УЛК 004.942.001.57

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ И ИЗМЕНЕНИЙ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ СПЛАВОВ СИСТЕМЫ Mg—La

© 2023 г. И. Н. Ганиев^{1, *}, А. Г. Сафаров², Э. С. Додхоев¹, К. Ботуров², У. Ш. Якубов¹, Ф. Холмуродов²

¹Институт химии им. В.И. Никитина НАН Таджикистана, Душанбе, Таджикистан
²Физико-технический институт им. С.У. Умарова НАН Таджикистана, Душанбе, Таджикистан
*E-mail: ganievizatullo48@gmail.com
Поступила в редакцию 14.04.2022 г.
После доработки 24.05.2022 г.
Принята к публикации 07.06.2022 г.

В режиме охлаждения исследована температурная зависимость удельной теплоемкости и изменений термодинамических функций сплавов системы Mg—La в интервале температур 300—700 К. Показано, что с увеличением концентрации лантана теплоемкость магния особенно при добавке лантана от 5 до 10% заметно уменьшается, а с ростом температуры растет. Установлено, что с ростом температуры энтальпия и энтропия сплавов увеличиваются, а значения энергии Гиббса уменьшаются. Зависимость этих функций от содержания лантана в магнии имеет обратный характер.

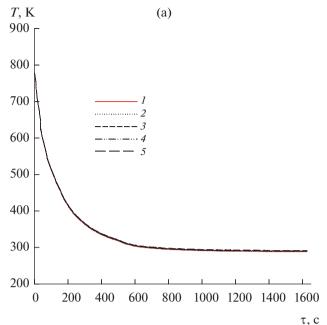
DOI: 10.31857/S0040364423010210

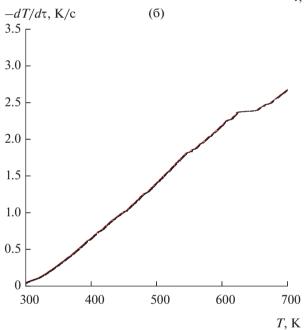
ВВЕДЕНИЕ

Магний представляет интерес для различных практических приложений, поскольку имеет высокую удельную прочность и жесткость, обладает хорошими демпфирующими характеристиками и все это в сочетании с малой плотностью. Для сравнения: плотность магния равна $1.737~\text{г/cm}^3$, что меньше плотности железа в 4.5~раза, меди в 5~раз, титана в 2.6~разa и алюминия в 1.5~разa. Сочетание перечисленных свойств позволяет исследователям рассматривать магний и его сплавы в качестве перспективных материалов для авто- и авиастроения, где высокая удельная прочность является важным параметром для решения задачи по снижению веса изделий [1-3].

Экспериментальные исследования и получение достоверных сведений о физико-химических, термодинамических и других свойствах металлических систем с разными основами позволяют установить закономерности изменения их в зависимости от природы легирующих добавок. Такие исследования для легких металлических сплавов на основе магния, легированных лантанидами, имеют важное научное и прикладное значение. Магниевые сплавы проявляют необходимые эксплуатационные характеристики, удовлетворяющие потребностям современных отраслей техники и технологии [4—6].

Магний и его сплавы в расплавленном состоянии энергично реагируют с кислородом и поэтому загораются на воздухе. В связи с этим при плавке


необходимо применение специальных мер защиты расплавленного металла от контакта с воздухом. Поэтому можно применить метод плавки под слоем флюсов. Основное назначение флюсов заключается в образовании на поверхности жидкого металла в ванне защитного покрова, изолирующего расплав от контакта с воздухом, и в удалении из него окислов и нитридов, образующихся во время плавки [7—9].


Целью работы является исследование температурной зависимости теплофизических свойств и изменений термодинамических функций сплавов системы Mg—La.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Теплоемкость представляет собой одно из важнейших физических свойств твердых тел, характеризующих изменение состояния вещества с температурой. Изучение теплоемкости является одним из основных методов исследования структурных и фазовых превращений в сплавах [10—12].

В литературе существует много методов экспериментального изучения теплоемкости твердых тел, характеризующих изменение состояния вещества при изменяющейся температуре. Самым распространенным является метод сравнения скоростей охлаждения двух образцов (исследуемого и эталонного) по закону охлаждения Ньютона—Рихмана, позволяющий непосредственно определять не только теплоемкость, но и температуру фазовых превращений и другие физические характе-

Рис. 1. Зависимости температуры от времени (а) и скорости охлаждения от температуры (б) для образцов: I — эталона, 2 — сплава Mg + 0.1La, 3 — Mg + 0.5La, 4 — Mg + 5.0La, 5 — Mg + 10.0La.

ристики твердого тела. Метод сравнения скоростей охлаждения двух образцов дает возможность с достоверной точностью определять температуру и тепловые эффекты без значительного изменения удельного объема системы, а также зависимость теплоемкости веществ от температуры.

Исследования температурной зависимости теплоемкости сплавов проводились в режиме охлаждения с применением компьютерной техники и про-

граммы Sigma Plot. В качестве эталона использовался магний марки Mr90 (ГОСТ 804-62). Аппаратура и методы измерения ранее описаны в публикациях [13—22].

Обработка результатов измерений осуществлялась с помощью программы "MS Excel". Коэффициент корреляции $R \ge 0.995$, что подтверждает правильность выбора аппроксимирующей функции. Для определения температуры использовался многоканальный цифровой термометр, который позволяет фиксировать результаты измерений прямо на компьютере в виде таблиц. Шаг измерения температуры составлял 0.1° С, временной интервал фиксации температуры — 10 с. Относительная ошибка измерения температуры равна $\pm 1\%$ в интервале от 40 до 400° С и $\pm 2.5\%$ — выше 400° С. Погрешность измерения теплоемкости по предлагаемой методике не превышает 4%.

Сплавы для исследования получались в шахтной лабораторной печи сопротивления типа СШОЛ (сопротивление шахтное опытное лабораторное) в интервале температур 750—850°С из металлического магния марки Мг90 и металлического лантана. Содержание лантана в магнии составило до 10 мас. %. В качестве флюса при плавке сплавов применялся универсальный флюс марки ВИ-3. Из полученных сплавов в графитовую изложницу отливались цилиндрические образцы диаметром 16 мм и длиной 30 мм.

Для расчета теплоемкости сплавов необходимы данные о скоростях охлаждения образцов из сплавов и теплоемкости эталона. Термограммы исследуемых сплавов представлены на рис. 1а. Процессы охлаждения для всех исследованных образцов подобны. При охлаждении на кривых $T = f(\tau)$ для образцов из сплавов системы магний—лантан не обнаружено термических остановок, связанных с фазовым переходом или превращением.

Полученные зависимости температуры образцов от времени с достаточной точностью описываются уравнением вида

$$T = ae^{-b\tau} + pe^{-k\tau}, \tag{1}$$

где $a \, b, p, k$ — постоянные величины для данного образца, τ — время охлаждения.

Кривые зависимостей скоростей охлаждения от температуры для сплавов системы Mg—La представлены на рис. 16.

Дифференцируя уравнение (1) по т, получаем уравнение для определения скорости охлаждения образцов

$$\frac{dT}{d\tau} = -abe^{-b\tau} - pke^{-k\tau}.$$
 (2)

По данной формуле вычислены скорости охлаждения образцов из сплавов системы Mg—La и эталона. Результаты обработки кривых скоростей охлаждения сплавов системы Mg—La приведены в табл. 1.

Таблица 1. Значения коэффициентов a, b, p, k в уравнении (2) для сплавов системы Mg—La и эталона (Mg марки Mr90)

Содержание лантана в магнии, мас. %	a, K	$b \times 10^{-3}, \mathrm{c}^{-1}$	p, K	$k \times 10^{-5}, c^{-1}$
Эталон (Mg)	432.05	7.02	309.29	5.17
0.1	432.05	7.02	310.79	5.14
0.5	432.05	7.02	310.29	5.15
5.0	432.05	7.02	311.19	5.13
10	432.06	7.02	312.09	5.12

Таблица 2. Значения коэффициентов *a*, *b*, *c*, *d* в уравнении (3) для сплавов Mg—La и эталона

Содержание лантана в магнии, мас. %	<i>a</i> , Дж/(кг K)	<i>b</i> , Дж/(кг K²)	c ×10 ⁻⁴ , Дж/(кг К³)	$d \times 10^{-7}$, Дж/(кг K^4)	R
Эталон (Mg)	862.614	0.607	-2.7	1.58	1.00
0.1	861.799	0.607	-2.7	1.58	0.999
0.5	858.486	0.607	-2.7	1.58	0.999
5.0	821.159	0.607	-2.7	1.58	0.999
10	789.684	0.607	-2.7	1.58	0.999

Удельная теплоемкость сплавов системы Mg—La вычислена по уравнению

$$C_{P_2}^0 = C_{P_1}^0 \frac{m_1}{m_2} \frac{\left(\frac{dT}{d\tau}\right)_1}{\left(\frac{dT}{d\tau}\right)_2},$$

где $C_{P_1}^0$ — удельная теплоемкость эталона; $m_1 = \rho_1 V_1$ — масса образцов эталона; $m_2 = \rho_2 V_2$ — масса исследуемых образцов (ρ — плотность, г/см³; V — объем образца, см³); $\left(\frac{dT}{d\tau}\right)_1$, $\left(\frac{dT}{d\tau}\right)_2$ — скорости охлаждения образцов эталона и изучаемых сплавов, °C/с.

Получены полиномы температурной зависимости удельной теплоемкости сплавов системы Mg—La и эталона, описываемые уравнением типа

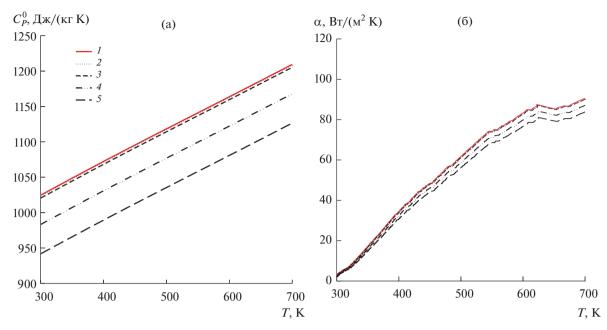
$$C_P^0 = a + bT + cT^2 + dT^3, (3)$$

где a,b,c,d — эмпирические коэффициенты, найденные для каждого образца экспериментальным путем; T — температура, при которой определяется

значение теплоемкости образцов. Значения коэффициентов уравнения (3) представлены в табл. 2.

Результаты расчета температурной зависимости удельной теплоемкости сплавов системы Mg—La приведены в табл. 3 и на рис. 2a.

В исследованном температурном интервале теплоемкость сплавов системы Mg—La с ростом температуры увеличивается, а с увеличением содержания лантана в магнии уменьшается.


С использованием экспериментально определенных скоростей охлаждения образцов из исследуемых сплавов и вычисленных данных о теплоемкости рассчитан коэффициент теплоотдачи для сплавов системы Mg—La и эталона по следующей формуле:

$$\alpha = \frac{C_P^0 m \frac{dT}{d\tau}}{(T - T_0)S},$$

где α — коэффициент теплоотдачи, $BT/(M^2 K)$; T — средняя температура образца за время $d\tau$; T_0 — температура окружающей среды, K; S — площадь

Таблица 3. Температурная зависимость удельной теплоемкости (Дж/(кг К)) сплавов Мд-La и эталона

Содержание лантана в магнии, мас. %	T, K				
	300	400	500	600	700
Эталон (Mg)	1024.68	1072.33	1118.36	1163.74	1209.41
0.1	1023.86	1071.51	1117.55	1162.93	1208.59
0.5	1020.55	1068.20	1114.24	1159.61	1205.28
5.0	983.22	1030.87	1076.91	1122.29	1167.95
10	941.75	989.40	1035.43	1080.81	1126.48

Рис. 2. Температурные зависимости удельной теплоемкости (а) и коэффициента теплоотдачи (б): I-5- см. рис. 1.

поверхности образца, см 2 ; C_P^0 — удельная теплоемкость исследуемого образца (Дж/(кг K)) массой m (г).

Температурные зависимости коэффициента теплоотдачи сплавов системы Mg-La и эталона

представлены на рис. 2б. С ростом содержания лантана в магнии коэффициент теплоотдачи уменьшается.

Для расчета температурных зависимостей изменений энтальпии, энтропии и энергии Гиббса

Таблица 4. Температурная зависимость изменений термодинамических функций сплавов Mg-La и эталона

Содержание лантана в магнии, мас. %	T, K					
	300	400	500	600	700	
	$[H^0(T)-H^0(T_0^*)],$ кДж/кг					
Эталон (Mg)	1.8948	106.7625	216.3064	330.4133	449.0644	
0.1	1.8933	106.6795	216.1419	330.1673	448.7369	
0.5	1.8871	106.342	215.4732	329.1672	447.4056	
5.0	1.8181	102.5403	207.9387	317.9001	432.4057	
10	1.7414	98.31605	199.5670	305.3809	415.7390	
	$[S^0(T) - S^0(T_0^*)]$, кДж/(кг K)					
Эталон (Mg)	0.0063	0.3076	0.5519	0.7598	0.9426	
0.1	0.0063	0.3074	0.5515	0.7592	0.9419	
0.5	0.0063	0.3064	0.5498	0.7569	0.9391	
5.0	0.0060	0.2955	0.5305	0.7308	0.9072	
10	0.0058	0.2833	0.5090	0.7018	0.8718	
	$[G^0(T)-G^0(T_0^*)]$,к ${ m Д}$ ж/кг					
Эталон (Mg)	-0.0058	-16.3147	-59.6647	-125.502	-210.804	
0.1	-0.0058	-16.3019	-59.6186	-125.406	-210.645	
0.5	-0.0058	-16.2499	-59.4309	-125.016	-209.997	
5.0	-0.0056	-15.6640	-57.3161	-120.62	-202.696	
10	-0.0053	-15.0129	-54.9663	-115.737	-194.584	

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 61 № 1 2023

сплавов системы Mg—La использованы интегралы от удельной теплоемкости (3):

$$\begin{split} [H^0(T)-H^0(T_0)] &= a(T-T_0) + \frac{b}{2}(T^2-T_0^2) + \\ &+ \frac{c}{3}(T-T_0^3) + \frac{d}{4}(T^4-T_0^4), \\ [S^0(T)-S^0(T_0)] &= a \ln \frac{T}{T_0} + b(T-T_0) + \\ &+ \frac{c}{2}(T^2-T_0^2) + \frac{d}{3}(T^3-T_0^3), \\ [G^0(T)-G^0(T_0)] &= \\ &= [H^0(T)-H^0(T_0)] - T[S^0(T)-S^0(T_0)], \end{split}$$
 где $T_0 = 298.15 \text{ K}.$

Результаты расчета изменений температурных зависимостей энтальпии, энтропии и энергии Гиббса через 100 К представлены в табл. 4.

Энтальпия и энтропия сплавов Mg—La с увеличением содержания лантана уменьшаются, а с ростом температуры растут. Энергия Гибсса имеет обратную зависимость.

ЗАКЛЮЧЕНИЕ

- 1. Получены полиномы температурных зависимостей теплоемкости и изменений термодинамических функций (энтальпия, энтропия и энергия Гиббса) для сплавов системы Mg—La с коэффициентом корреляции R = 0.999.
- 2. Показано, что с ростом температуры удельная теплоемкость и коэффициент теплоотдачи сплавов увеличиваются.
- 3. С увеличением содержания лантана в магнии удельная теплоемкость, коэффициент теплоотдачи, энтальпия и энтропия уменьшаются, а значение энергии Гиббса растет. С ростом температуры указанные параметры увеличиваются.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Лякишев Н.П.* Диаграммы состояния двойных металлических систем. М.: Машиностроение, 1996—2001. Т. 1—3.
- 2. Эйдензон М.А. Магний. М.: Металлургия, 1969. 352 с.
- 3. Магниевые сплавы для современной техники. Сб. науч. тр. М.: Наука, 1992. 192 с.
- 4. Портной К.И., Лебедев А.Л. Магниевые сплавы. Свойства и технология. Спр. М.: Гос. науч.-техн. изд-во лит. по черной и цветной металлургии, 1952. 736 с.
- 5. *Белоусов Н.Н.* Плавка и разливка сплавов цветных металлов. Л.: Машиностроение, 1981. 80 с.
- 6. *Липницкий А.М., Морозов И.В.* Технология цветного литья. Л.: Машгиз, 1986. 224 с.
- 7. *Воздвиженский В.М.* Литейные сплавы и технология их выплавки в машиностроении. М.: Машиностроение, 1984. 432 с.
- 8. *Рейнор Г.В.* Металловедение магния и его сплавов. Пер с англ. М.: Металлургия, 1964. 487 с.

- Эмли Е.Ф. Основы технологии производства и обработки магниевых сплавов. М.: Металлургия, 1972. 488 с.
- 10. Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. Спр. изд. М.: Металлургия, 1989. 384 с.
- 11. *Старк Б.В.* Явления нагрева в муфельных печах // Журнал русского металлургического общества. 1926. № 2. С. 184.
- 12. *Иванцов Г.П.* Нагрев металла (теория и методы расчета). Свердловск. М.: Гос. науч.-техн. изд-во лит. по черной и цветной металлургии, 1948. 191 с.
- 13. *Ганиев И.Н., Якубов У.Ш., Джураева М.Ш., Сафаров А.Г.* Влияние добавок галлия на теплоемкость и термодинамические функции алюминиевого сплава АЖ5К10 // Изв. СПб. гос. технол. ин-та (техн. ун-та). 2021. № 59. С. 66.
- 14. *Ганиев И.Н., Окилов Ш.Ш., Эшов Б.Б., Муллоева Н.М., Якубов У.Ш.* Температурная зависимость теплоемкости и изменений термодинамических функций свинцово-сурьмяного сплава ССу3 с калием // Вестн. Каз. гос. техн. ун-та им. А.Н. Туполева. 2021. Т. 77. № 1. С. 24.
- 15. *Ганиев И.Н., Содикова С.С., Якубов У.Ш., Алихонова С.Д.* Влияние алюминия на удельную теплоемкость и изменение термодинамических функций цинка // Ползуновский вестник. 2021. № 3. С. 208.
- 16. Ганиев И.Н., Абдулаков А.П., Джайлоев Д.Х., Якубов У.Ш., Сафаров А.Г., Абулхаев В.Д. Влияние добавок висмута на теплофизические и термодинамические свойства алюминиевого проводникового сплава E-AlMgSi (Алдрей) // Изв. вузов. Материалы электронной техники. 2020. Т. 23. № 1. С. 86.
- 17. Якубов У.Ш., Ганиев И.Н., Махмадизода М.М., Сафаров А.Г., Ганиева Н.И. Влияние стронция на температурную зависимость удельной теплоемкости и изменение термодинамических функций сплава АЖ5К10 // Вестн. СПб. гос. ун-та технологии и дизайна. Сер. 1: Естественные и технические науки. 2018. № 3. С. 61.
- 18. *Худойбердизода С.У., Ганиев И.Н., Отаджонов С.Э., Эшов Б.Б., Якубов У.Ш.* Влияние меди на теплоемкость и изменения термодинамических функций свинца // ТВТ. 2021. Т. 59. № 1. С. 55.
- 19. *Ганиев И.Н., Окилов Ш.Ш., Эшов Б.Б., Муллоева Н.М., Якубов У.Ш.* Влияние добавок натрия на температурную зависимость теплоемкости и изменений термодинамических функций свинцово-сурьмяного сплава ССу3 // Вестн. СПб. гос. ун-та технологии и дизайна. Сер. 1: Естественные и технические науки. 2021. № 1. С. 89.
- 20. *Ганиев Й.Н., Сафаров А.Г., Асоев М.Дж., Якубов У.Ш., Одинаев Ф.Р., Кабутов К.* Термодинамические функции сплавов системы Al—Sn // Химия. Экология. Урбанистика. 2021. Т. 2021. № 1. С. 410.
- 21. Ганиев И.Н., Сафаров А.Г., Асоев М.Дж., Якубов У.Ш., Кабутов К. Температурная зависимость теплофизических свойств и термодинамических функций сплавов системы Al—Sn // Вестн. Сиб. гос. индустр. ун-та. 2021. № 1(35). С. 35.
- 22. Ганиев И.Н., Назарова М.Т., Якубов У.Ш., Сафаров А.Г., Курбонова М.З. Влияние лития на удельную теплоемкость и изменения термодинамических функций алюминиевого сплава АБ1 // ТВТ. 2020. Т. 58. № 1. С. 55.