет не менее 50 мас%, а размер частиц материала не превышает 5 мм. Использование материала с такими характеристиками в качестве буферной засыпки позволяет в будущем уменьшить трудоемкость и упростить технологический процесс извлечения упаковок PAO в случае ликвидации ПЗРО. В связи с этим для образцов суглинков Ф и КС определен гранулометрический состав и содержание кварца с размером частиц более 0.01 мм. Результаты исследований гранулометрического состава образцов суглинков Ф и КС приведены в табл. 3.

Для определения содержания кварца с размером частиц более 0.01 мм в образцах Ф и КС из них выделяли фракцию с размером частиц более 0.01 мм [5] методом отмучивания [7, 11]. В результате установлено, что содержание фракции с размером частиц более 0.01 мм в образцах суглинков Ф и КС составляет 76.3 и 47.9 мас% соответственно. Содержание кварца в образцах Ф и КС и их фракциях Ф1 и КС1

с размером частиц более 0.01 мм определяли методом рентгенофазового анализа. Результаты исследований представлены в табл. 4.

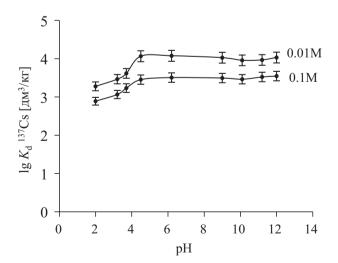
Таблица 4. Минеральный состав образцов суглинков

	Содержание минерала в образ-							
Минерал	цах, мас%							
	Φ	Ф-1	KC	KC-1				
Монтмориллонит	13.6	3.6	27.1	0.5				
Хлорит	0.7	< 0.5	< 0.5	< 0.5				
Иллит	3.3	1.7	5.7	< 0.5				
Каолинит	0.7	0.4	7.3	1.0				
Кварц	56.9	72.1	51.4	84.7				
Альбит	9.8	10.1	5.9	7.1				
Микроклин	11.5	8.1	< 0.5	1.2				
Кальцит	1.1	0.8	0.9	0.6				
Доломит	0.9	1.2	0.4	< 0.5				
Амфибол	1.6	1.9	< 0.5	< 0.5				
Анатаз	< 0.5	< 0.5	1.1	3.1				
Рутил	0.2	< 0.5	< 0.5	0.7				

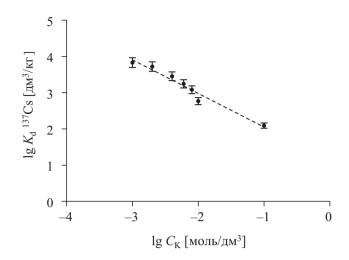
Исходя из полученных данных рассчитывали содержание кварца с размером частиц более 0.01 мм в образцах Ф и КС. Согласно расчету, содержание кварца с размером частиц более 0.01 мм в образцах суглинков Ф и КС составляет 55.0 и 40.6 мас% соответственно. Из полученного расчета следует, что только характеристики образца суглинка Ф полностью отвечают критериям, приведенным в работе [10] (содержание кварца с размером частиц более 0.01 мм составляет более 50 мас%, а размер частиц материала — менее 5 мм).

Одним из основных требований к материалу при создании инженерного барьера является эффективная сорбция им радионуклидов [12]. Согласно табл. 4, основными глинистыми минералами в образце суглинка Ф являются монтмориллонит и иллит, содержание которых составляет 13.6 и 3.3 мас% соответственно. По данным работ [13, 14], именно эти минералы в основном ответственны за сорбцию 137Cs глинистыми материалами.

В работах [8, 15, 16] показано, что рН раствора оказывает влияние на сорбцию радионуклидов глинистыми материалами, поэтому далее проведены эксперименты по изучению влияния рН раствора на сорбцию ¹³⁷Cs образцом суглинка Ф. На рис. 1


Таблица 3. Гранулометрический состав образцов суглинков

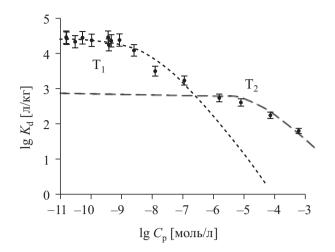
			C	одержан	ие фрак	ции с ра	змером ч	настиц (мм	и), %		
Шифр образца	5-10	2-5	1-2	0.5-1	0.25-0.5	0.1-0.25	0.5-0.1	0.01-0.05	0.005-0.01	0.002-0.005	менее 0.002
Φ	_	0.7	0.7	1.4	2.5	2.9	27.0	41.1	9.6	1.9	12.2
KC	0.8	0.5	2.5	6.8	5.3	9.3	13.7	9.0	5.8	7.1	39.2


представлена зависимость $\lg K_{\rm d}^{137}$ Cs для образца суглинка Φ от pH при разных значениях ионной силы раствора (I, моль/дм³).

Из рис. 1 видно, что значения $\lg K_d^{-137}$ Cs в диапазоне pH от 4 до 12 практически не изменяются в пределах погрешности эксперимента и снижаются при pH < 4. Согласно работе [13], катион цезия является слабо гидролизуемым катионом, не склонным к образованию комплексов и существующим в растворе в широком диапазоне pH в виде Cs⁺. Снижение значений $\lg K_d^{-137}$ Cs при pH < 4, по-видимому, связано с конкуренцией 137 Cs⁺ за места сорбции на образце суглинка Φ как с высвобождающимися катионами при растворении карбонатных минералов (табл. 4), входящих в состав суглинка, так и с H⁺. Значение $\lg K_d^{-137}$ Cs уменьшается с ростом ионной силы раствора (рис. 1), что согласуется с описанным в работе [13] ионообменным механизмом взаимодействия цезия с глинистыми минералами иллитом и монтмориллонитом.

В случае попадания грунтовой воды в пункт захоронения ОНАО сорбция 137 Сs на образце суглинка может снизиться за счет влияния содержащихся в ней катионов. В работах [8, 15] установлено, что катион K^+ , являясь геохимическим аналогом цезия, оказывает наибольшее влияние на $K_{\rm d}^{-137}$ Сs в глинистых материалах по сравнению с другими катионами грунтовой воды (${\rm Na}^+$, ${\rm Ca}^{2^+}$ и ${\rm Mg}^{2^+}$). Концентрация калия в грунтовых водах может меняться в достаточно широких пределах — от 0.5 до 25 ммоль/дм³ [8]. В связи с этим изучено влияние концентрации ${\rm K}^+$ в диапазоне от 1 до 100 ммоль/дм³ на сорбцию ${\rm Im}^{137}$ Сs образцом суглинка Ф. На рис. 2 приведена зависимость ${\rm K}_{\rm d}^{-137}$ Сs от исходной концентрации ${\rm K}^+$ в растворе (${\rm C}_{\rm K}$, моль/дм³) в билогарифмических координатах.

Рис. 1. Зависимость $\lg K_{\rm d}^{137}{\rm Cs}$ от рН раствора для образца суглинка месторождения Фанипольское, I=0.01 и 0.1 моль/дм³ NaClO₄, [суглинок] = 10 г/дм³, исходная концентрация $C_0(^{137}{\rm Cs}) = 4.1 \cdot 10^{-9}$ моль/дм³.


Рис. 2. Зависимость $\lg K_{\rm d}^{137}{\rm Cs}$ от концентрации ${\rm K}^+$ в растворе для образца суглинка месторождения Фанипольское, рН 7.8 \pm 0.1, [суглинок] = 10 г/дм³, исходная концентрация $C_0(^{137}{\rm Cs}) = 4.1\cdot 10^{-9}$ моль/дм³.

Установлено, что для образца суглинка Φ значения $K_{\rm d}$ $^{137}{\rm Cs}$ закономерно снижаются в интервале от 7.9×10^3 до 1.3×10^2 дм 3 /кг при увеличении концентрации в растворе конкурирующего с ${\rm Cs}^+$ катиона ${\rm K}^+$ от 1 до 100 ммоль/дм 3 . Полученная на рис. 2 зависимость представляет собой прямую линию, что свидетельствует об ионообменном характере сорбции $^{137}{\rm Cs}$ образцом суглинка Φ . Как видно из рис. 2, эффективная сорбция $^{137}{\rm Cs}$ ($K_{\rm d}$ $^{137}{\rm Cs}$ > 10^3 дм 3 /кг) образцом суглинка Φ наблюдается при концентрации ${\rm K}^+$ в растворе не более 10 ммоль/дм 3 .

Радионуклид 137 Сs образуется на AЭС при делении топлива на основе урана и является основным компонентом очень низко-, низко-, средне- и высокоактивных РАО. Согласно документу [17], к ОНАО относятся твердые РАО, если удельная активность бета-излучающих радионуклидов не превышает 10^3 Бк/г, что соответствует 2.3×10^{-12} моль/г 137 Сs. Категоризация РАО как НАО, САО и ВАО осуществляется при удельной активности бета-излучающих радионуклидов соответственно равной 10^3 — 10^4 , 10^4 — 10^7 и более 10^7 Бк/г.

В работах [13, 18, 19] показано, что не только иллит, но и монтмориллонит имеет два типа сорбционных центров, различающихся коэффициентом распределения по отношению к 137 Cs. На рис. 3 представлена изотерма сорбции цезия (Cs) для образца суглинка Ф в виде зависимости $K_{\rm d}$ Cs от его равновесной концентрации в растворе ($C_{\rm p}$, моль/дм³) в билогарифмических координатах, которая охватывает весь диапазон удельной активности ОНАО, НАО и САО.

Перегибы на изотерме сорбции Сs (рис. 3) свидетельствуют о том, что образец суглинка Φ имеет два типа сорбционных центров T_1 и T_2 , различающихся коэффициентом распределения цезия. При

Рис. 3. Изотерма сорбции Cs образцом суглинка месторождения Фанипольское, pH 7.8 \pm 0.1, [суглинок] = 10 г/дм³, I = 0.01 моль/дм³ (NaClO₄).

низких концентрациях Cs^+ в растворе он сорбируется на центрах T_1 , которые по мере роста концентрации Cs в растворе насыщаются, и в сорбции начинают принимать участие центры T_2 . Максимальные емкости центров T_1 и T_2 образца суглинка Φ по Cs, определенные с использованием равновесной концентрации Cs в растворе, когда K_d Cs начинает линейно уменьшаться в соответствии с изотермой Ленгмюра по формуле (3), составляют 4.0×10^{-5} и 1.2×10^{-2} моль/кг соответственно, а значения K_d Cs центров T_1 и T_2 различаются в 20 раз и составляют 1.6×10^4 и 7.9×10^2 дм³/кг.

Таким образом, суглинок месторождения Фанипольское обладает хорошими сорбционными свойствами по отношению к ¹³⁷Cs для предотвращения его миграции из пункта захоронения OHAO.

ЗАКЛЮЧЕНИЕ

На основании проведенных исследований установлено, что содержание основных глинистых минералов монтмориллонита и иллита в образце суглинка месторождения Фанипольское составляет 13.6 и 3.3 мас% соответственно.

Значения коэффициента распределения $K_{\rm d}$ ¹³⁷Cs для образца суглинка месторождения Фанипольское практически не изменяются при pH раствора в диапазоне значений 4—12 и снижаются при увеличении ионной силы раствора, что говорит об ионообменном механизме сорбции ¹³⁷Cs на суглинке. Значения $K_{\rm d}$ ¹³⁷Cs при содержании K^+ в растворе до 0.01 ммоль/дм³ составляют более 10^3 дм³/кг, что свидетельствует об эффективной сорбции ¹³⁷Cs данным образцом суглинка. Показано, что образец суглинка имеет два типа сорбционных центров — T_1 и T_2 , различающихся коэффициентом распределения и емкостью по отношению к Cs⁺. Значения

сорбционной емкости центров T_1 и T_2 по цезию составляют 4.0×10^{-5} и 1.2×10^{-2} моль/кг соответственно, а значения $K_{\rm d}$ Cs для указанных центров различаются в 20 раз и составляют 1.6×10^4 и 7.9×10^2 дм³/кг соответственно.

По результатам комплексных исследований образцов суглинков Республики Беларусь можно заключить, что суглинок месторождения Фанипольское может быть использован в качестве буферной засыпки при изоляции очень низкоактивных радиоактивных отходов Белорусской АЭС.

БЛАГОДАРНОСТИ

Авторы выражают благодарность Крупской В.В. и Белоусову П.Е. за помощь в проведении анализа минерального состава суглинков.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликтов интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Жемжуров М.Л., Кузьмина Н.Д.* // Изв. НАН Беларуси. Сер. физ.-техн. наук. 2022. Т. 67. № 1. С. 105.
- 2. *Варлакова Г.А., Осташкина Е.Е., Голубева З.И.* // Радиохимия. 2013. Т. 55. № 6. С. 549.
- 3. Procedures and Techniques for Closure of Near Surface Disposal Facilities for Radioactive Waste: IAEA-TECDOC-1260. Vienna: IAEA, 2001. 96 p.
- 4. *Павлов Д.И.*, *Ирошников В.В.*, *Максименко Д.А.*, *Демин А.В.*, *Сыченко Д.В.* // Радиоактивные отходы. 2022. № 1(18). С. 91.
- 5. *Осипов В.И.*, *Соколов В.Н.* Глины и их свойства. Состав, строение и формирование свойств. М.: ГЕОС, 2013. 578 с.
- 6. *Павлов Д.И.*, *Ильина О.А.* // Радиоактивные отходы. 2020. № 3(12). С. 54.
- 7. Сабодина М.Н., Захарова Е.В., Калмыков С.Н., Похолок К.В., Меняйло А.А. // Радиохимия. 2008. Т. 50. № 1. С. 81.
- 8. Баклай А.А., Маковская Н.А., Леонтьева Т.Г., Кузьмук Д.А., Москальчук Л.Н. // Радиохимия. 2022. Т. 64. № 2. С. 193.
- 9. *Линге И.И.*, *Иванов А.Ю.*, *Казаков К.С.* // Радиоактивные отходы. 2018. № 4(5). С. 33.
- 10. Баринов А.С., Пантелеев В.И., Варлакова Г.А., Голубева З.И., Осташкина Е.Е. Патент RU 2419901 от 27.05.2011 // Б.И. 2011. № 15.
- 11. *Милютин В.В., Гелис В.М., Некрасова Н.А., Кононен- ко О.А., Везенцев А.И., Воловичева Н.А., Королько- ва С.В.* // Радиохимия. 2012. Т. 54. № 1. С. 71.
- 12. *Милютин В.В.*, *Некрасова Н.А.*, *Белоусов П.Е.*, *Крупская В.В.* // Радиохимия. 2021. Т. 63. № 6. С. 510.

- 13. Missana T., García-Gutiérrez M., Benedicto A., Ayora C., De-Pourcq K. // Appl. Geochem. 2014. Vol. 47. P. 177.
- 14. Missana T., Benedicto A., García-Gutiérrez M., Alonso U. // Geochem. Cosmochim. Acta. 2014. Vol. 128. P. 266.
- 15. Robin V., Terte E., Beaufoert D., Regnault O., Sardini P., Descostes M. // Appl. Geochem. 2015. Vol. 59. P. 74.
- 16. *Баклай А.А.*, *Маковская Н.А.*, *Леонтьева Т.Г.*, *Кузьмук Д.А.* // Сорбционные и хроматографические процессы. 2021. Т. 21. № 2. С. 245.
- 17. *Положение* о порядке и критериях отнесения радиоактивных отходов к классам радиационной
- опасности: Постановление Совета Министров Республики Беларусь от 21.08.2020, № 497. Национальный правовой Интернет-портал Республики Беларусь https://pravo.by/document/?guid=3871&p0=C22000497
- 18. Семенкова А.С., Полякова Т.Р., Романчук А.Ю., Короб Д.Р., Серегина И.Ф., Михеев И.В., Крупская В.В., Калмыков С.Н. // Радиохимия. 2019. Т. 61. № 5. С. 433.
- 19. Semenkova A.S., Evsiunina M.V., Verma P.K., Mohapatra P.K., Petrov V.G., Seregina I.F., Bolshov M.A., Krupskaya V.V., Romanchuk A.Yu., Kalmykov S.N. // Appl. Clay Sci. 2018. Vol. 166. P. 88.

¹³⁷Cs Sorption on the Loams of the Republic of Belarus

A. A. Baklay^a, N. A. Makovskaya^a, T. G. Leontieva^a, *, D. A. Kuzmuk^a, A. S. Onischuk, and L. N. Maskalchuk^a, b

^aJoint Institute for Power and Nuclear Research—Sosny, Minsk, 220109 Belarus ^bBelarusian State Technological University, Minsk, 220006 Belarus *e-mail: t.leontieva@tut.by

Received February 22, 2024; revised May 26, 2024; accepted August 14, 2024

It has been established that the content of the main clay minerals in the loam sample from the Fanipolskoye deposit is 13.6 wt % for montmorillonite and 3.3 wt % for illite. It was determined that the pH of solution in the range of 4–12 has virtually no effect on $^{137}\text{Cs}^+$ sorption by the loam. The distribution coefficient (K_d) of ^{137}Cs for the specified loam sample with a K^+ concentration in the solution of up to 0.01 mol/dm³ is higher than 10^3 dm³/kg, which indicates that the ^{137}Cs sorption is efficient. The loam contains two types of sorpti4on sites, T_1 and T_2 , with different selectivity and capacity toward Cs^+ . The sorption capacities of sites T_1 and T_2 for T_3 and T_4 for T_3 and T_4 and T_5 for T_4 and T_5 for T_5 and T_6 and T_6 it is shown that the loam from the Fanipolskoye deposit is suitable as a buffer backfill for the disposal site of very low-level radioactive waste from the Belarusian NPP.

Keywords: loam, montmorillonite, illite, cesium, sorption, sorption sites