ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ

УДК 537.52, 537.53

ДИАГНОСТИКА СИЛЬНОТОЧНОГО НЕРАСПЫЛЯЮЩЕГО МАГНЕТРОННОГО РАЗРЯДА В ВОДОРОДЕ

© 2024 г. А. В. Казиев^{а, b,} *, Д. В. Колодко^{а, b, c}, Н. С. Сазонов^а, М. М. Харьков^а, А. В. Тумаркин^а

^аНациональный исследовательский ядерный университет «МИФИ»,

Каширское шоссе, 31, Москва, 115409 Российская Федерация

^bФизический институт им. П.Н. Лебедева РАН,

Ленинский просп., 53, Москва, 119991 Российская Федерация

^cФрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН,

пл. Введенского, 1, Фрязино, Московская обл., 141190 Российская Федерация

*E-mail: kaziev@plasma.mephi.ru

Поступила в редакцию 23.12.2023 г.

После доработки 15.03.2024 г.

Принята к публикации 25.03.2024 г.

Проведены эксперименты по диагностике плазмы нераспыляющего разряда миллисекундной длительности в водороде при давлении ~ 1 Торр, длительности и максимальной мощности импульса соответственно около 1 мс и 80 кВт. Показано, что применение импульсных нераспыляющих режимов магнетронного разряда в легких газах позволяет получать плотную неконтрагированную плазму при отсутствии в спектрах оптического излучения линий, соответствующих частицам материала катода или анода.

Ключевые слова: нераспыляющий магнетронный разряд, дуговой разряд, водород, оптическая эмиссионная спектроскопия

DOI: 10.31857/S0033849424110078, EDN: HOFBOQ

ВВЕДЕНИЕ

В настоящее время в ряде областей практических применений, таких как сухое травление материалов, создание плазменных двигателей, проведение испытаний материалов при высоких термических и плазменных нагрузках, требуются эффективные источники чистой газовой плазмы с высокой степенью ионизации. В качестве такого источника можно рассмотреть сильноточный импульсный магнетронный разряд (СИМР) [1], либо его версию с короткими импульсами (high-power impulse magnetron sputtering, HiPIMS) [2]. Однако в силу того, что СИМР и HiPIMS сочетают в себе высокий ток и достаточно большое напряжение, они преимущественно используются для осаждения покрытий и, следовательно, в своей традиционной форме не пригодны для создания плазмы, в которой нет заметной доли металлических частиц. Использование легкого рабочего газа (водорода или гелия) позволяет существенно снизить эффекты распыления и превратить этот тип разряда в высокоэффективный генератор беспримесной газовой плазмы.

В зависимости от условий эксплуатации (в том числе длительности импульса) возможен перевод режима HiPIMS с большой длительностью (СИМР или L-HiPIMS) в нераспыляющий низковольтный режим на том же уровне мощности. Этот режим известен как нераспыляющий магнетронный разряд (НРМР) [3, 4]. Применение в качестве плазмообразующих газов водорода или гелия может привести к генерации плазмы высокой плотности с чрезвычайно низкой скоростью эрозии материала катода, что интересно для применений в области коммутации тока [5—7].

Цель данной работы — провести диагностику плазмы нераспыляющего разряда миллисекундного масштаба в водороде при давлении 1...2 Торр.

1. ОПИСАНИЕ ЭКСПЕРИМЕНТОВ

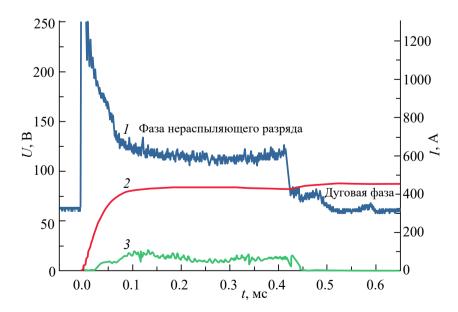
Эксперименты проводили в специальном разрядном устройстве, представляющем собой антипробкотрон (ловушка с встречными магнитными полями) с парой электродов, форма которых повторяет кривизну силовых линий магнитного поля (подробнее см. [2]). Катод выполнен из меди, источником питания служила искусственная

длинная линия. Напряжение зарядки линии было задано в диапазоне от 600 до 2500 В. Подача напряжения на электроды осуществлялась с помощью тиристора. Для подачи управляющего сигнала использован генератор задержанных импульсов Stanford Research Systems DG645, и он также был использован для синхронизации записи осциллограмм и спектров оптического излучения.

Длительность разряда составляла более 1 мс. Напряжение разряда во время импульса измерялось дифференциальным пробником Pintek DP-50. Ток разряда измерялся токовым датчиком Pintek PA-622 (рассчитан на максимальный ток 200 A) и поясом Pоговского RFSY-70—50. В большинстве экспериментов датчик тока Pintek PA-622 выходил за пределы заявленного предела измерений, однако позволял быстро оценить поведение разряда, без необходимости пересчета тока по сигналу пояса Роговского. Сигналы с датчиков регистрировались цифровым четырехканальным осциллографом АКИП-4126/3A-X.

Наличие примесей в плазме определяли с помощью трехканального оптоволоконного спектрометра Avantes AvaSpec ULS2048L с тремя спектральными диапазонами: 200...365, 364...603 и 600...810 нм и с разрешениями соответственно 0.12, 018 и 0.15 нм. Спектры излучения плазмы измеряли через акриловое окно с полосой пропускания ~ 370...2000 нм. Наличие того или иного элемента в плазме определяли по появлению устойчивых линий согласно базе данных атомных спектров NIST. Оптическое излучение плазмы собиралось линзой и передавалось по оптоволокну в каналы спектрометра. Время экспозиции было зафиксировано на минимальном доступном для устройства значении и составляло 1.050 мс.

Запись спектра синхронизировалась с передним фронтом импульса напряжения.


Концентрацию плазмы определяли электростатическим зондом в режиме ионного насыщения.

2. РЕЗУЛЬТАТЫ И ОБСУЖЛЕНИЕ

При отсутствии ограничения длительности импульса, в конечном итоге, HPMP характеризуется переходом в дуговой режим. Типичные осциллограммы тока и напряжения в случае HPMP с переходом в дугу показаны на рис. 1 вместе с сигналом ионного тока, поступающего на зонд.

Из-за высокой импульсной мощности (около десятков киловатт) такие дуги наносили видимые повреждения поверхности катода, а спектры, полученные методом оптической эмиссионной спектрометрии, в дуговом режиме содержали интенсивные линии излучения частиц металла. Типичный спектр оптического излучения дугового разряда показан на рис. 2. Эти данные свидетельствуют о наличии в плазме частиц Си и Си⁺, а также о высокой степени ионизации плазмы.

Тем не менее HPMP может существовать в течение нескольких милисекунд без перехода в дугу. Спектр, характерный для разряда HPMP, представлен на рис. 3. В отличие от спектра дуги, здесь присутствуют только линии, соответствующие рабочему газу (водороду). Максимальная измеренная плотность плазмы сильноточного импульсного нераспыляющего магнетронного разряда в водороде составила $1.8 \times 10^{20} \,\mathrm{m}^{-3}$ при среднем токе разряда $1200 \,\mathrm{A}$ (ток, поступающий на зонд, $0.9 \,\mathrm{A}$). Степень ионизации при этом составила около 20%.

Рис. 1. Осциллограмма развития разряда, с переходом от HPMP к дуговому разряду: 1 — напряжение разряда, 2 — ток разряда, 3 — ток, поступающий на зонд ($\times 10^3$).

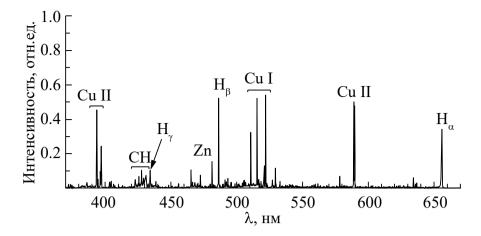


Рис. 2. Спектр излучения плазмы дугового разряда.

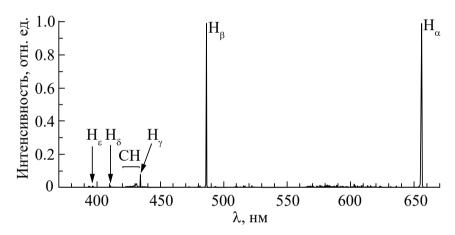


Рис. 3. Спектр излучения плазмы нераспыляющего магнетронного разряда.

ЗАКЛЮЧЕНИЕ

Определены концентрация плазмы, ее состав и степень ионизации в сильноточном нераспыляющем магнетронном разряде. Для водорода максимальная измеренная плотность плазмы составила $1.8 \times 10^{20} \text{ м}^{-3}$ при степени ионизации порядка 20%. Для этого режима характерно подавление эрозии электродов. Использование импульсных нераспыляющих режимов в легких газах позволяет получать неконтрагированную плазму с высокой плотностью и отсутствием оптического излучения частиц материала катода или анода.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы данной работы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Совета по грантам Президента Российской Федерации для государственной поддержки молодых

российских ученых — кандидатов наук (проект № МК-4445.2022.4), а также частично поддержана государственным заданием ИРЭ им. В.А. Котельникова РАН

СПИСОК ЛИТЕРАТУРЫ

- 1. *Мозгрин Д. В., Ходаченко Г. В., Фетисов И. К.*// Физика плазмы. 1995. Т. 21. № 5. Р. 422.
- 2. Gudmundsson J. T., Brenning N., Lundin D., Helmersson U. // J. Vac. Sci. Technol. A. 2012. V. 30. № 3. P. 030801.
- 3. *Ходаченко Г. В., Мозгрин Д. В., Фетисов И. К., Степанова Т. В.*// Физика плазмы. 2012. Т. 38. № 1. С. 71.
- 4. Kaziev A. V. // Vacuum. 2018. V. 158. P. 191.
- Sommerer T. J., Aceto S. C., Trotter J. F. et al. // J. Phys. D: Appl. Phys. 2019. V. 52. № 43. P. 435202.
- 6. Smith D. J., Sommerer T. J., Lawler J. E., Hitchon W. N. G. // J. Phys. D: Appl. Phys. 2021. V. 54. № 29. P. 295201.
- 7. *Levko D.*, *Raja L. L.* // J. Appl. Phys. 2022. V. 132. № 24. P. 243301.

DIAGNOSTICS OF A HIGH-CURRENT NON-SPUTTERING MAGNETRON DISCHARGE IN HYDROGEN

A. V. Kaziev^{a, b, *}, D. V. Kolodko^{a, b, c}, N. S. Sazonov^a, M. M. Kharkov^a, A. V. Tumarkin^a

^a National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
 31 Kashirskoe sh., Moscow, 115409 Russian Federation
 ^b Lebedev Physical Institute of RAS,
 53 Leninskiy prosp., Moscow, 119991 Russian Federation
 ^c Kotelnikov Institute of Radioengineering and Electronics of RAS, Fryazino Branch,
 1 Vvedenskogo pl., Fryazino, Moscow Region, 141190 Russian Federation
 *E-mail: kaziev@plasma.mephi.ru

Received December 23, 2023, revised March 15, 2024, accepted March 25, 2024

The experiments were carried out to characterize plasma of a non-sputtering millisecond discharge in hydrogen at a pressure of ~ 1 Torr, pulse duration and a maximum impulse power near 1 ms and 80 kW, correspondingly. It has been demonstrated that the implementation of impulse non-sputtering modes of a magnetron discharge in light gases enables generation of dense non-constricted plasma with no lines of cathode or anode material present in its optical emission spectra.

Keywords: non-sputtering magnetron discharge, arc discharge, hydrogen, optical emission spectroscopy