Two-Bunch Solutions for the Dynamics of Ott–Antonsen Phase Ensembles


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We have developed a method for deriving systems of closed equations for the dynamics of order parameters in the ensembles of phase oscillators. The Ott–Antonsen equation for the complex order parameter is a particular case of such equations. The simplest nontrivial extension of the Ott–Antonsen equation corresponds to two-bunch states of the ensemble. Based on the equations obtained, we study the dynamics of multi-bunch chimera states in coupled Kuramoto–Sakaguchi ensembles. We show an increase in the dimensionality of the system dynamics for two-bunch chimeras in the case of identical phase elements and a transition to one-bunch “Abrams chimeras” for imperfect identity (in the latter case, the one-bunch chimeras become attractive).

作者简介

I. Tyulkina

State University of Perm

编辑信件的主要联系方式.
Email: irinatiulkina95@gmail.com
俄罗斯联邦, Perm

D. Goldobin

State University of Perm; Institute for Mechanics of Continuous Media, Ural Branch of the Russian Academy of Sciences

Email: irinatiulkina95@gmail.com
俄罗斯联邦, Perm; Perm

L. Klimenko

State University of Perm; Institute for Mechanics of Continuous Media, Ural Branch of the Russian Academy of Sciences

Email: irinatiulkina95@gmail.com
俄罗斯联邦, Perm; Perm

A. Pikovsky

Potsdam University; N. I. Lobachevsky State University of Nizhny Novgorod

Email: irinatiulkina95@gmail.com
德国, Potsdam; Nizhny Novgorod

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019