Simulation of Complex Systems Using the Observed Data Based on Recurrent Artificial Neural Networks


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We propose a new approach to reconstructing complex, spatially distributed systems on the basis of the time series generated by such systems. It allows one to combine two basic steps of such a reconstruction, namely, the choice of a set of phase variables of the system using the observed time series and the development of the evolution operator acting in the chosen phase space with the help of an artificial neural network with special topology. This network, first, maps the initial high-dimensional data onto the lower-dimension space and, second, specifies the evolution operator in this space. The efficiency of this approach is demonstrated by an example of reconstructing the Lorenz system representing a high-dimensional model of atmospheric dynamics.

Sobre autores

A. Seleznev

Institute of Applied Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: aseleznev@ipfran.ru
Rússia, Nizhny Novgorod

A. Gavrilov

Institute of Applied Physics of the Russian Academy of Sciences

Email: aseleznev@ipfran.ru
Rússia, Nizhny Novgorod

D. Mukhin

Institute of Applied Physics of the Russian Academy of Sciences

Email: aseleznev@ipfran.ru
Rússia, Nizhny Novgorod

E. Loskutov

Institute of Applied Physics of the Russian Academy of Sciences

Email: aseleznev@ipfran.ru
Rússia, Nizhny Novgorod

A. Feigin

Institute of Applied Physics of the Russian Academy of Sciences; N. I. Lobachevsky State University of Nizhny Novgorod

Email: aseleznev@ipfran.ru
Rússia, Nizhny Novgorod; Nizhny Novgorod

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019