— ОРИГИНАЛЬНЫЕ **СТАТЬИ** =

УЛК 543

СОРБЦИОННО-АТОМНО-АБСОРБЦИОННОЕ ОПРЕДЕЛЕНИЕ ИОНОВ Cu(II) В ТЕХНОГЕННЫХ ВОДАХ

© 2024 г. У. У. Рузметов^{а, b, *}, Э. Ш. Жумаева^а, З. А. Сманова^а

^aНациональный университет Узбекистана им. Мирзо Улугбека, химический факультет ул. Университетская, 4, Ташкент, 700174, Рес. Узбекистан ^bФармацевтический институт образования и исследований ул. Юнусота, 46, Ташкент, 100114, Рес. Узбекистан *E-mail: ruzmetov.uchkun@mail.ru
Поступила в редакцию 18.06.2023 г.
После доработки 23.06.2023 г.
Принята к публикации 25.06.2023 г.

Сорбенты, синтезированные на основе высокоосновных анионитов путем модификации полиэтиленполиамином полимеров поливинилхлорида (сорбент ППЕ-1), а также полиакрилонитрила (сорбенты ППФ-1 и ППА-1), использованы для селективной сорбции ионов меди(II). В случае модифицирования полиакрилонитрила на поверхность сорбентов им мобилизовали реагент торон І. Изучены оптимальные условия иммобилизации реагента на сорбенты и образования им комплексов с ионами меди(II) в статическом режиме. Разработана методика сорбционно-атомно-абсорбционного определения ионов меди(II) в техногенных, сточных и промышленных водах.

Ключевые слова: сорбционно-атомно-абсорбционный метод, ионы меди, волокнистые сорбенты, иммобилизация, торон I.

DOI: 10.31857/S0044450224050098 **EDN**: usrhcj

Развитие промышленности, увеличение производственных мощностей приводит к повышению содержания ионов тяжелых и токсичных металлов в отходах производств [1]. Для контроля их состава необходимы эффективные, простые, точные и чувствительные методы, позволяющие определять компоненты в сложных смесях.

Методы определения компонентов с предварительным концентрированием сорбцией [2, 3] на неорганические материалы с привитыми функциональными группами [4, 5], сорбенты и ионообменники, модифицированные органическими реагентами [6—9], а также применение органических реагентов, иммобилизованных на гранулированных [10, 11] и волокнистых полимерных сорбентах [12—14], позволяют снизить пределы обнаружения ионов металлов на несколько порядков и повысить селективность их определения. Методы разделения и концентрирования позволяют несколько упростить условия определения и расширить возможности применения для этого инструментальных методов анализа [15].

Медь является важным элементом для человека и растений, когда присутствует в микроколичествах, в то время как в больших концентрациях она оказывает вредное воздействие

[16]. Целью настоящей работы явилось создание методики сорбционно-атомно-абсорбционного определения ионов меди(II) в различных технологических растворах и водах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Оборудование. Для определения ионов металлов в водных растворах использовали атомно-абсорбционный спектрометр Shimadzu AA-7700 (Япония) с атомизацией в пламени состава воздух—ацетилен. Кислотность среды контролировали с помощью цифрового рН-метра PHS-3E (Китай) с использованием мешалки МS7-H550-S. Применяли сканирующий электронный микроскоп JEOL JSM-IT200LA (США), аналитические весы ABS 120-4N (Китай). Спектры диффузного отражения регистрировали на приборе Eye-One Pro мини-спектрофотометр (Китай).

Реагенты. Готовили растворы реагентов ч. д. а. в бидистиллированной воде. Для приготовления 0.0100~M~(163.84~MKГ/MЛ) раствора меди(II) в 5%-ной HNO₃ использовали $CuSO_4\cdot 5H_2O$ ч. д. а. Рабочие растворы перед применением готовили разбавлением стандартных растворов. Для хлорирования волокна и создания кислой среды

использовали 0.1000 М стандартный раствор HCl. Стандартный раствор торона I с концентрацией 2×10^{-3} М готовили точным взвешиванием 0.1064 г реагента и растворением его в мерной колбе емк. 100 мл. Сорбенты массой ~ 0.2000 г [17, 18] взвешивали на аналитических весах.

Получение сорбентов и подготовка их к работе. Использовали сорбенты, полученные путем модификации полиэтиленполиамином полимеров поливинилхлорида (сорбент ППЕ-1 в виде гранул), а также полиакрилонитрила (ПАН) (сорбенты ППФ-1 и ППА-1 в виде волокон), селективные к ионам тяжелых металлов. Для синтеза сорбента ППА-1 волокна ПАН сначала активировали гидроксиламином, затем добавляли 50%-ный раствор ПЭПА при 100°С в течение 3 ч. Волокно ППФ-1 получали добавлением помимо этого формальдегида и фосфористой кислоты. Оптимальные условия модификации сорбентов, установленные ранее [19—23], приведены в табл. 1.

Методика модификации. 0.2000 г носителя ППФ-1 и ППА-1 (в виде волокнистой нити толщиной около 100 нм, площадью поверхности 30—100 г/м²) помещают в стакан емк. 50.0 мл, выдерживают в 0.1 М НС1 в течение 4—5 ч, промывают 2—3 раза бидистиллированной водой до нейтральной реакции, при этом сорбенты переходят в ионизированную анионообменную СІформу. Полученные препараты хранят в чашках Петри для последующих экспериментов. Синтезированный полиамфолит не растворяется в органических растворителях (уксусной кислоте, этаноле), сильных кислотах и щелочах, что указывает на переход полимера в сшитое состояние в результате модификации.

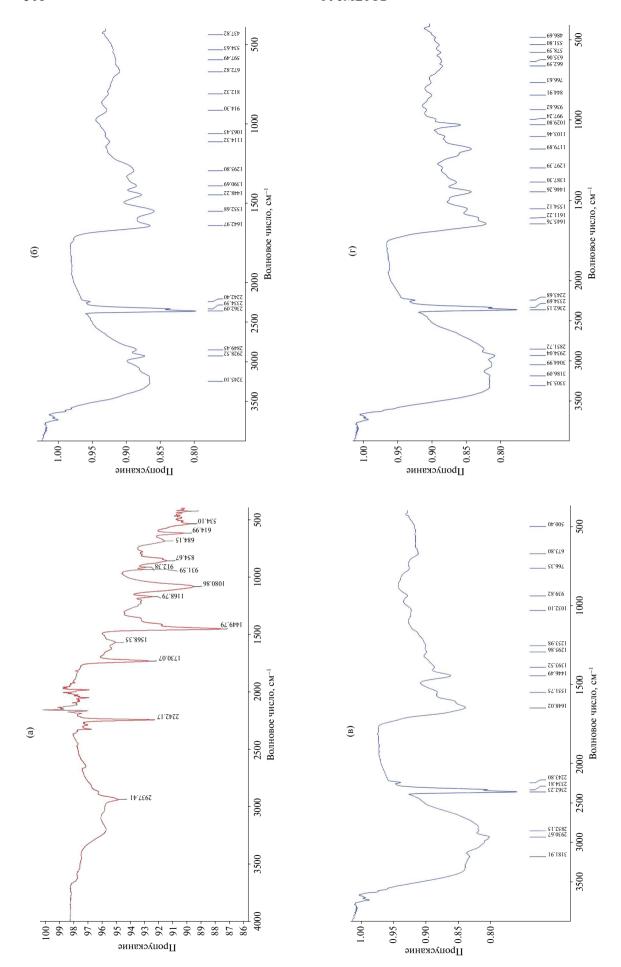
Для описания химической структуры синтезированного сорбента ППФ-1 проанализировали его ИК-спектры в чистом виде и в присутствии соляной кислоты и сопоставили их с ИК-спектрами исходного ПАН (рис. 1а). При изучении ИК-спектров синтезированного полимера ППФ-1 (рис. 1б) обнаружили несколько характерных полос, соответствующих его функционально-аналитическим группам. Полосы поглощения в областях 3245.10, 2928.52, 2362.09, 1642.97 и 1448.22 см⁻¹ относятся к валентным и деформационным колебаниям —ОН, —СН₂—, Р—Н, NH и Р=О групп. После обработки соляной кислотой в области 1648.02 см⁻¹ обнаружена полоса, относящаяся к группе NH⁺ (рис. 1в).

Иммобилизация реагента. Для улучшения аналитических параметров сорбентов и повышения чувствительности (в 10-100 раз) определения меди(II) на полученных сорбентах иммобилизовали торон I (4-[(2-арсонофенил) азо]-3-гидрокси-2,7-нафталин-дисульфокислоту). Установили, что торон I сорбируется анионообменником по механизму анионного обмена при значениях рН, соответствующих диссоциации сульфогруппы: $P-NH_2^+ - O_3S-R$; где P - полимерные сорбенты ППА-1 и ППФ-1, R — радикал торон I, содержащий сульфогруппу. Ионообменный характер сорбции подтверждается повышением кислотности жидкой фазы. После иммобилизации торона I на ионизированном полимере в ИК-спектре обнаружены полосы поглощения при 1446.26, 1179.89, 1029.80, 766.63 - 936.62 см⁻¹, которые относятся к валентным и деформационным колебаниям – Ar-N=N-Ar, -S=O, C-P, -Ar и свидетельствуют о наличии функционально-аналитических групп (Φ A Γ) торона I (рис. 1 Γ).

Методика иммобилизации. В стаканы емк. 50 мл помещают 10 мл 0.1%-ного раствора торона I, 0.2000 г сорбента, магнитной мешалкой перемешивают в течение 4—5 мин, затем промывают сорбент бидистиллированной водой.

При взаимодействии иммобилизованного торона I с ионами меди происходит их сорбция на сорбенте с образованием комплекса, при этом в ИК-спектре появляется новая полоса поглощения в области $499.82-688.33~{\rm cm}^{-1}$, характерная для связи -O-Cu.

Статическую обменную емкость сорбента (**COE**) по отдельным элементам (COE(Cu(II)) рассчитывали методом насыщения при экспериментально выбранных условиях по формуле:


$$COE(Cu(II)) = \frac{c_1 - c_2}{g} V,$$

где COE(Cu(II)) — сорбционная емкость сорбента для иона Cu(II), мг/г; c_1 и c_2 —концентрация ионов металла в исходном растворе и в фильтрате соответственно, мг/мл; V — объем фильтрата, мл; g — масса сорбента, г.

Отбор проб. Для выяснения сорбционных свойств сорбентов готовили образцы стандартных растворов меди(II). В качестве проб использовали технологические сточные воды в произ-

Таблица 1. Физико-химические характеристики синтезированных сорбентов

Условия	ППЕ-1	ППА-1	ППФ-1	
Состав сорбента	ПВХ + ПЭПА	ПЭПА + ПАН	ПЭПА + ПАН.	
Добавленный реагент	CH ₃ COOC ₂ H ₅ , C ₂ H ₅ OH	NH ₂ OH	CH_2O , H_3PO_3	
Длительность реакции, ч	4	3	3	
Температура реакции, °С	100	100	100	
Форма сорбента	Гранулы	Волокно	Волокно	

Рис. 1. ИК-спектры волокон ПАН (а); ППФ-1 (б); ППФ-1, обработанного НСІ (в); ППФ-1 с иммобилизованным тороном (г).

водственной зоне Навоийской области согласно ГОСТу [24]. После фильтрации вод и доведения их рН до 2 образцы хранили в холодильнике при 5°С в течение месяца. Перед анализом значения рН образцов доводили до значения 5—6.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для характеристики химической структуры полученных волокон с иммобилизованным на их поверхности тороном исследовали их элементный состав до и после сорбции меди (табл. 2). Полученные результаты показали, что сорбенты содержат атомы азота, придающие им анионообменные свойства. Иммобилизация торона І протекает в большей степени на волокие ППФ-1 (рис. 2а, б), чем на волокне ППА-1, сорбция меди на $\Pi\Pi\Phi$ -1 также значительно выше. После иммобилизации торона I на этих волокнах наблюдается существенное изменение состава: в волокне ППФ-1 появляются новые элементы (As -0.37%, S -0.2%), которые входят в состав торона I. При этом изменяется цвет волокна от бесцветного до оранжево-красного. Медь распределена в волокне равномерно (рис. 2в), что свидетельствует о протекании хемосорбции, а количество меди в сорбенте составляет 15.85% (табл. 2).

Заметны также значительные изменения на поверхности волокна (рис. 2б), указывающие на взаимодействие ионов металла с реагентом. Изучили зависимость от длины волны функции Кубелки — Мунка (*F*) сорбентов в отсутствие и в присутствии на сорбентах иммобилизованного реагента и его комплекса с ионами меди. Функцию Кубелки — Мунка рассчитывали по коэффициентам диффузного отражения, полученным с помощью Eye-One Pro, по следующей формуле:

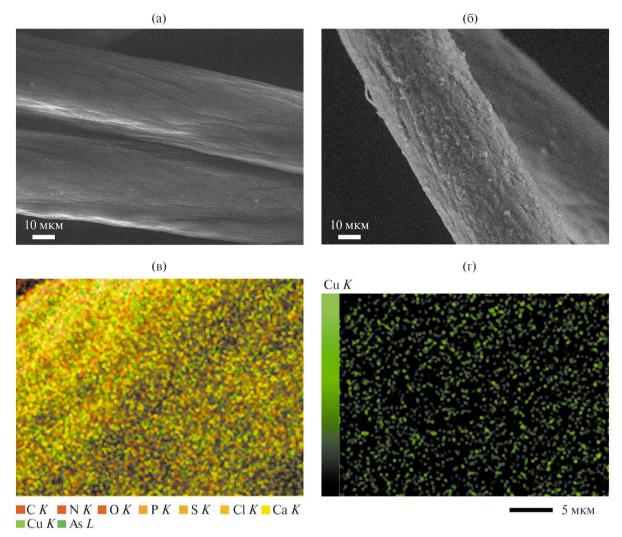
$$F(R) = \frac{(1-R)^2}{2R} = \frac{2,3c\varepsilon}{S},$$

где R — коэффициент диффузного отражения; ε — молярный коэффициент поглощения сорбата, M^{-1} см⁻¹; c — его концентрация, M; S — коэффициент рассеяния, см⁻¹.

Предварительные исследования методом отражательной спектроскопии по выбору наилучшего сорбента показали, что наибольшее диффузное отражение при иммобилизации торона I достигается при использовании полиэтиленполиамина, модифицированного фосфористой кислотой (ППФ-1) (рис. 3).

Спектры диффузного отражения торона I (максимум около 580 нм) изменяются при связывании им с ионами меди(II) в твердой фазе, имеется гипсохромный сдвиг в области 490 нм. Как уже упоминалось, молекула реагента содержит группы —ОН и —N=N—, где кислород выступает в роли акцептора, а азот — в роли донора, которые образуют связи с ионами меди(II), при этом фиолетовая окраска изменяется на оранжево-коричневой цвет. Полученные результаты представлены на рис. 4.

Влияние рН на сорбцию. Важную роль рН раствора играет в адсорбции металлов на волокнах с иммобилизованным органическим реагентом. В кислой среде возможно протонирование ФАГ хелатообразующих молекул, тогда как в щелочной среде многие металлы могут образовывать комплексы или осаждаться.


Изучили сорбцию ионов меди(II) в диапазоне pH 2.0—9.0. Из рис. 5 видно, что степень сорбции повышается с увеличением pH и достигает максимума в диапазоне pH 6—8. Это интервал pH выбрали в качестве наиболее подходящего для дальнейшей работы.

Влияние количества сорбента. Влияние количества волокна и гранул сорбентов с иммобилизованным на них тороном I на сорбцию ионов меди(II) при оптимальных значениях рН исследовали при массе волокна 100—400 мг. Из рис. 6 видно, что количественное выделение меди происходит при массе сорбента 200—300 мг, которую выбрали для последующих исследований.

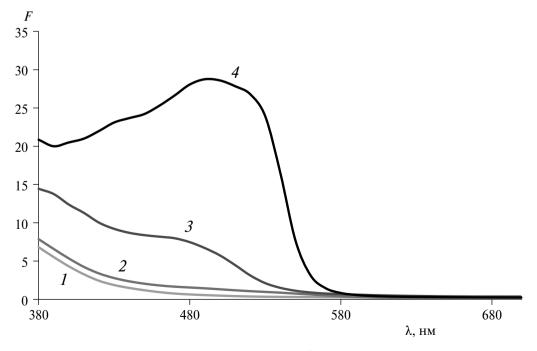

Влияние времени сорбции на степень извлечение. Изучили зависимость степени сорбции меди(II) от времени (15-105 мин) на сорбенте ППФ-1, который оказался более перспективным для выделения меди. Полученные результаты показали, что сорбция меди(II) в течение 60 мин

Таблица 2. Элементный анализ волокон ППА-1, ППЭ-1 и ППФ-1

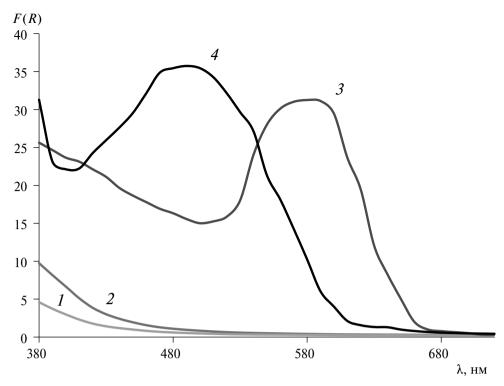

Сорбент	Состав, $\%$ ($n = 3$, $P = 0.95$)								
Соросні	С	N	Cl	О	S	P	As	Cu	
ППФ-1 + торон I	43.9 ± 0.2	30.9 ± 0.4	12.3 ± 0.1	12.3 ± 0.3	0.20 ± 0.02	0.02 ± 0.02	0.37 ± 0.06	_	
ППФ-1 + торон I + Cu(II)	29.8 ± 0.2	12.9 ± 0.2	21.1 ± 0.1	19.5 ± 0.2	0.02 ± 0.01	0.03 ± 0.02	0.07 ± 0.04	15.85 ± 0.30	
ППА-1	54.24 ± 0.09	34.5 ± 0.3	0.54 ± 0.02	9.9 ± 0.1	0.02 ± 0.01	_	0.03 ± 0.02	_	
ППА-1 + торон I + Cu(II)	55.9 ± 0.1	25.4 ± 0.3	0.13 ± 0.01	16.5 ± 0.2	0.13 ± 0.01	_	0.17 ± 0.03	0.35 ± 0.06	

Рис. 2. Электронные микрофотографии волокон $\Pi\Pi\Phi$ -1 после иммобилизации торона I (a), абсорбции меди(II) (б); вид распределения на поверхности волокон различных элементов (в) и меди(II) (г).

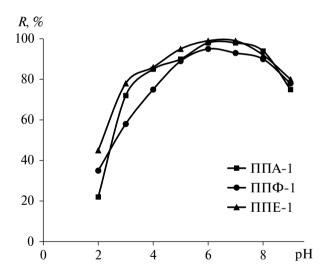


Рис. 3. Спектры диффузного отражения волокон ППА-1 (*1*), ПП Φ -1 (*2*) в отсутствие (*3*) и в присутствии иммобилизованного торона I (*4*).

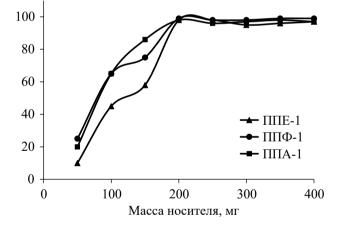


Рис. 4. Спектры диффузного отражения сорбентов ПП Φ -1 (*I*), ПП Φ -1 в Cl-форме (*2*), с иммобилизованным тороном I (*3*) и его комплексом с ионами меди(II) (*4*).

R, %

Рис. 5. Влияние рН на степень извлечения меди(II). Условия эксперимента: концентрация меди(II) 7.33 мг/мл, $m_{\text{сорб.}} = 200$ мг, t = 60 мин, 25°C.

Рис. 6. Влияние количества волокна и гранулированного полимера на степень извлечения меди(II). Условия эксперимента см. в подписи к рис. 5.

достигает уровня 94%; это время сорбции выбрали для последующих исследований. Зависимость степени сорбции меди(II) от времени представлена ниже.

Время, мин	15	30	45	60	75	90	105
Степень сорбции (%)	42	63	89	95	96	97	97

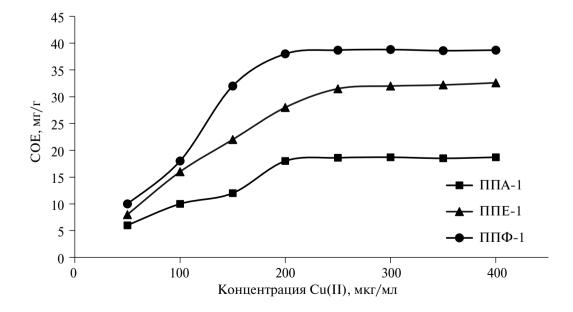
Влияние условий элюирования на разделение. Поскольку сорбция меди(II) при рН < 2 незначительна элюирование проводили в слабокислой

тельна, элюирование проводили в слабокислой среде. Для десорбции меди(II) использовали различные концентрации и объемы HNO₃ (табл. 3). Результаты показали, что 15 мл 0.2 М HNO₃ достаточно для полного элюирования меди(II) при перемешивании в течение 30 мин. В последующих экспериментах в качестве элюента применяли HNO₃ с указанными концентрацией и объемом.

Таблица 3. Зависимость степени десорбции ионо	В
мели(II) от концентрации азотной кислоты	

Концентрация	Объем НОО3,	Степень
HNO_3, M	мл	десорбции
3,		меди(II), %
0.2	5.0	85
0.2	10.0	96
0.2	15.0	99
0.2	20.0	99
0.5	10.0	97
1.0	10.0	99

Важным фактором, определяющим сорбционную способность сорбентов, является их обменная емкость. Для ее определения через 200 мг сорбента пропускали 10 мл растворов меди(II) с концентрацией в диапазоне 50—500 мкг/мл при рН 6.0 в течение 2 ч. Приведенные на рис. 7 зависимости обменной емкости ППФ-1, ППА-1 и ППЕ-1 от концентрации меди(II) показали, что на указанных сорбентах ее максимальные значения составляют 39, 19 и 33 мг/г соответственно. Следовательно, наиболее перспективным сорбентом для выделения меди является ППФ-1.


Регенерация волокнистых сорбентов. Для удаления ионов меди(II) с волокнистого сорбента их десорбировали 0.2 M HNO₃ в течение 1 ч. Затем сорбент промывали бидистиллированной водой до нейтральной реакции среды. Погрешность результатов (n=3) составила <5%. Сорбент показал наилучшую стабильность и возможность повторного использования для выделения меди(II).

Влияние посторонних ионов. Изучили влияние различных катионов и анионов на сорбцию меди(II) на сорбенте с иммобилизованным тороном

I. В качестве предельных допустимых концентраций мешающих ионов приняли такие их избытки, при которых возможно извлечение не менее 90% меди. Результаты показали (в скобках приведены допустимые мольные избытки), что ионы Na^+ (300), K^+ (300), NH_4^+ (300), Ca^{2+} (50), Mg^{2+} (50), Co^{2+} (50), Mn^{2+} (20), Ni^{2+} (20) не оказывают значительного влияния на концентрирование и определение ионов меди(II). Это объясняется низкой адсорбционной способностью или меньшей скоростью взаимодействия мешающих ионов с тороном I. Таким образом, наличие многих сопутствующих ионов не влияет на извлечение меди(II) в выбранных условиях.

Для расчета предела обнаружения меди(II) проанализировали в оптимальных условиях 12 серий стандартных растворов по приведенной выше методике. Предел обнаружения меди(II) составил $0.05~\rm Mkr/mл$, относительное стандартное отклонение -0.033.

Для подтверждения правильности результатов анализа различных вод, полученных методом атомно-абсорбционной спектрометрии (ААС) с атомизацией в пламени, проанализировали пробы техногенной воды после сорбции меди на сорбенте ППФ-1 независимым методом инверсионной вольтамперометрии (ИВ). В пробе техногенной воды после сорбции на сорбенте ППФ-1 методами ААС с атомизацией в пламени и ИВ (п = 12, f1 = f2 = 11, P = 0.99) соответственно найдено 3.75 мкг/мл Cu(II) ($s_r = 0.17$) и 3.71 мкг/мл Cu(II) $(s_{\rm r}=0.15)$. Сравнение полученных двумя методами результатов анализа по F- и t-критериям ($t_{\text{эксп}}$ $= 1.45, t_{\text{табл}} = 2.83; F_{\text{эксп}} = 1.31, F_{\text{табл}} = 4.47)$ показало отсутствие значимых расхождений между ними и систематической погрешности.

Рис. 7. Статистическая обменная емкость сорбентов в зависимости от концентрации меди(II). Условия эксперимента см. в подписи к рис.5.

Таблица 4. Результаты определения меди(II) в образцах воды сорбционно-атомно-абсорбционным методом с использованием сорбента $\Pi\Pi\Phi$ -1 (n=3)

_	Техногенная вода		Сточі	ная вода	Промышленная вода		
Введено Cu(II), мкг/мл	найдено, мкг/мл	степень извлечения, %	найдено, мкг/мл	степень извлечения, %	найдено, мкг/мл	степень извлечения, %	
0	3.3 ± 0.3	_*	1.3 ± 0.3	_	2.4 ± 0.2	_	
10.0	13.2 ± 0.3	97 ± 2	11.4 ± 0.1	97 ± 1	12.1 ± 0.2	97 ± 2	
20.0	23.1 ± 0.1	95.6 ± 0.4	21.1 ± 0.2	95 ± 1	22.8 ± 0.1	98.0 ± 0.4	

^{*}Не обнаружено.

Определение меди(II) в реальных образцах вод. Разработанную методику с использованием сорбента ППФ-1 применили для определения ионов меди(II) в образцах техногенных, сточных и промышленных вод. Предварительно провели эксперименты по извлечению различных количеств меди(II) из этих образцов. Достигнутые степени извлечения 95—98% оказались достаточными для определения следовых количеств меди(II) в пробах воды (табл. 4).

* * *

Предложенная сорбщионно-атомно-абсорбщионная методика концентрирования и определения меди(II) в техногенных, промышленных и сточных водах с помощью реагента торон I, иммобилизованного на волокнистых сорбентах ППА-1 и ППФ-1, является более чувствительной, воспроизводимой, а также простой и удобной в исполнении по сравнению с обычным атомно-абсорбщионным вариантом. Разработанный способ выделения и определения микроэлементов, в частности меди, является экологически чистым и безопасным.

Авторы благодарят профессоров и преподавателей кафедры "Химии полимеров" Национального университета Узбекистана за предоставленные образцы полимерных материалов на основе ПАН, а также Т.Н. Шеховцову, профессора кафедры аналитической химии Московского государственного университета им. М.В. Ломоносова, за большую помощь в подготовке статьи.

ФИНАНСИРОВАНИЕ РАБОТЫ

Данная работа финансировалась за счет средств бюджета Национального университета Узбекистана. Никаких дополнительных грантов на проведение или руководство данным конкретным исследованием получено не было.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы данной работы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бабкина С.С., Улахович Н.А., Моисеева Е.Н., Филюшина Е.Е. Концентрирование тяжелых металлов на иммобилизованной дезоксирибонуклеиновой кислоте в составе биосенсора с целью их определения в биологических объектах // Журн. аналит. химии. 2003. Т. 58. № 7. С. 731.
- 2. Золотов Ю.А., Цизин Г.И., Дмитриенко С.Г., Моросанова Е.И. Сорбционное концентрирование микрокомпонентов из растворов. М.: Наука. 2007. 320 с.
- 3. Золотов Ю.А., Цизин Г.И., Дмитриенко С.Г., Моросанова Е.И. Сорбционное концентрирование микрокомпонентов: для целей химического анализа // Успехи химии. 2005. Т. 74. № 1. С. 41.
- 4. *Писарева В.П., Цизин Г.И., Золотов Ю.А.* Фильтры для концентрирования элементов из растворов // Журн. аналит. химии. 2004. Т. 59. № 10. С. 1014.
- 5. Запорожец О.А. Гавер О.М., Сухан В.В. Иммобилизация реагентов на поверхности носителей // Успехи химии. 1997. Т. 66. № 7. С. 702.
- 6. Костенко Е.Е. Химико-аналитические свойства сульфофталеиновых красителей, иммобилизованных на анионите АВ-17х8 и их использование в анализе пищевых объектов // Методы и объекты химического анализа. 2011. Т. 6. № 1. С. 56.
- 7. Зайцев В.Н. Комплексообразующие химически модифицированные кремнеземы: прогнозирование аналитического применения // Журн. аналит. химии. 2003. Т. 58. № 7. С. 688.
- 8. Басаргин Н.Н., Оскотская Э.Р., Карпушина Г.И., Сенчаков В.Г., Розовский Ю.Г. Концентрирование и определение следов тяжелых металлов полимерными хелатообразующими сорбентами в анализе природных и сточных вод // Журн. аналит. химии. 2003. Т. 58. № 7. С. 694.
- 9. *Басаргин Н.Н., Оскотская Э.Р., Чеброва А.В., Розовский Ю.Г.* Сорбция цинка полимерными хелатообразующими сорбентами и ее применение в анализе природных вод // Журн. аналит. химии. 2008. Т. 63. № 3. С. 231.
- 10. Bekchanov D., Mukhamediev M., Lieberzeit P., Babojonova G., Botirov S. Polyvinylchloride-based anion exchanger for efficient removal of chromium (VI) from

- aqueous solutions // Polym. Adv. Technol. 2021. V. 32. P. 3995.
- 11. *Lieberzeit P., Bekchanov D., Mukhamediev M.* Polyvinyl chloride modifications, properties, and applications: Review // Polym. Adv. Technol. 2022. V. 33. P. 1809.
- 12. *Мадусманова Н.К. Сманова З.А., Жураев И.И.* Свойства нового аналитического реагента 2-гидрокси-3-нитрозонафтальдегида // Журн. аналит. химии. 2020. Т. 75. № 1. С. 92.
- 13. Мадусманова Н.К., Халилова Л.М., Жумаева Э.Ш., Гафурова Д.А., Сманова З.А., Тожимухамедов Х.С. Производные нитрозонафтола в качестве аналитических реагентов для определения ионов кобальта // Журн. аналит. химии. 2022. Т. 77. № 1. С. 26.
- 14. *Madatov, U., Rakhimov S., Shahidova D., Smanova Z., Basant, L., Berdimurodov E.* A new, green, highly effective procedure for manganese determination using alizarin-3-methylamino-N,N-diacetic acid immobilised on a polymer matrix // Int. J. Environ. Anal. Chem. 2022. https://doi.org/10.1080/03067319.2022.2154665
- 15. *Сухарев С.Н.* Определение содержания тяжелых металлов в природной воде сорбционно-атомно-абсорбционным методом // Журнал химии и технологии воды. 2012. Т. 34. № 4. С. 190.
- 16. *Парахонский А.П*. Роль меди в организме и значение ее дисбаланса // Естественно-гуманитарные исследования. 2015. Т. 10. № 4. С. 72.
- 17. *Коростелев П.П.* Приготовление растворов для химико-аналитических работ. М.: Наука, 1964. 400 с.
- 18. *Волков А.И., Жарский И.М* Справочник по аналитической химии, М.: Букмастер, 2015. 320 с.
- 19. *Мухамедиев М.Г., Бекчанов Д.Ж.* Новый анионит на основе поливинилхлорида и его применение в промышленной водоподготовке // Журн. при-

- кл. химии. 2019. Т. 92. № 11. С. 1401. (*Mukhamediev M.G.*, *Bekchanov D.Z.* New Anion exchanger based on polyvinyl chloride and its application in industrial water treatment // Russ. J. Appl. Chem. 2019. V. 92. P. 1499.)
- 20. *Сманова З.А., Гафурова Д.А., Савчиков А.В.* 1-(2-пиридилазо)-2-оксинафталин-3,6-дисульфокислый натрий-иммобилизованный реагент для определения железа(III) // Журн. общ. химии. 2011. Т. 81. № 4. С. 648. (*Smanova Z.A., Gafurova D.A., Savchkov A.V.* Disodium 1-(2-pyridylazo)-2-oxynaphthalene-3,6-disulfonate: An immobilized reagent for iron(III) determination // Russ. J. Gen. Chem. 2011. V. 81. № 4. P. 739.)
- 21. Исакулов Ф.Б., Набиев А.А., Рахимов С.Б., Имамова Н.К., Сманова З.А., Таджимухамедов Х.С. Свойства нового синтезированного аналитического реагента 2-нитрозо-5-метоксифенола // Sci. Educ. 2020. Т. 1. № 3. С. 61.
- 22. Ashirov M.A., Yusupova M.R., Akhmadjanov U.G., Smanova Z.A., Baigenzhenov O., Berdimurodov E.T. Sulfarsazen-immobilized PPA Matrix as a new efficient analytical reagent for Hg(II) determination // Anal. Bioanal. Chem. Res. 2023. V. 10. № 2. P. 135.
- 23. *Нурмухаммадов Ж.Ш., Сманова З.А., Таджимухамедов Х.С., Инатова М.С.* Синтез и свойства нового аналитического реагента-2-гидрокси-3-нитрозонафталин-1-карбальдегида // Журн. орг. химии 2014. Т. 50. № 6. С. 918. (*Nurmukhammadov, Zh.Sh., Smanova Z.A., Tadzhimukhamedov, Kh.S.*, Synthesis and propereties of a new analytical regent, 2-hydroxy-3-nitrosonaphthalene-1-carbaldehyde // Russ. J. Org. Chem. 2014. V. 50. № 6. P. 895.)
- 24. ГОСТ 31861-2012. МГС: Вода. Общие требования к отбору проб. М.: Стандартинформ. 2019.

= ORIGINAL ARTICLES ==

SORPTION-ATOMIC ABSORPTION DETERMINATION OF Cu(II) IONS IN TECHNOGENIC WATERS

U. U. Ruzmetov^{a, b*}, E. Sh. Jumayeva^a, Z. A. Smanova^a

^aNational University of Uzbekistan named after Mirzo Ulugbek, Faculty of Chemistry, 700174, Tashkent, Uzbekistan

^bPharmaceutical Education and Research Institute, 100114, Tashkent, Uzbekistan

*e-mail: ruzmetov.uchkun@mail.ru

Received 18 June, 2023. Revised 23 June, 2023. Accepted 25 June, 2023

Abstract. Sorbents synthesized based on high-basicity anion exchangers by modifying polyvinyl chloride polymers with polyethylene polyamine (sorbent PPE-1), as well as polyacrylonitrile (sorbents PPF-1 and PPA-1), were used for the selective sorption of copper(II) ions. In the case of polyacrylonitrile modification, the reagent thoron I was immobilized on the surface of the sorbents. Optimal conditions for the immobilization of the reagent on the sorbents and the formation of complexes with copper(II) ions in a static mode were studied. A method for sorption-atomic absorption determination of copper(II) ions in technogenic, waste, and industrial waters was developed.

Keywords: sorption-atomic absorption method, copper ions, fibrous sorbents, immobilization, thoron I.