Генетические детерминанты резистентности Mycobacterium leprae к антимикробным препаратам
- Авторы: Вербенко Д.А.1, Соломка В.С.1, Козлова И.В.1, Кубанов А.А.1
-
Учреждения:
- Государственный научный центр дерматовенерологии и косметологии
- Выпуск: Том 97, № 6 (2021)
- Страницы: 54-62
- Раздел: ОБЗОР ЛИТЕРАТУРЫ
- URL: https://journal-vniispk.ru/0042-4609/article/view/117573
- DOI: https://doi.org/10.25208/vdv1292
- ID: 117573
Цитировать
Полный текст
Аннотация
Обзор посвящен развитию устойчивости возбудителя лепры — бактерии Mycobacterium leprae к терапии антимикробными препаратами (АМП), в первую очередь рекомендованными Всемирной организацией здравоохранения. Особенностью лекарственной устойчивости лепры является сложность выявления, поскольку возбудитель заболевания не культивируется на искусственных средах, а используемые в настоящее время методы диагностики лекарственной устойчивости требуют длительного времени либо специального оснащения лабораторий и высокой квалификации персонала. Лекарственная устойчивость штамма Mycobacterium leprae даже к отдельным компонентам комбинированной лекарственной терапии приводит к развитию симптоматики заболевания, несмотря на применение противолепрозной терапии, что в свою очередь может стать причиной инвалидизации больного. В настоящее время в Российской Федерации не существует ни одного разрешенного к применению теста, выявляющего ДНК Mycobacterium leprae, а определение генетических детерминант резистентности проводится путем прямого секвенирования небольших участков генов gyrA, folP и rpoB. В то же время современные исследования выявляют рост числа резистентных к отдельным компонентам комбинированной лекарственной терапии штаммов Mycobacterium leprae. Использование технологий секвенирования нового поколения позволило выявить дополнительные генетические детерминанты резистентности лепры к компонентам комбинированной лекарственной терапии. Сложившаяся ситуация представляет актуальным использование систем быстрой идентификации для мониторинга наиболее распространенных генетических детерминант резистентности Mycobacterium leprae.
Поиск литературы осуществлялся по ключевым словам в базах данных Scopus, PubMed и РИНЦ.
Полный текст
Открыть статью на сайте журналаОб авторах
Дмитрий Анатольевич Вербенко
Государственный научный центр дерматовенерологии и косметологии
Автор, ответственный за переписку.
Email: verbenko@gmail.com
ORCID iD: 0000-0002-1104-7694
SPIN-код: 8261-6561
к.б.н.
Россия, 107076, Москва, ул. Короленко, д. 3, стр. 6Виктория Сергеевна Соломка
Государственный научный центр дерматовенерологии и косметологии
Email: solomka@cnikvi.ru
ORCID iD: 0000-0002-6841-8599
SPIN-код: 1486-3284
д.б.н.
Россия, 107076, Москва, ул. Короленко, д. 3, стр. 6Ирина Вячеславовна Козлова
Государственный научный центр дерматовенерологии и косметологии
Email: ikozlova_work@inbox.ru
ORCID iD: 0000-0002-6328-363X
SPIN-код: 3574-4048
младший научный сотрудник отдела лабораторной диагностики ИППП и дерматозов
Россия, 107076, Москва, ул. Короленко, д. 3, стр. 6Алексей Алексеевич Кубанов
Государственный научный центр дерматовенерологии и косметологии
Email: alex@cnikvi.ru
ORCID iD: 0000-0002-7625-0503
SPIN-код: 8771-4990
д.м.н., профессор, член-корреспондент РАН
Россия, 107076, Москва, ул. Короленко, д. 3, стр. 6Список литературы
- World Health Organization. Towards zero leprosy. Global leprosy (Hansen’s Disease) strategy 2021–2030. 2021. https://www.who.int/publications/i/item/9789290228509 (Accessed at 25 Oct 2021).
- Глобальная стратегия ВОЗ по сдерживанию устойчивости к противомикробным препаратам. [Global'naya strategiya VOZ po sderzhivaniyu ustojchivosti k protivomikrobnym preparatam. (In Russ.)] https://www.who.int/drugresistance/WHO_Global_Strategy_Russian.pdf. (Accessed at 25 Oct 2021).
- Bottery MJ, Pitchford JW, Friman VP. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15(4):939–948. doi: 10.1038/s41396-020-00832-7
- Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol. 2018;9:2928. doi: 10.3389/fmicb.2018.02928
- Benjak A, Avanzi C, Singh P, Loiseau C, Girma S, Busso P, Fontes ANB, et al. Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nat Commun. 2018;9(1):352. doi: 10.1038/s41467-017-02576-z
- Lavania M, Darlong J, Singh I, Ahuja M, Turankar RP, Pathak VK, et al. Analysis of bacteriological Index between fixed multidrug therapy and new WHO recommended alternative regimen with ofloxacin, minocycline and clofazimine of rifampicin resistant cases from the hospitals of The Leprosy Mission, India. J Glob Antimicrob Resist. 2020;23:275–277. doi: 10.1016/j.jgar.2020.09.021
- Chauffour A, Morel F, Reibel F, Petrella S, Mayer C, Cambau E, et al. A systematic review of Mycobacterium leprae DNA gyrase mutations and their impact on fluoroquinolone resistance. Clin Microbiol Infect. 2021;27(11):1601–1612. doi: 10.1016/j.cmi.2021.07.007
- M. Fischer. Leprosy – an overview of clinical features, diagnosis, and treatment. J Dtsch Dermatol Ges. 2017;15(8):801–827. doi: 10.1111/ddg.13301
- Образцова О.А., Вербенко Д.А., Карамова А.Э., Семенова В.Г., Кубанов А.А., Дерябин Д.Г. Совершенствование ПЦР-диагностики лепры путем амплификации видоспецифичного повторяющегося фрагмента генома Mycobacterium leprae. Клиническая лабораторная диагностика, 2018;63(8):511–516. [Obrazcova OA, Verbenko DA, Karamova AE, Semyonova VG, Kubanov AA, Deryabin DG. Sovershenstvovanie PCR-diagnostiki lepry putem amplifikacii vidospecifichnogo povtoryayushchegosya fragmenta genoma Mycobacterium leprae. Klinicheskaya laboratornaya diagnostika, 2018;63(8):511–516 (In Russ.)] doi: 10.18821/0869-2084-2018-63-8-511-516
- Кубанов А.А., Карамова А.Э., Семенова В.Г., Смольянникова В.А., Нефедова М.А. Рецидив лепры, развившийся после прекращения противолепрозной терапии. Вестник дерматологии и венерологии, 2016;6:66–72. [Kubanov AA, Karamova AE, Semenova VG, Smol'yannikova VA, Nefedova MA. Recidiv lepry, razvivshijsya posle prekrashcheniya protivoleproznoj terapii. Vestnik dermatologii i venerologii, 2016;6:66–72 (In Russ.)] doi: 10.25208/0042-4609-2016-0-6-3-18
- Семенова В.Г., Карамова А.Э., Нефедова М.А. Лепра под «маской» туберкулеза кожи — трудности диагностики. Вестник дерматологии и венерологии, 2017;(6):91–99. [Semyonova VG, Karamova AE, Nefyodova MA. Leprosy in the Guise of Skin Tuberculosis — Com-plexities of Diagnostics. Vestnik Dermatologii i Venerologii. 2017;(6):91–99 (In Russ.)]
- Shepard CC. Growth characteristics of Mycobacterium leprae. Acta Leprol. 1984;2(2-4):277–279.
- Maymone MBC, Venkatesh S, Laughter M, Abdat R, Hugh J, Dacso MM, et al. Leprosy: Treatment and management of complications. J Am Acad Dermatol. 2020;83(1):17–30. doi: 10.1016/j.jaad.2019.10.138
- Fonseca AB, Simon MD, Cazzaniga RA, de Moura TR, de Almeida RP, Duthie MS, et al. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy. Infect Dis Poverty. 2017;6(1):5. doi: 10.1186/s40249-016-0229-3.
- Ridley DS, Jopling WH. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966;34(3):255–273.
- Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, et al. Massive gene decay in the leprosy bacillus. Nature. 2001;22;409(6823):1007-1011.
- Shepard CC. The experimental disease that follows the injection of human leprosy bacilli into foot-pads of mice. J Exp Med. 1960;112(3):445–454. doi: 10.1084/jem.112.3.445
- Tortoli E, Fedrizzi T, Meehan CJ, Trovato A, Grottola A, Giacobazzi E, et al. The new phylogeny of the genus Mycobacterium: The old and the news. Infect Genet Evol. 2017;56:19–25. doi: 10.1016/j.meegid.2017.10.013
- George J. Metabolism and interactions of antileprosy drugs. Biochem Pharmacol. 2020;177:113993. doi: 10.1016/j.bcp.2020.113993
- Bennett BH, Parker DL, Robson M. Leprosy: steps along the journey of eradication. Public Health Rep. 2008;123(2):198–205. doi: 10.1177/003335490812300212.
- Ghaoui N, Hanna E, Abbas O, Kibbi AG, Kurban M. Update on the use of dapsone in dermatology. Int J Dermatol. 2020;59(7):787–795. doi: 10.1111/ijd.14761
- Maladan Y, Krismawati H, Hutapea HML, Oktavian A, Fatimah R, Widodo. A new Mycobacterium leprae dihydropteroate synthase variant (V39I) from Papua, Indonesia. Heliyon. 2019;5(3):e01279. doi: 10.1016/j.heliyon.2019.e01279
- Swain SS, Paidesetty SK, Dehury B, Das M, Vedithi SC, Padhy RN. Computer-aided synthesis of dapsone-phytochemical conjugates against dapsone-resistant Mycobacterium leprae. Sci Rep. 2020;10(1):6839. doi: 10.1038/s41598-020-63913-9
- Holdiness MR. Clinical pharmacokinetics of clofazimine: a review. Clin. Pharmacokinet. 1989,19:74–85.
- Можокина Г.Н., Самойлова А.Г. Клофазимин: история и перспективы. Туберкулез и болезни легких. 2021;99(5):64–70 [Mozhokina GN, Samoylova АG. Clofazimine: history and perspectives. Tuberculosis and Lung Diseases, 2021;99(5):64–70 (In Russ.)]
- Кубанов А.А., Карамова А.Э., Воронцова А.А., Калинина П.А. Фармакотерапия лепры. Вестник дерматологии и венерологии 2016;92(4):12–19. [Kubanov AA, Karamova AE, Voroncova AA, Kalinina PA. Farmakoterapiya lepry. Vestnik dermatologii i venerologii 2016;92(4):12–19 (In Russ.)] doi: 10.25208/0042-4609-2016-92-4-12-19
- The National Hansen’s Disease (Leprosy) Program. https://www.hrsa.gov/hansens-disease/index.html#:~:text=The%20National%20Hansen's%20Disease%20Program,and%20makes%20referrals%20for%20treatment. (Accessed at 25 Oct 2021).
- Lazo-Porras M, Prutsky GJ, Barrionuevo P, Tapia JC, Ugarti-Gil C, Ponce OJ. et al. World Health Organization (WHO) antibiotic regimen against other regimens for the treatment of leprosy: a systematic review and meta-analysis. BMC Infect Dis. 2020;20(1):62. doi: 10.1186/s12879-019-4665-0
- Maeda S, Matsuoka M, Nakata N, Kai M, Maeda Y, Hashimoto K, et al. Resistant Mycobacterium leprae from Patients with Leprosy. Antimicrob Agents Chemother. 2001;45(12):3635–3639. doi: 10.1128/AAC.45.12.3635-3639.2001
- A guide for surveillance of antimicrobial resistance in leprosy: 2017 update. New Delhi: World Health Organization, Regional Office for South-East Asia; 2017.
- Cambau E, Saunderson P, Matsuoka M, Cole ST, Kay M, Suffys P, et al. Antimicrobial resistance in leprosy: results of the first prospective open survey conducted by a WHO surveillance network for the period 2009-15. Clin Microbiol Infect. 2018;24(12):1305–1310. doi: 10.1016/j.cmi.2018.02.022
- Cambau E, Chauffour-Nevejans A, Tejmar-Kolar L, Matsuoka M, Jarlier V. Detection of antibiotic resistance in leprosy using GenoType LepraeDR, a novel ready-to-use molecular test. PLoS Negl Trop Dis. 2012;6(7):e1739. doi: 10.1371/journal.pntd.0001739
- Williams DL, Araujo S, Stryjewska BM, Scollard D. Dapsone Resistance in Leprosy Patients Originally from American Samoa, United States, 2010–2012. Emerg Infect Dis. 2018;24(8):1584–1585. doi: 10.3201/eid2408.180033
- Chokkakula S, Chen Z, Wang L, Jiang H, Chen Y, Shi Y, et al. Molecular surveillance of antimicrobial resistance and transmission pattern of Mycobacterium leprae in Chinese leprosy patients. Emerg Microbes Infect. 2019;8(1):1479–1489. doi: 10.1080/22221751.2019.1677177
Дополнительные файлы
