УДК: 66.061.35

ИСПЫТАНИЯ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ ВЫДЕЛЕНИЯ ЛЮТЕЦИЯ-177 ИЗ ОБЛУЧЕННОЙ ИТТЕРБИЕВОЙ МИШЕНИ

© 2024 г. Е. В. Амбул^a, *, Н. Д. Голецкий a, b, **, А. А. Наумов a, Е. А. Пузиков , М. В. Мамчич , Е. О. Загладкин , Н. А. Дедов , Н. А. Семенова , С. А. Родионов , Н. В. Ковалев , А. М. Прокошин , И. А. Ушаков , В. В. Зукау

^a Радиевый институт им. В.Г. Хлопина, 197022, Санкт-Петербург, 2-й Муринский пр., д. 28 ⁶ Санкт-Петербургский государственный технологический институт (технический университет), 190013, Санкт-Петербург, Московский пр., д. 26

⁶Национальный исследовательский Томский политехнический университет, 634050, Томск, пр. Ленина, д. 30

*e-mail: ambyllisa@khlopin.ru,

** e-mail: goletsky@khlopin.ru

Получена 19.04.2024, после доработки 21.07.2024, принята к публикации 22.07.2024

Приведены результаты экспериментальной проверки комплексной технологии выделения ¹⁷⁷Lu из облученной иттербиевой мишени массой 1 г. Описаны основные узлы экспериментальной установки, смонтированной в исследовательской "горячей" камере: экстракционного разделения лютеция и иттербия, упаривания, концентрирования и хроматографической очистки ¹⁷⁷Lu. Подтверждена возможность получения фармсубстанции "лютеций-177 трихлорид без носителя", соответствующей требованиям Европейской фармакопеи.

Ключевые слова: экстракция, хроматография, лютеций-177, иттербий-176, моно-2-этилгексиловый эфир 2-этигексилфосфоновой кислоты, Isopar M, ТВЭКС LN2, ТВЭКС DGA

DOI: 10.31857/S0033831124050106

ВВЕДЕНИЕ

 177 Lu относится к числу наиболее перспективных β -излучающих радионуклидов для лечения ряда онкологических заболеваний: рака предстательной железы, нейроэндокринных опухолей, рака легких и др. [1]. 177 Lu обладает оптимальными ядерно-физическими характеристиками: период полураспада $T_{1/2}=6.7$ сут, максимальная энергия β -частиц 0.5 МэВ, мягкое γ -излучение: $E_{\gamma}=113$ (6.4%) и 208 кэВ (11%) [2, 3]. Это позволяет уничтожить опухоли размером 1–3 мм и отслеживать миграцию препарата в организме.

Основным способом получения ¹⁷⁷Lu высокой удельной активности является облучение миллиграммовых иттербиевых мишеней (до 1 г) в высокопоточных исследовательских реакторах [4]. Для получения лютеция в низкопоточном реакторе потребуется перерабатывать облученные мишени из ¹⁷⁶Yb с массой, многократно превышающей массы мишеней, облучаемых в реакторах с высоким потоком нейтронов. При этом содержание даже десятых долей мас% стабильных изотопов лютеция в мишени ¹⁷⁶Yb способно привести к существенному снижению удельной активности итогового ¹⁷⁷Lu [5].

Разделение Lu и Yb является сложной задачей, поскольку оба элемента близки по своим физико-химическим свойствам. Для выделения ¹⁷⁷Lu

из облученного иттербия на практике используют хроматографические, экстракционные, электрохимические и сублимационные методы.

Известны методы получения ¹⁷⁷Lu при помощи электрохимических методов с восстановлением иттербия из ацетатных растворов амальгамой натрия [6]. Такой подход может в принципе быть реализован для пары Lu/Yb в силу особенности строения электронных оболочек иттербия, обусловливающей его способность восстанавливаться до двухвалентного состояния в отличие от лютеция, для которого такое восстановление нехарактерно. Процесс разделения основан на восстановлении иттербия до двухвалентного состояния и далее до металла с образованием амальгамы иттербия [7, 8].

Увеличения эффективности разделения иттербия и лютеция можно достичь, используя существенную разницу в физико-химических свойствах их твердых соединений, а именно используя разницу в температурах сублимации и термической устойчивости их галогенидов. Это следует из результатов работы [9], однако данный способ не применялся для разделения иттербия и лютеция. В качестве таких соединений могут выступать LuI_3 и YbI_3 : из смеси иодидов иттербий может быть удален практически нацело возгонкой в вакууме при относительно невысоких температурах (~400—600°C). Синтез иодидов РЗЭ

технически сложно реализуем в условиях горячей камеры, а облучение заранее подготовленных иодидов будет явно осложнено как активируемостью иода, так и термическим разложением иодидов в процессе облучения в ядерном реакторе.

Известен способ разделения иттербия и лютеция для производства 177 Lu без носителя путем испарения металлического иттербия мишени при температуре $700-800^{\circ}$ C в высоком вакууме (5×10^{-5} мбар) [10]. В заявленном способе эффективность отделения 177 Lu от иттербия составляет около 90%.

Выделение ¹⁷⁷Lu из облученного иттербия хроматографическими методами проводят, как правило, с использованием катионообменных смол и растворов веществ, образующих комплексные соединения с данными элементами. Например, в НИИАР [11, 12] и ITM Isotopen Technologien München AG [13] для выделения ¹⁷⁷Lu используют методы ионообменной хроматографии с комплексонами. Хроматографическое разделение обычно применяют для получения химически чистого ¹⁷⁷Lu, полученного из иттербиевой мишени массой до нескольких граммов, однако такой процесс является малопроизводительным [14, 15].

Залачи разлеления близких по химическим свойствам элементов, например, РЗЭ, решаются также экстракционным методом. В промышленности для этих целей в последнее время используют фосфорорганические кислоты, такие как Р507 (моно-2-этилгексиловый эфир 2-этигексилфосфоновой кислоты) [16, 17], Cyanex 272 (бис(2,4,4-триметилпентил)фосфиновая кислота) [18], Д2ЭГФК (ди-(2-этилгексил)фосфорная кислота) [19]. Известно также, что при разделении Lu/Yb смесями экстрагентов Cyanex 272 и P507 проявляется синергетический эффект, однако смесь имеет более низкую емкость по извлекаемому элементу, а также требует для применения азотную кислоту с низкой концентрацией, не обеспечивающей эффективное вскрытие мишени [20, 21, 22]. В технологии разделения редкоземельных элементов экстрагент Р507 признан более эффективным для разделения тяжелых РЗЭ, чем классический экстрагент подобного класса Д2ЭГФК [23]. Коэффициент разделения пары Lu/Yb из растворов азотной кислоты Д2ЭГФК несколько выше и составляет около 2 против 1.5 для Р507 [17]. Однако в технологическом плане экстрагент на основе Р507 можно регенерировать содовой промывкой в отличие от Д2ЭГФК, где образуется устойчивая эмульсия. С другой стороны, коэффициенты распределения Lu и Yb для Д2ЭГФК слишком высокие, поэтому для проведения полупротивоточного процесса отделения Lu от Yb потребуется существенное разбавление Д2ЭГФК инертным разбавителем, что приведет к снижению емкости экстрагента и увеличению числа экстракционных ступеней на разделение.

Экстракционные системы Р507 и Суапех 272 были исследованы ранее [24, 25]. Был сделан выбор в пользу Р507 в качестве экстрагента, поскольку он обладает приемлемыми коэффициентами распределения и разделения Lu/Yb ($\beta_{\text{Lu/Yb}} = 1.4-1.6$), а также необходимой емкостью экстрагента при экстракции в разбавителях Isopar M и *м*-нитробензотрифториде (Ф3) из азотнокислых сред. По результатам лабораторных данных было проведено математическое описание экстракции и были рассчитаны значения концентрационных констант равновесия и параметры влияния разбавителя. Было разработано программное обеспечение, позволяющее оценить влияние параметров процесса (состава фаз, соотношения потоков и числа ступеней) на полупротивоточное экстракционное разделения лютеция и иттербия. Продемонстрировано совпадение расчетных и экспериментальных данных в пределах 10% по времени извлечения и концентрациям компонентов в реэкстрактах лютеция и иттербия для малонасыщенных систем, при испытаниях на облученной иттербивой мишени с массой 500 мг 176 Yb и концентрации в исходном растворе 17.2 г/л 176 Yb [26]. В результате комплекса исследований была выбрана экстракционная система 10% Р507—Ізораг М—2 моль/л азотная кислота.

Применение полупротивоточного экстракционного метода разделения не ограничивается только мишенями облученного $^{176}{\rm Yb_2O_3}$ массой 500 мг по металлу. Исследования показали, что метод также эффективен для переработки массивных иттербиевых мишеней (до 20 г): из модельного раствора (98 г/л Yb), полученного из облученной иттербиевой мишени (20 г облученного $^{176}{\rm Yb_2O_3}$ по металлу), за 18.5 ч была достигнута очистка $^{177}{\rm Lu}$ от $^{176}{\rm Yb}$ в 20 раз с химическим выходом 92% $^{177}{\rm Lu}$.

Одним методом выделения ¹⁷⁷Lu невозможно получить препарат, соответствующий стандартам Европейской фармакопеи. Поэтому целесообразно применять экспрессные и высокопроизводительные методы, например, метод жидкостной экстракции для очистки ¹⁷⁷Lu от основной массы иттербия на начальном этапе [27] и хроматографические методы для последующей доочистки [28, 29]. Использование хроматографии на конечной стадии позволит обеспечить очистку ¹⁷⁷Lu от примесей макрокомпонента, продуктов радиоактивного распада и др. до соответствия требованиям Европейской фармакопеи.

Цель настоящей работы — разработка и проверка технологической схемы выделения 177 Lu при переработке облученного 176 Yb₂O₃ (1 г в пересчете на массу металла).

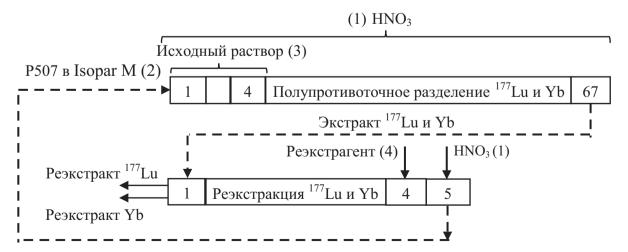
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали высокообогащенный оксид иттербия (содержание 176 Yb 99.59%) производства

комбината "Электрохимприбор"; азотную кислоту марки ос.ч. и 69%-ную азотную кислоту для анализа следов металлов; 37%-ную соляную кислоту для анализа следов металлов; деионизированную воду при экстракционном разделении ¹⁷⁷Lu от Yb; апирогенную воду на хроматографическом цикле очистки препарата ¹⁷⁷Lu для обеспечения требований по содержанию пирогенных веществ; цитрат аммония марки ч.д.а.; Р507 (моно-2-этилгексиловый эфир 2-этилгексилфосфоновой кислоты) производства фирмы Luoyang Zhongda Chemical Co с чистотой не менее 99%; Іѕораг М (изопарафин фракции С₁₃-С₁₄) производства Exxon Mobil химической чистоты 99%; колонки фирмы Omnifit, заполненные ТВЭКСами DGA-Normal Resin с размером частиц 50-100 мкм и LN2-Resin с размером частиц 20-50 мкм, производства фирмы TrisKem; катионообменный картридж Chromafix PS-H+ объемом 0.8 мл производства фирмы Macherev-Nagel, содержащий сильнокислый катионообменник на основе стиролдивинилбензольного полимера с ионогенной сульфогруппой с обменной емкостью 2.9 мг-экв/г.

Содержание металлов в пробах определяли методом ICP OES на приборе Varian 725, погрешность определения 15%. Активность изотопов ¹⁷⁷Lu и ¹⁷⁵Yb определяли по γ-спектрам с использованием спектрометра фирмы Canberra с детектором из высокочистого германия GC1018 и многоканальным анализатором DSA-1000, погрешность определения 10%.

Ядерно-физическое моделирование проводили с использованием программного средства (ПС) Serpent [30]. ПС Serpent является многоцелевым кодом трехмерного переноса частиц, реализующим метод Монте-Карло с использованием непрерывных по энергиям библиотек, разработанный в VTT Technical Research Center of Finland, Ltd. В расчетах использовались библиотеки ENDF/B-VII.1.


Вскрытие ампул с облученным оксидом иттербия проводили на разработанном устройстве вскрытия путем их раздавливания. Прием боя кварцевых

ампул и мишенного вещества осуществляли в круглодонную термостойкую колбу объемом 250 мл, которая плотно стыковалась с устройством вскрытия в целях предотвращения аэрозольного уноса целевого продукта. Растворение содержимого ампул проводили в 2 моль/л HNO_3 при 80° C на колбонагревателе в течение 1.5 ч.

После анализа полученный азотнокислый раствор подавали на полупротивоточное экстракционное разделение 177 Lu и Yb по принципиальной технологической схеме, показанной на рис. 1.

Внешний вид экстракционного узла представлен на рис. 2.

Испытания проводили на шести двенадцатиступенчатых малогабаритных центробежных экстракторах МЦЭ-45-12П производства НПО "ТехПро-Групп". Общее число ступеней – 72. Ступени центробежного экстрактора термостатировали при 30°С подачей теплообменника (вода) в картер экстрактора. Согласно технологической схеме (рис. 1), разделительный блок Lu и Yb состоял из 67 полупротивоточных ступеней с подвижной легкой фазой (рабочий объем ступеней: неподвижная водная фаза — 30 мл, подвижная органическая фаза — 15 мл). Блок реэкстракции 177 Lu и Yb состоял из пяти противоточных ступеней (рабочий объем ступеней: подвижная водная фаза – 15 мл, неподвижная органическая фаза — 15 мл) от центробежного экстрактора МЦЭ-30-12 [31]. Подготовка разделительного блока состояла в последовательном заполнении ступеней промывным раствором (1) (2 моль/л HNO₃), блока реэкстракции реэкстрагентом (4) (5.2 моль/л HNO₃) и промывным раствором (1). При отключении подачи промывного раствора (1) на разделительный блок в него подавали экстрагент (2) (10% P507 в Isopar M). После заполнения всех экстракционных ступеней водной и органической фазами их подачу отключали, и в первую ступень разделительного блока начинали подавать исходный раствор ¹⁷⁷Lu и Yb, который последовательно вытеснял из ступеней промывные

Рис. 1. Принципиальная технологическая схема экстракционного выделения ¹⁷⁷Lu.

Рис. 2. Размещение экстракционного узла.

растворы. После заполнения первых четырех ступеней исходным раствором объемом 120 мл включали подачу экстрагента (2), реэкстрагента (4) и промывки экстрагента (1).

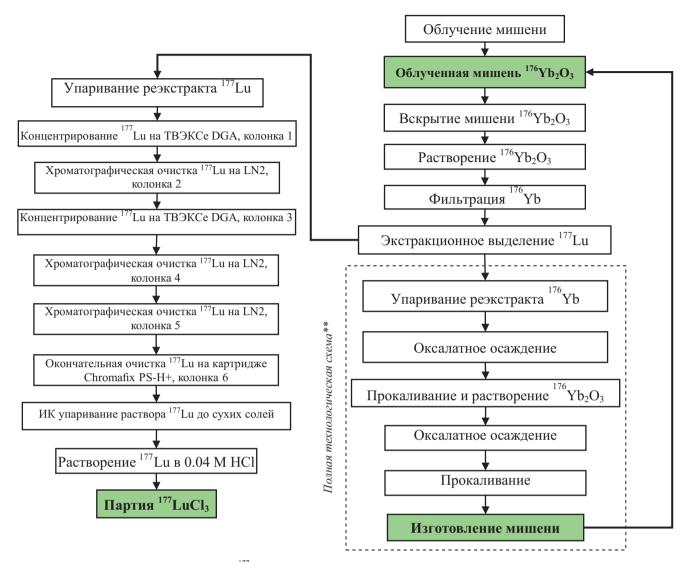
Полученный реэкстракт ¹⁷⁷Lu направляли в циркуляционный выпарной аппарат с выносной греющей камерой с рабочим объемом 140 мл. Упаренный реэкстракт ¹⁷⁷Lu отправляли на операцию сорбционного концентрирования на колонке, заполненной смолой DGA-Normal Resin (колонка 1), и десорбировали раствором 0.1 моль/л цитрата аммония [32, 33].

После сорбционного концентрирования десорбат корректировали по кислотности до 1.33 моль/л HNO₃ и подавали на цикл хроматографической очистки, состоящий из трех основных колонок (колонки 2, 4 и 5), заполненных смолой LN2 Resin, и одной промежуточной колонки концентрирования (колонка 3), заполненной смолой DGA-Normal Resin [34]. Все колонки были предварительно уравновешены 4 моль/л HNO₃. Первым с колонок смывали Yb раствором азотной кислоты 1.35 моль/л, затем элюировали ¹⁷⁷Lu 4 моль/л HNO₃. Элюат ¹⁷⁷Lu с последней колонки разделения упаривали под ИК лампой и корректировали по кислотности (2 моль/л) (рис. 3).

Для достижения химической чистоты проводили финальную очистку раствора 177 Lu с использованием катионообменного картриджа Chromafix PS-H+ (колонка 6), размещенном в отдельном герметичном и чистом радиационно-защитном боксе. Раствор подавали в картридж с помощью перистальтического насоса со скоростью $0.2\,$ мл/мин, далее в картридж подавали $15\,$ мл $5\,$ моль/л HNO_3 , на выходе из колонки элюат собирали пофракционно. Проанализированные фракции, содержащие 177 Lu, объединяли и упаривали под ИК лампой в кварцевой посуде. Сухой остаток растворяли в концентрированной HCl для перевода 177 Lu в хлоридную форму, снова упаривали под ИК лампой и растворяли в $0.04\,$ моль/л HCl. Конечный продукт — препарат 177 Lu — фасовали в стерильную стеклянную виалу.

Методом нейтронно-активационного анализа (НАА) определяли удельную активность выделенного препарата ¹⁷⁷Lu и содержание ¹⁷⁵Lu и ¹⁷⁶Lu. Метод НАА основан на измерении у-активности радионуклидов, образующихся из стабильных нуклидов определяемых элементов при активации проб в потоке тепловых нейтронов. Интенсивность у-излучения пропорциональна массе определяемого элемента, что позволяет проводить количественный анализ относительным методом путем сравнения активностей в пробе и образие сравнения. Эталон, образец и холостую пробу количественно наносили на фильтровальную бумагу и сушили под ИК лампой. Пробы запаивали в полиэтиленовую пленку и облучали нейтронами флюенсом 2.4×10^{16} нейтр/см² (время облучения 11 мин, время "охлаждения" проб 15 мин). Для определения ¹⁷⁵Lu каждую пробу измеряли в течении 1 ч на полупроводниковом у-спектрометре GX2018 по линии 88.3 кэВ (^{176m}Lu). После измерения проб их дополнительно упаковывали в алюминиевую фольгу и облучали до флюенса 1.2×10^{18} нейтр/см 2 для определения 176 Lu по линии 208 кэВ (177 Lu).

Радиохимическую чистоту (РХЧ) ¹⁷⁷Lu в растворе определяли с использованием хроматографических полосок ITLC-SGGlass и сцинтилляционносканирующего счетчика СУ-05П.


Долю связывания препарата ¹⁷⁷Lu молекулой-предшественником с хелатирующей группой DOTA-PSMA-617 определяли методом тонкослойной хроматографии и высокоэффективной жидкостной хроматографии с использованием хроматографа жидкостного высокого давления Agilent Technologies 1260 Infinity с проточным ү-детектором Raytest Gabi Star.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для испытаний была разработана технологическая схема (рис. 3) выделения 177 Lu из облученной иттербиевой мишени.

Облучение в реакторе

Облучение иттербиевой мишени проводили в реакторе ИРТ-Т в Национальном исследовательском Томском политехническом университете (ТПУ). С целью оценки необходимого количества облучаемого оксида иттербия, наработки активности целевого ¹⁷⁷Lu и примесного изотопа ¹⁷⁵Yb с учетом транспортировки из Томска в Гатчину, времени переработки в научно-экспериментальном комплексе Радиевого института, транспортировки выделенного препарата ¹⁷⁷Lu для проведения синтеза РФПЛ в Ульяновском государственном университете проводили предварительное ядернофизическое моделирование. Моделирование проводили с использованием известного многогруппового энергетического распределения нейтронов

Рис. 3. Технологическая схема выделения ¹⁷⁷Lu из облученной иттербиевой мишени. **В схеме представлено предложение по регенерации иттербия в новую мишень.

реактора ИРТ-Т, канала ЦЭК-2. Расчеты моде- Таблица 1. Изотопный состав мишенного материала лировали облучение мишени в реакторе в течение 103 ч, что соответствовало штатному режиму облучения ядерного реактора.

Ядерно-физическая модель представляет из себя ячейку с материалом облучаемой мишени и источник с заданным энергетическим распределением нейтронов вокруг ячейки. Изотопный состав Үь в облучаемой мишени был задан в соответствии с ее паспортом (табл. 1).

В модели мощность источника корректировали в соответствии с исходными данными (табл. 2).

В расчетах ядерно-физического моделирования и в эксперименте по облучению использовали две мишени, содержащие по 500 мг иттербия. Мишени облучали в реакторе ИРТ-Т в ТПУ в канале ЦЭК-2 с потоком тепловых нейтронов $2.2 \times 10^{14} \, n \cdot \text{cm}^{-2} \cdot \text{c}^{-1}$ (табл. 2).

Изотоп Үь	Macca, %
¹⁶⁸ Yb	< 0.01
¹⁷⁰ Yb	0.01
¹⁷¹ Yb	0.02
¹⁷² Yb	0.04
¹⁷³ Yb	0.05
¹⁷⁴ Yb	0.29
¹⁷⁶ Yb	99.59 ± 0.04

Расчетные значения активности, полученных путем ядерно-физического моделирования, в сравнении с экспериментальными значениями приведены в табл. 3. Выдержка мишеней перед измерениями составляла 100 ч.

Таблица 2. Плотность потока нейтронов в месте облучения мишеней

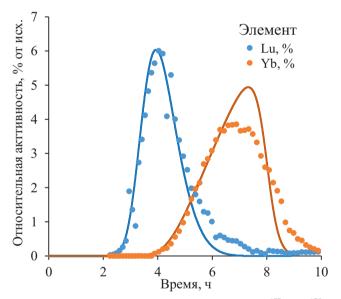
Ячейка активной зоны	$F_n, n \cdot \text{cm}^{-2} \cdot \text{c}^{-1}$ $(E_n \le 1 \text{ 3B})$	$F_n, n \cdot \text{cm}^{-2} \cdot \text{c}^{-1}$ (1 эВ $\leq E_n \leq 100 \text{ кэВ}$)	F_n , $n \cdot \text{см}^{-2} \cdot \text{c}^{-1}$ ($E_n > 100 \text{ кэВ}$)
ЦЭК-2	2.2×10^{14}	1.1×10^{14}	8.1cc10 ¹³

Таблица 3. Сравнение расчетных и экспериментальных значений активности 177 Lu и 175 Yb с учетом облучения в реакторе в течение 103 ч и выдержки за счет их транспортировании в течение 100 ч

Изотоп	Serpent (ENDF/BVII.1), Ки	Эксперимент, Ки
¹⁷⁷ Lu	10.99	10.04 ± 0.50
¹⁷⁵ Yb	1.46	1.47 ± 0.07

Валидация разработанной ядерно-физической модели показала соответствие между расчетными и экспериментально определенными значениями активности облученных иттербиевых мишеней в реакторе ИРТ-Т. Разработанная ядерно-физическая модель облучения мишеней в реакторе ИРТ-Т хорошо описывает наработку изотопа ¹⁷⁷Lu при облучении высокообогащенной мишени. Отклонение расчетных значений активности ¹⁷⁷Lu и ¹⁷⁵Yb от экспериментальных составили менее 10%.

Вскрытие ампул, растворение и экстракционная переработка


Вскрыли две ампулы с облученным оксидом иттербия (содержание иттербия в каждой ампуле 500 мг), поместили в круглодонную колбу и залили азотной кислотой для последующего растворения. Длительность операции растворения с контролем состава раствора составила 2 ч. Результаты анализа раствора облученных иттербиевых мишеней привелены в табл. 4. Выхол составил 99.6%.

Экстракционное разделение проводили в течение 11.2 ч. Результаты анализа выделенных реэкстрактов ¹⁷⁷Lu и Yb сведены в табл. 4. Отбор реэкстракта осуществляли пофракционно каждые 10 мин. После радиометрического анализа на содержание ¹⁷⁷Lu и ¹⁷⁵Yb анализа проб принимали решение об объединении растворов во фракцию, не содержащую Lu

и Yb, в целевую фракцию 177 Lu и фракцию с материнским Yb. Содержание иттербия в целевой фракции 177 Lu не должно было превышать 5%.

На рис. 4 представлены зависимости относительной активности 177 Lu и 175 Yb от времени на выходе из каскала.

В результате экстракционного разделения на 5.1 ч эксперимента была получена объединенная фракция ¹⁷⁷Lu, содержащая около 67.2% ¹⁷⁷Lu и 4.5% ¹⁷⁵Yb в объеме 1150 мл. Как показали полученные данные, коэффициент очистки лютеция от иттербия составил 22, что позволяет передать раствор на следующие операции — упаривания и концентрирования. Расчетные и экспериментальные выходы лютеция

Рис. 4. Зависимость относительной активности 177 Lu и 175 Yb от времени на выходе из каскада (*точки* — эксперимент, *линии* — расчет по модели [30]).

Таблица 4. Результаты анализа исходного раствора и реэкстрактов

Продукт		Концентрация	,		нтрация, к/л		ость, Бк (и)	¹⁷⁶ Yb,	Lu, %	Yb, %
	МЛ	Yb, г/л	моль/л	¹⁷⁷ Lu	¹⁷⁵ Yb	¹⁷⁷ Lu	¹⁷⁵ Yb	МΓ		
Исходный раствор	120	8.30		3.1×10^{12}		` ′	` ′		100	100
Реэкстракт ¹⁷⁷ Lu	1150	0.04		2.1×10^{11}		(0.0)	(0.07)		67.2	4.50
Реэкстракт Үь	2400	0.37	5	4.5×10^{10}	2.2×10^{10}	1.1×10^{11} (3.0)	5.3×10^{10} (1.4)	890	30,0	90,0

и иттербия сопоставлены в табл. 5. В пробах после 5.1 ч экстракционного разделения увеличивается содержание иттербия. Объединение этих проб с целевой фракцией (объединенные пробы отборов с 2.3 по 5.1 ч работы каскада) отрицательно влияет на качество итогового продукта.

Расхождение расчетных и экспериментальных значений выхода лютеция составляет не более 5%, а иттербия — менее 2%.

Для повышения эффективности выделения ¹⁷⁷Lu из иттербиевых мишеней массой до 1 г требуется проводить растворение в меньшем объеме (объем в испытаниях составлял 120 мл), что позволит увеличить общее число ступеней на разделение ¹⁷⁷Lu от Yb. Увеличения эффективности разделения ¹⁷⁷Lu от Yb можно достигнуть за счет повышения концентрации азотной кислоты в промывном растворе в полупротивоточных ступенях, что позволит улучшить показатели разделения ¹⁷⁷Lu от Yb. Чтобы сократить время на разделение ¹⁷⁷Lu и Yb. а также снизить потери за счет естественного распада, необходимо увеличить расход экстрагента. Для этого были проведены расчеты с увеличенным на 30% расходом экстрагента (экстрактор МЦЭ-45-30 способен работать с расходом до 2 л/ч) по сравнению с ранее представленными данными. Результаты расчетов сведены в табл. 6.

Оптимизационные расчеты показывают, что можно повысить степень очистки лютеция от иттербия от 20 до 100 раз с общим выходом по лютецию от 80 до 90%. С повышением концентрации азотной кислоты 3 моль/л объем выделяемой фракции

лютеция увеличивается практически в два раза, что необходимо учитывать при последующих операциях очистки и выделения лютеция.

Упаривание реэкстракта 177 Lu

Упаривание реэкстракта Lu с отгонкой кислоты проводили в течение 9 ч. Кратность упаривания раствора составила 9.1. Общий объем полученного раствора составил 126 мл. Полученный раствор содержал 1.9×10^{12} Бк/л $(2.4\times10^{11}$ Бк) 177 Lu и 2.1×10^{10} Бк/л $(2.6\times10^9$ Бк) 175 Yb. Результаты химического анализа реэкстракта 177 Lu и упаренного реэкстракта 177 Lu сведены в табл. 7.

Поскольку выпарной аппарат был изготовлен из нержавеющей стали 12X18H10T, после упаривания реэкстракта в нем появились продукты коррозии. В связи с этим для получения фракции ¹⁷⁷Lu без таких примесей требуется использовать конструкционные материалы выпарного аппарата из сплавов на основе титана, либо отказаться от операции упаривания в пользу сорбционного концентрирования.

Сорбционное концентрирование и хроматографическая очистка

Упаренный и скорректированный по кислотности реэкстракт подавали на сорбционную колонку 1, заполненную смолой DGA-Normal Resin. Сорбаты собирали в полиэтиленовые пробирки по 6 мл, анализировали на содержание ¹⁷⁷Lu и ¹⁷⁵Yb, и растворы с максимальной активностью ¹⁷⁷Lu объединяли.

Таблица 5. Сопоставление экспериментальных и расчетных результатов выходов лютеция и иттербия

Интервал времени пробоотбора, ч	Вых	код Lu, %	Вых	код Үb, %	Выход Үь, мг		
интервал времени прооботобра, ч	расчет	эксперимент*	расчет	эксперимент*	расчет	эксперимент*	
2.3-5.1	66.5	67.2	4.2	4.5	44.8	41.9	
2.3-5.2	70.5	69.2	6.0	6.2	61.4	59.8	
2.3-5.4	73.7	71.0	8.2	8.1	80.9	82.1	
2.3-5.5	76.8	72.6	11.0	10.3	110.0	102.3	

^{*} В пересчете на начало эксперимента для сопоставления результатов с моделью.

Таблица 6. Оптимизационные расчеты экстракционного отделения лютеция от иттербия с мишенью массой $1.0\,\mathrm{r}$ при различных концентрациях $\mathrm{HNO_3}$ в промывном растворе и $10\%~\mathrm{P507}$ в Isopar M

Мишень Үb, г	<i>V</i> , мл	Yb, г/л	1		Выход Үb, мг	Время,		Выход ¹⁷⁷ Lu, % (с учетом распада)	<i>V</i> , мл	Ч	Выход Lu, %	Выход ¹⁷⁷ Lu, % (с учетом распада)	<i>V</i> , мл			
						2.5 мол	ть/л HNO₃		3.0 моль/л HNO_3							
		60 16.6	1	10	5.7	74.4	72.6	1100	8.5	86.6	83.4	1700				
			60 16.6	60 16.6	60 16.6	60 16.6	2	20	5.9	80.9	78.8	1200	8.8	90.8	87.4	1850
1,0	60						3	30	6.1	83.9	81.7	1260	9.1	92.5	88.9	1950
			4	40	6.2	85.7	83.4	1310	9.3	93.4	89.8	2000				
			5	50	6.3	86.8	84.5	1350	9.4	94.0	90.3	2100				

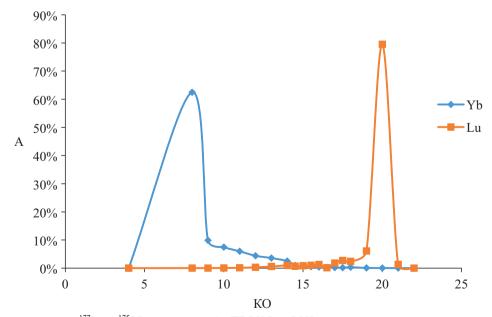
Таблица 7. Анализ реэкстракта ¹⁷⁷Lu и упаренного реэкстракта на примеси (мг/л)

Продукт	Fe	Ca	Cu	Cr	Na	Ni	Mg	Pb	Si	Zn	P
Реэкстракт ¹⁷⁷ Lu	1.6	0.8	0.8	< 0.01	0.3	< 0.01	0.2	0.2	< 0.01	< 0.01	76.0
Упаренный реэкс- тракт ¹⁷⁷ Lu	670	16.0	2.4	164	3.5	92.6	2.2	1.6	2.4	0.6	652

Таблица 8. Распределение 177 Lu и 175 Yb при очистке на колонках во фракции 177 Lu

Колонка		Скорость,		Фракция 177Lu на выходе из колонки							
	Смола/картридж	КО/ч,* сорбция/ десорбция	Объединенный элюат, мл	¹⁷⁷ Lu, Бк	¹⁷⁵ Yb, Бк	¹⁷⁷ Lu, %	¹⁷⁵ Yb, %	¹⁷⁶ Yb, мг			
1	DGA	18.9	44	2.0×10^{11}	2.1×10^{9}	83.3	80.8	42.3			
2	LN2	4.2	45	1.63×10^{11}	1.72×10^{8}	81.5	8.2	4.29			
3	DGA	30	2	1.54×10^{11}	1.65×10^{8}	94.5	95.9	4.12			
4	LN2	6.5	6	1.18×10^{11}	3.50×10^{6}	75.2	2.1	0.08			
5	LN2	5	3	1.11×10^{11}	1.65×10^{3}	94.1	0.047	4.0×10^{-4}			
6	Chromafix PS-H+	15	6	1.02×10^{11}	_	91.9	_	_			

^{*} КО – колоночный объем.


Использование смолы DGA resin позволило очистить упаренный раствор от основных продуктов коррозии и частично от фосфора (табл. 7). Сконцентрированный в 2.9 раза раствор реэкстракта объемом 44 мл, содержащий 2.0×10^{11} Бк 177 Lu и 2.1×10^9 Бк 175 Yb, корректировали по кислотности и подавали на цикл хроматографической очистки.

Результаты разделения на трех хроматографических колонках 2, 4, и 5, заполненных смолой LN2 Resin, с промежуточным концентрированием на колонке 3, заполненной смолой DGA Resin, представлены в табл. 8. После каждой колонки отбираемые

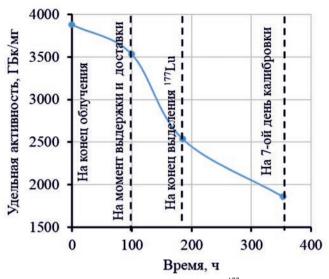
пробы анализировали, фракции с максимальной активностью по 177 Lu объединяли. Концентрацию кислоты в элюате доводили до 1.33 моль/л и отправляли на следующую колонку.

Пример разделения на хроматографической колонке представлен на рис. 5.

После разделения 177 Lu и 175 Yb на пятой колонке был получен суммарный коэффициент очистки более 10^5 , что достаточно для обеспечения требуемой радионуклидной чистоты. Десорбат 177 Lu с колонки 5 упаривали под ИК лампой и корректировали по содержанию HNO_3 до 1.33 моль/л.

Рис. 5. Хроматограмма разделения 177 Lu и 175 Yb на колонке 1 с ТВЭКСом LN2.

Рис. 6. Десорбция ¹⁷⁷Lu с картриджа Chromafix PS-H+.


Финальную очистку для достижения химической чистоты раствора Lu проводили на картридже Chromafix PS-H+.

Выходная кривая 177 Lu с картриджа Chromafix PS-H+ представлена на рис. 6.

Фракции, содержащие ¹⁷⁷Lu, объединяли и упаривали под ИК лампой в кварцевой посуде. Полученный сухой продукт перевели в хлоридную форму путем растворения в концентрированной соляной кислоте с упариванием под ИК лампой и последующим растворением полученной соли в 0.04 моль/л HCl. Партию препарата ¹⁷⁷Lu фасовали в стерильные виалы для аттестации в лабораториях Радиевого института им. В.Г. Хлопина и Ульяновского государственного университета.

Определение удельной активности

Образец препарата 177 Lu объемом 1.5 мкл с объемной активностью 2.6 Ки/мл на момент выделения препарата передавали для определения удельной активности методом нейтронно-активационного анализа. Определяли содержание 175 Lu и 176 Lu: концентрация 175 Lu составила 9 нг/мкл, а концентрация 176 Lu — 0.42 нг/мкл. Удельная активность 177 Lu на конец выделения составила 2590 ГБк/мг (теоретическая (максимальная) удельная активность составляет 4100 ГБк/мг). Полученные результаты хорошо коррелируют с накоплением побочного 175 Lu за счет β -распада 175 Yb за время облучения в реакторе 103 ч, транспортировки мишеней до места переработки 100 ч и выделения 177 Lu в течение 80 ч (рис. 7).

Рис. 7. Изменение удельной активности ¹⁷⁷Lu за время облучения иттербиевой мишени в реакторе, ее выдержки, выделения препарата ¹⁷⁷Lu и на 7-ой день калибровки препарата ¹⁷⁷Lu.

Конечный продукт

По стандартам Европейской фармакопеи радионуклидная чистота (PHЧ) 177 LuCl₃ должна составлять не менее 99%, радиохимическая чистота — не менее 99%, объемная активность 177 Lu — 1 Ки/мл; требования к содержанию катионов металлов (мг/ЕБк): Fe \leq 0.25, Cu \leq 0.5, Zn \leq 0.25, Pb \leq 0.5, к бактериальным эндотоксинам — \leq 20 [35].

Аттестацию на радионуклидную чистоту проводили в аккредитованной лаборатории радиологического мониторинга, проверку на радиохимическую чистоту и эндотоксины — в отделении производства радиофармпрепаратов Радиевого института. Результаты сведены в табл. 9.

Экспериментальное мечение изотопом ¹⁷⁷Lu проводили в Ульяновском государственном университете на автоматизированном кассетном модуле синтеза Synthera® IBA. Проведена валидация качества продукта по удельной активности. радионуклидной (РНЧ), радиохимической (РХЧ) и химической (ХЧ) чистоте, а также мечение полученного ¹⁷⁷Lu молекулой-предшественником с хелатирующей группой DOTA-PSMA-617. Результаты проверки представлены в табл. 9.

Из результатов анализа (табл. 9) следует, что у выделенной фармсубстанции ¹⁷⁷Lu подтвердились показатели радионуклидной чистоты и химической чистоты. После корректировки рН до требуемого значения 1.4 при концентрации 0.04 моль/л НСl было достигнуто мечение препаратом ¹⁷⁷Lu-PSMA-617 не менее 98.8% при соотношении 1 : 4 и радиохимическая чистота 99%. По итогам работы дано заключение о пригодности радионуклидной продукции препарата ¹⁷⁷Lu Радиевого института им. В.Г. Хлопина

Таблица 9. Результаты проверки препарата ¹⁷⁷LuCl₂

Удельная активность. Ки/мл	, РНЧ,	РНЧ, % РХЧ, % Эндо- токсины Лаборатория Радиевого институ			ины	XY, MKT/		¹⁷⁷ Lu: 617, c	ение PSMA- ротно- е 1 : 4	Удельная актив- ность, ГБк/мг Lu	
2.6	он эккгоп 177Lu >99.99	льебование Требование 177 Ги >99.0	получено	требование	получено	требование	онэькиоп	требование	получено	требование	ı
	$ \begin{vmatrix} ^{175}\text{Yb} < 8.8 \times 10^{-3} \\ ^{177m}\text{Lu} < 8 \times 10^{-4} \\ ^{169}\text{Yb} < 2 \times 10^{-4} \end{vmatrix} $	¹⁷⁵ Yb <0.1 ^{177m} Lu <0.07 Другие <0.01	7b < 0.1 .u < 0.07 99.65		≥99 13.8	≤20.0	_	-	_	_	_
		Улья	яновск	ий гос	ударст	гвенны	й университет				
2	¹⁷⁷ Lu >99.91 ¹⁷⁵ Yb <0.09 ^{177m} Lu <1.8 × 10 ⁻³	177 Lu \geqslant 99.0 175 Yb $<$ 0.1 177m Lu $<$ 0.07 Другие $<$ 0.01	99.8	≥99.0	_	_	Fe 0.21 Cu 0.46 Zn 0.42 Pb 0.40 Yb 0.08	Fe <0.25 Cu <0.50 Zn <0.50 Pb <0.50 Yb <0.10	99	≽99	_
	Наци	ональный иссл	тедоват	гельскі	ий Том	иский і	политехническ	ий университет			
											2590*

^{*} На момент выпуска препарата ¹⁷⁷LuCl₃.

для дальнейшего ее использования для изготовления радиофармацевтических лекарственных препаратов.

ЗАКЛЮЧЕНИЕ

Предложена принципиальная схема выделения ¹⁷⁷Lu из облученных иттербиевых мишеней. Были проведены следующие операции согласно предложенной схеме на облученных оксидных иттербиевых мишенях с массой 1 г по ¹⁷⁶Yb: вскрытие кварцевых ампул, содержащих оксид иттербия, и растворение его в азотной кислоте; полупротивоточное экстракционное разделение 177 Lu от 176 Yb с использованием экстрагента 10% Р507 в Ізораг М на компактных центробежных экстракторах МЦЭ-45-12П (общее количество экстракционных ступеней 72) с коэффициентом очистки 22; упаривание выделенной фракции ¹⁷⁷Lu на компактном выпарном аппарате с выносной греющей камерой и рабочим объемом 140 мл с концентрированием не менее чем в 10 раз с отгонкой азотной кислоты; сорбционное концентрирование упаренной фракции 177 Lu в 2.9 раза с очисткой от химических примесей, преимущественно продуктов коррозии, на ТВЭКСе с DGA; три цикла хроматографической очистки с использованием ТВЭКСа LN2 с промежуточной корректировкой кислотности и очисткой от химических примесей на ТВЭК-Ce DGA; окончательная очистка от возможных продуктов деструкции ТВЭКСов для достижения химической чистоты на картридже Chromafix PS-H+

(сильноосновном сульфокатионите). Общий коэффициент очистки ¹⁷⁷Lu от ¹⁷⁶Yb составил более 10⁵. Длительность испытаний по переработке 1 г ¹⁷⁶Yb с учетом анализа проб составила 80 ч, однако это время может быть сокращено до 55 ч за счет оптимизации процесса анализа проб и режимов работы оборудования. Оценка расчетных и экспериментальных результатов на модельных растворах показывает возможность увеличения массы перерабатываемой мишени ¹⁷⁶Yb до 20 г, но для подтверждения этого потребуется проведение дальнейших исследований на реальных облученных мишенях.

Проведена валидация полученной тестовой партии препарата ¹⁷⁷Lu с подтверждением показателей качества на соответствие стандартам Европейской фармакопеи. По результатам проведения экспериментального мечения препаратом ¹⁷⁷Lu с PSMA-617 с радиохимической чистотой не менее 98.8% в Ульяновском государственном университете дано заключение о пригодности полученного в Радиевом институте им. В.Г. Хлопина препарата для дальнейшего использования в целях изготовления радиофармацевтических лекарственных препаратов.

Проведена оценка изменения удельной активности 177 Lu за время облучения иттербиевой мишени в реакторе и ее выдержки, за время выделения 177 Lu и на 7-й день калибровки препарата 177 Lu. Полученные результаты хорошо коррелируют с накоплением побочного 175 Lu за счет β -распада 175 Yb за 103 ч облучения в реакторе, транспортировки

мишеней до места переработки за 100 ч и выделения ¹⁷⁷Lu в течение 80 ч. Удельная активность препарата на момент выделения препарата ¹⁷⁷Lu составила 2600 ГБк/мг Lu. Таким образом, для получения препарата с высокой удельной активностью требуется организация производства в непосредственной близости от реактора и сокращение длительности выделения ¹⁷⁷Lu из облученной мишени.

БЛАГОДАРНОСТИ

Авторы благодарят ученого секретаря, д.х.н. И.В. Смирнова за полезные советы и помощь в изложении статьи; А.Д. Ушанова, Н.В. Короткого, С.А. Фельдшерова, А.Н. Визного, А.В. Бизина, П.И. Сороку, А.И. Медведеву и сотрудников научно-экспериментального комплекса Радиевого института им. В.Г. Хлопина за помощь в проведении испытаний по получению ¹⁷⁷Lu; директора Научноисслеловательского технологического института им. С.П. Капицы А.Н. Фомина за проведение экспериментального мечения изотопом ¹⁷⁷Lu; к.х.н. В.А. Орлову за проведение рентгенофлуоресцентного анализа состава картриджа Chromafix PS-H+.

СПИСОК ЛИТЕРАТУРЫ

- 1. Пряхин Е.А., Стяжкина Е.В., Атаманюк Н.И., Дьяков А.А., Ильин К.И., Аклеев А.В. // Тез. докл. VII Междунар. научно-практической конф. Челябинск, 11-13.10.2018 г. С. 118-121.
- Vol. 8. N 2.
- 3. Нуртдинов Р.Ф., Прошин М.А., Чувилин Д.Ю. // Радиохимия. 2016. Т. 58. № 2. С. 150-154.
- 4. Ушаков И.А., Мубита Д., Мере П.А. // Тез. докл. конф. "Ядерные технологии: от исследований к внедрению". Нижний Новгород, 15.04.2022. C. 147-149.
- 5. Тарасов В.А., Романов Е.Г., Кузнецов Р.А. // Изв. Самарского науч. центра РАН. 2013. Т. 15. № 4-5. C. 1084-1090.
- 6. Болдырев П.П., Курочкин А.В., Нуртдинов Р.Ф., Прошин М.А., Чувилин Д.Ю., Яшин Ю.А. // Вестн. Моск. ун-та. Сер. 2: Химия. 2016. Т. 57. № 3. С. 184–190.
- 7. Lebedev N.A., Novgorodov A.F., Misiak R., Brockmann J., Rösch F. // Appl. Radiat. Isot. 2000. Vol. 53. P. 421–425.
- 8. Chakravarty R., Das T., Dash A., Venkatesh M. // Nucl. Med. Biol. 2010. Vol. 37. P. 811-820.
- 9. Brunetti B., Piacente V., Scardala P. // J. Chem. Eng. Data. 2005. Vol. 50. P. 1801-1813.
- 10. Пантелеев В.Н., Кротов С.А. Патент RU2704005. 26.04.2019. https://patents.s3.yandex.net/ RU2704005C1 20191023.pdf
- 11. Андреев О.И., Гончарова Г.В., Дитяткин В.А., Зотов Э.А. Патент RU2763745.

- 02.06.2021. https://patents.s3.yandex.net/ RU2763745C1 20220110.pdf
- 12. Andrevev O.I., Goncharova G.V., Ditvatkin V.A., Zotov E.A. Patent WO/2022/255905. 24.05.2022. https://patentscope.wipo.int/search/docs2/iasr/ WO2022255905/pdf/wnURozOQX RzWA6eARrkGL cjPtPlLPeTfrFCqHbfF7A
- 13. Маркс С., Харфенштеллер М., Жерносеков К., Никула Т. Патент RU2573475. 15.07.2011 г. https://new. fips.ru/registers-doc-view/fips servlet?DB=RUPAT& DocNumber=0002573475&TypeFile=html
- 14. Kosvnkin V.D., Molchanova T.V., Zharova E.V. // At. Energy. 2017. Vol. 121. N 6. P. 443-447.
- 15. Park U.J., Lee J.S., Choi K.H., Nam S.S., Yu K.H. // Appl. Radiat. Isot. 2016. Vol. 115. P. 8-12.
- 16. Jing Y., Chen J., Chen L., Su W., Liu Y., Li D. // J. Phys. Chem. A. 2017. Vol. 121. P. 12.
- 17. Dezhi Qi. Hydrometallurgy of Rare Earths. Extraction and Separation. Elsevier, 2018. P. 801.
- 18. Liu T., Chen J. // Sep. Purif. Technol. 2021. Vol. 276. ID 119263.
- 19. Wang J., Xie M., Wang H., Xu Sh. // Hydrometallurgy. 2016. Vol. 167. P. 39-47.
- 20. Lee M.S., Lee G.S., Lee J.Y., Kim S.D., Kim J.S. // Mater. Trans. 2005. Vol. 46. N 1. P. 64-68.
- 21. Xiong Y., Wang X.L., Li D.Q. // Sep. Sci. Technol. 2005. Vol. 40. N 11. P. 2325-2336.
- 22. Wang Y.L., Li F.J., Zhao Z.Y., Dong Y.M., Sun X.Q. // Sep. Purif. Technol. 2015. Vol. 151. P. 303-308.
- 2. Pillai A.M., Knapp F.F., Jr. // Curr. Radiopharm. 2015. 23. Xie F., Zhang T.A., Dreisinger D., Doyle F.A. // Miner. Eng. 2014. Vol. 56. P. 10-28.
 - 24. Амбул Е.В., Голецкий Н.Д., Медведева А.И., Наумов А.А., Пузиков Е.А., Афонин М.А., Шишкин Д.Н. // Радиохимия. 2022. T. 64. N 3. C. 233-240.
 - 25. Амбул Е.В., Голецкий Н.Д., Наумов А.А., Пузиков Е.А., Мамчич М.В., Бизин А.В., Медведева А.И. // Радиохимия. 2023. Т. 65. N 3. C. 226-233.
 - 26. Голецкий Н.Д., Пузиков Е.А., Наумов А.А., Амбул Е.В., Кудинов А.С., Металиди М.М. Патент RU2023613898 // Б.И. 20.03.2023.
 - 27. Huang X., Dong J., Wang L., Feng Z., Xue Q., Meng X. // Green Chem. 2017. Vol. 19. N 5. P. 1345-1352.
 - 28. Park U.J., Choi K.H., Lee J.S., Cho E.H., Yu K.H. // J. Radioanal. Nucl. Chem. 2016. Vol. 310. P. 339-346.
 - 29. Кузнецов Р.А., Бобровская К.С., Светухин В.В., Фомин А.Н., Жуков А.В. // Радиохимия. 2019. Т. 61. № 4. C. 273-285.
 - 30. Leppänen J., Pusa M., Viitanen T., Valtavirta V. // Ann. Nucl. Energy. 2015. Vol. 82. P. 142-150.
 - 31. Кузнецов Г.И., Пушков А.А., Косогоров А.В. Центробежные экстракторы ЦЭНТРЭК М. РХТУ им. Д.И. Менделеева, 2000. С. 214.

- Barrans R.E. // Appl. Radiat. Isot. 2005. Vol. 63. N 1. P. 23-36.
- 33. Семенова Н.А., Красников Л.В., Лумпов А.А., Сапожникова Н.В., Жукова О.Л. // Радиохимия. 2023. Т. 65. № 5. C. 427-433.
- 32. Horwitz E.P., McAlister D., Bond A.H., 34. Васильев С.К., Красников Л.В., Лумпов А.А., Сапожникова Н.В., Семенова Н.А. Патент RU2795790.
 - 35. European Pharmacopoeia. Strasbourg: Council of Europe, 2017. 8th Ed. Vol. 1.

Testing of the Technological Scheme for the Isolation of Lutetium-177 from an Irradiated Ytterbium Target

E. V. Ambul^{a, *}, N. D. Goletskiy^{a, b, **}, A. A. Naumov^{a, b}, E. A. Puzikov^a, M. V. Mamchich^a, E. O. Zagladkin^a, N. A. Dedov^a, N. A. Semenova^a, S. A. Rodionov^a, N. V. Kovalev^a, A. M. Prokoshin^a, I. A. Ushakov^c, and V. V. Zukau^c

^aKhlopin Radium Institute, 2-I Murinskii pr. 28, St. Petersburg, 197022 Russia ^bSt. Petersburg State Institute of Technology (Technical University), Moskovskii pr. 26, St. Petersburg, 190013 Russia ^cNational Research Tomsk Polytechnic University, pr. Lenina 30, Tomsk, 634050 Russia *e-mail: ambvllisa@khlonin.ru.

**e-mail: goletsky@khlopin.ru

Received April 19, 2024; revised July 21, 2024; accepted July 22, 2024

The results of an experiment to verify a complex technology for isolating ¹⁷⁷Lu from an irradiated 1-g ytterbium target are presented. The main components of the experimental installation, which is mounted in a research hot cell, are described. These include the extraction and separation of lutetium and ytterbium, the evaporation and concentration of ¹⁷⁷Lu, and its chromatographic purification. The feasibility of obtaining a pharmaceutical substance "no-carrier-added lutetium-177 trichloride" that meets the standards set by the European Pharmacopoeia has been confirmed.

Keywords: extraction, chromatography, lutetium-177, ytterbium-176, 2-ethylhexyl hydrogen 2-ethylhexane-1phosphonate, Isopar M, LN2 resin, DGA resin