Synthesis of nanocrystalline ZnO by the thermal decomposition of [Zn(H2O)(O2C5H7)2] in isoamyl alcohol
- 作者: Kuznetsov N.T.1, Simonenko E.P.1,2, Simonenko N.P.1,2, Nagornov I.A.1,3, Mokrushin A.S.1, Gorobtsov F.Y.1, Vlasov I.S.2, Volkov I.A.2, Maeder T.2,4, Sevast’yanov V.G.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry
- Moscow Institute of Physics and Technology
- Higher Chemical College of the Russian Academy of Sciences
- École Polytechnique Fédérale de Lausanne
- 期: 卷 62, 编号 11 (2017)
- 页面: 1415-1425
- 栏目: Synthesis and Properties of Inorganic Compounds
- URL: https://journal-vniispk.ru/0036-0236/article/view/168123
- DOI: https://doi.org/10.1134/S0036023617110195
- ID: 168123
如何引用文章
详细
It was studied how the conditions of heat treatment of a [Zn(H2O)(O2C5H7)2] solution in isoamyl alcohol at 120–140°C for 2–60 min affect the precursor decomposition mechanism and the characteristics of the obtained nanocrystalline zinc oxide. In all the cases, the product was a crystalline substance with the wurtzite structure and a size of crystallites of 14–18 nm, which was independent of the synthesis conditions. The thermal behavior and microstructure of the separated and dried nanostructured ZnO powder were investigated. It was determined how the duration and temperature of the heat treatment of the precursor solution affects the microstructure of ZnO coatings dip-coated onto glass substrates using dispersions produced at 120 and 140°C. The nanosized ZnO application procedure was shown to be promising for creating a gas-sensing layer of chemical gas sensors for detecting 1% H2 (\(R_0 /R_{H_2 } \) was 58 ± 2 at an operating temperature of 300°C) and 4 ppm NO2 (\(R_{NO_2 } /R_0\) were 15 ± 1 and 1.9 ± 0.1 at operating temperatures of 200 and 300°C, respectively).
作者简介
N. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry
Email: info@pleiadesonline.com
俄罗斯联邦, Moscow, 119991
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry; Moscow Institute of Physics and Technology
Email: info@pleiadesonline.com
俄罗斯联邦, Moscow, 119991; Dolgoprudnyi, Moscow oblast, 141701
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry; Moscow Institute of Physics and Technology
Email: info@pleiadesonline.com
俄罗斯联邦, Moscow, 119991; Dolgoprudnyi, Moscow oblast, 141701
I. Nagornov
Kurnakov Institute of General and Inorganic Chemistry; Higher Chemical College of the Russian Academy of Sciences
Email: info@pleiadesonline.com
俄罗斯联邦, Moscow, 119991; Moscow, 125047
A. Mokrushin
Kurnakov Institute of General and Inorganic Chemistry
Email: info@pleiadesonline.com
俄罗斯联邦, Moscow, 119991
F. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry
Email: info@pleiadesonline.com
俄罗斯联邦, Moscow, 119991
I. Vlasov
Moscow Institute of Physics and Technology
Email: info@pleiadesonline.com
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141701
I. Volkov
Moscow Institute of Physics and Technology
Email: info@pleiadesonline.com
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141701
T. Maeder
Moscow Institute of Physics and Technology; École Polytechnique Fédérale de Lausanne
Email: info@pleiadesonline.com
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141701; Station 17, Lausanne, CH-1015
V. Sevast’yanov
Kurnakov Institute of General and Inorganic Chemistry
Email: info@pleiadesonline.com
俄罗斯联邦, Moscow, 119991
补充文件
