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Abstract. It has been shown that the helicity-dependent imaginary part of the weak neutron interaction
does not preserve spatial parity and breaks T-invariance. Time reversal symmetry breaking also occurs
with a strong spin dependent interaction. The group structure of the spinor transformation in both cases

is related to the Lorentz group transformations.
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1. INTRODUCTION

In this paper we analyze the properties of discrete
symmetries in neutron transmission. The product
of discrete symmetries CPT, where C is the charge
conjugation, P is the parity transformation, and
T is the time reversal, is a conserved quantity and
constitutes the content of the fundamental theorem
of Liiders-Pauli. This theorem is proved on the basis
of two fundamental principles: Lorentz invariance
and interaction locality. In this case the hermiticity
of the Hamiltonian or Lagrangian is not obligatory
[1]. By virtue of this theorem discrete symmetries can
be broken only in pairs. Further we consider possible
cases.

1. If the symmetry at time reversal 7 is preserved,
then violations of spatial P and charge C parities are
possible. The combined parity CP is also preserved.
This property of the weak interaction is shown, for
example, at beta decay. At action of transformations
C and P on dynamical variables the helicity is changed
and the particle is replaced by an antiparticle, so that
the left-polarized particle passes to the right-polarized
antiparticle. This property is a reflection of the fact that
the weak interaction has divided the world into “left”
and “right”. The weak interaction involves left-polar-
ized particles or right-polarized antiparticles.

2. At preservation of charge parity C, spatial par-
ity P and symmetry at time reversal 7 can be bro-
ken. In other words, at such a weak interaction the

combined CP-parity is broken, but P7-parity is pre-
served. The PT transformation in this case leaves the
momentum direction unchanged but changes the sign
of the spin, i.e., the helicity is changed in this transfor-
mation. Since antiparticles do not participate in neu-
tron scattering, the change of helicity in neutron scat-
tering is an indication of the violation of 7-invariance.

3. At preservation of spatial parity P there can
be charge parity violations C and symmetry at time
reversal 7. The strong interaction can possess such
property.

This paper is intended to show that the three
considered types of broken pair symmetries occur
in spin-dependent zero-angle neutron scattering in the
target matter. The main attention will be paid to the
weak interaction, which in addition to the well-known
violation of spatial parity can also lead to symme-
try breaking in time reversal. Before considering the
symmetries of the spin-dependent interaction of neu-
trons in the target matter, let us discuss the properties
of discrete transformations in the framework of the
CPT-theorem. Inversions of the coordinate system
P and charge conjugation C represent an example
of unitary transformations. The operator P changes
the coordinate signs to opposite ones, and the oper-
ator C replaces a particle by an antiparticle. The time
reversal operation is a non-unitary operation. When
simply replacing 7 ~ —¢, the spin and momentum of the
particle change sign, but the permutation relations be-
tween coordinate and momentum [x,p ] = if, as well
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as the commutation relations between the spin com-
ponents [s;,s j] = isl.jksk and other relations containing
spin or momentum change. In this case, positive-fre-
quency solutions become negative-frequency solutions
in the evolution operator. If the zero-point energy state
is taken to be vacuum, the energies become less than
vacuum energies, which should not be the case.

In order that the laws of nature do not depend
on the direction of time, it is accepted to define the
time reversal operator 7 as the product of the unitary
operator U, by the complex conjugation operation
K. Such an operator is called anti-unitary and the re-
sult of its action preserves the relations between oth-
er operators. The justification of such representation
is given in books on quantum field theory by Peskin
and Schroeder [2], Weinberg [3] and the structure
of the atomic nucleus by Bohr and Mottelson [4].
At such definition, the time reversal operator changes
the sign of imaginary unit. Then, if 7(c) = —o, then
T(ic) = ic and T(y(9)) = y*(—t).

2. SYMMETRIES OF SPIN-DEPENDENT
NEUTRON INTERACTIONS

In the first Born approximation, the forward neu-
tron scattering amplitude is usually represented in the
following form:

fO)=a+g,(c-p/p)+8,(c-1/1)+d(c-[Ixp])(1)

where s, p, I — the spin, neutron momentum, and
angular momentum of the target nuclei, respectively.
The coefficients in relation (1) are in general case com-
plex numbers. The constants a and g, determine the
strength of the spin-independent and spin-dependent
strong interactions. The weak interaction is represent-
ed by the second summand in (1), and the last sum-
mand in (1) describes the assumed weak interaction
of the neutron spin with the vector field created by the
vector product of the angular momentum of the nucle-
us by the neutron momentum.

Over the past 40 years, there has been a strong
perception that weak interaction in spin-dependent
neutron scattering violates only spatial parity and the
degree of such violation is a measure of the scattering
asymmetry depending on the neutron helicity. It was
also assumed that symmetry breaking in time reversal
arises in neutron scattering on the vector field repre-
sented by the last summand in (1), and the measure
of the T-noninvariant effect is the magnitude of the
imaginary part of the coefficient d. This represen-
tation is not quite accurate, since the analysis of the
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symmetry of the scattering amplitude did not take into
account the anti-unitary property of the time reversal
operation.

Let us consider the symmetries of different sum-
mands in expression (1). Let us apply the operator
T to the second summand in expression (1), then
we have T(g,) = g",- This result means that at time
reversal the real and imaginary parts of the ampli-
tude with spirality have different symmetries. The real
part remains P-odd and preserves CP-parity, while
the imaginary part, responsible for spin-dependent
neutron absorption, is P-odd and changes sign upon
time reversal, i.e., left-polarized particles change
to right-polarized particles, which clearly violates
T-invariance or CP-parity. Thus, to measure the effect
of symmetry breaking in time reversal, it is sufficient
to measure polarization with an unpolarized initial
beam passing through an unpolarized target.

Left-polarized particles or right-polarized antipar-
ticles participate in the weak interaction, so left-po-
larized neutrons are absorbed more strongly than
right-polarized ones, and after passing the target
the beam acquires the right polarization, i.e., there
is a transition from zero polarization to final polar-
ization. According to the optical theorem for an un-
polarized target, the total cross section of the process
depends on the helicity in the imaginary part of the
amplitude (1):

4r
o, = TImfi(O)

where signs indicate helicity, and this cross section
is larger for left-polarized neutrons. Another case
is also possible, where the passage of neutrons po-
larized along the momentum and against it is mea-
sured sequentially. In both cases, the measured value
of asymmetry determines the polarization of the beam
and, hence, the degree of violation of 7-invariance.

The strong spin-dependent interaction is character-
ized by the fact that neutrons with spins opposite to the
spins of the target nuclei interact more strongly than
neutrons whose spins are parallel to the target spins.
And while the real part of the interaction (scalar)
preserves all discrete symmetries, the imaginary part
(imaginary scalar) violates 7-invariance and, by virtue
of the CPT-theorem, charge parity C. This means that
at charge conjugation, i.e. at transition to antiparticles,
the absorption will be stronger in the case of parallel
spins.

The real part of the interaction, represented by the
last summand in (1), breaks the spatial parity and
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symmetry at time reversal, i.e., it breaks CP-parity.
The imaginary part violates P-parity and preserves
CP-parity.

Thus, we have shown that all pairwise violations
of discrete symmetries allowed by the CPT-theorem
are possible in neutron scattering.

3. WEAK SPIN-DEPENDENT INTERACTION
AND THE LORENTZ GROUP

The scattering amplitude (1) with constant accu-
racy is a Fourier transform of the potential at zero
transferred momentum, the Fourier transform in this
case is equal to the mean value of the potential over the
volume of the nucleus and is called the Fermi pseu-
dopotential. Therefore, further on we will successively
consider spin-dependent interactions corresponding
to the summands of the amplitude (1). Then the weak
neutron interaction is defined as follows:

W=-g,(c-p/p)/2 )

The operator part of expression (2) is a pseu-
doscalar, i.e., a quantity that does not preserve spatial
parity. We substitute (2) into the expression for the evo-
lution operator U = exp(—iWt / h) and introduce the
following parameterization:

9 =1fReg, /h, ¢ =-Amg, /h. 3)

The choice of a minus sign before Img,, is associated
with the fact that in the weak interaction the left-polar-
ized particles participate. On the other hand, at such
choice the bispinor column, as it will be seen below,
has a traditional form with the right spinor in the upper
position of the column. With parameterization (3) the
evolution operator will have the following form:

U= exp(i(ﬁ— i9)(c-mn)/ 2). “

At ¢ = 0, the matrix (4) is a unitary group SU(2)
of spinor rotations by angle ¢#/2 around the neutron
momentum direction defined by the unit vector n. This
group has correspondence to the orthogonal group
SO(3) of rotations in three-dimensional space by angle
0. These groups are homomorphic.

In a general form the operator (4) coincides with
the spinor transformation matrix on the group SL(2,
C). There is a correspondence of this group with the
Lorentz group SO(1,3), where the digits 1, 3 indicate
the signature of the Minkowski space. The group SL(2,
C) is homomorphic to the group SO(1,3). Information
about these groups can be found, for example, in [5].
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It is known that the Lorentz proper transformations
do not form a group because the boost generators K; (i =
X, y, ) in three directions do not have a closed alge-
bra. The closed algebra arises by combining Lorentz
transformations with three-dimensional rotations.
Three generators of rotations, which are the compo-
nents of angular momentum J;, and three generators
of boosts K;, where i = x, y, z, give a six-parameter
group. Going to the new generators M; = (J; + iK))/2
and N, = (J; — iK))/2, two irreducible representations
of the Lorentz group characterized by the generators
M; and N, respectively, arise. The commutators for each
of the generators are similar to the angular momentum
commutators: [M,, M,] = iM, plus cyclic permutations
and the same rule for commutators with generators ..

In the transition to spinors, two cases are possible.
In the first case M, =J, = c/2, K, = —ic,/2 and N, = 0.
This representation is denoted as (1/2, 0) and describes
right-handed spinors, since the spin in this case is par-
allel to the direction of the boost (or momentum of the
particle). In the second case (this representation is
(0, 1/2)) the spin direction is opposite to the momen-
tum. In this case M;= 0, N;= J;= ¢,/2 and K, = ic,/2,
i.e. the subgroup with N, generators in this case de-
scribes left-handed spinors. Then, denoting by ¢ the
three-dimensional rotation angle and by ¢ the boost
angle, we can write the resulting matrix:
II]Or] )

Vi Yo/

As already noted, the matrices included in expres-
sion (5) represent the group SL(2, C) of spinor trans-
formations on the Lorentz group. The initial spinors
are indistinguishable for resting particles or for unpo-
larized beam particles. Assuming them equal to y,, =
W, We find the relation for the final spinors and pres-
ent this relation in matrix form:

-1 exp(p(on)) ||y,
exp(—o(on)) —1j|y,

Expanding the exponents, we will have the final

W[

Here, the following property of Pauli matrices has
been used in the derivation:

(c-n)zk =1, (o n)2k+1 =(o-n).

The unitary matrices of the SU(2) group of rotat-
ing spinors by an angle ¢/2 at the derivation of equality

exp(i(d — i¢)(on)) 0
0 exp(i(® + ip))(on))

0— -1 che + (on)she
 |chp — (on)she —1
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(6) are reduced and do not give a contribution to the
connection between right and left spinors. As it fol-
lows from equality (6), when the coordinate system
n — —n is inverted and the spinors change places. The
same happens at time inversion, because the sign of the
hyperbolic sine changes due to the change of the sign
of the angle ¢ at this operation.

The group approach to the weak interaction (2) al-
low to make some conclusions. First, at 7-noninvari-
ant scattering the imaginary part of the weak poten-
tial is negative. The real part of this potential initiates
the spinor rotation along the SU2 group, which for
three-dimensional spins means spin precession in a
pseudo-magnetic field directed along the momentum
and equal to Reg, . The weak interaction violates spa-
tial parity and 7-invariance.

Let us note the universality of relation (6). The
weak interaction in (6) is represented by the parame-
terization of the angle ¢ according to (3). But another
parameterization is also possible, for example, rela-
tivistic, in which tgp = p = v/c, where c is the speed
of light and v is the speed of the boost. Assuming the
speed of light equal to unity, we have

0=v= (1—[32)_0'5 = E/m

and

sho = By = p/m,

where E, m and p are respectively energy, mass and
momentum of the particle. Then, using the equality
np = p, instead of (6) we obtain the Dirac equation
written for bispinors:

0= —m E+oc-pllwv,
E-c-p -m v, )

This is a reflection of the known fact that the trans-
formation of spinors by the Lorentz group leads to the
Dirac equation. At transition to 4-spinors and gam-
ma matrices this equation acquires a traditional form
in the form of one-line notation.

4. SPIN DENSITY MATRIX, NEUTRON
COUNT RATE AND SCATTERING
ASYMMETRY

To emphasize the effects of broken symmetries,
we will use the spin density matrix formalism de-
scribed in [6]. Let us refer to the system of equations
(5) and calculate the density matrix based on the first
equation for the wave function:
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Pr =V, = exp(é(ﬁ - "‘P)(("“))jpo %

x exp( - é(ﬁ + i(p)((GIl))j

For the initial matrix we will consider the neutron
flux normalized to one. Then this matrix has the fol-
lowing form:

™)

1
Po 25(]“5‘1’0)’

where p,, is the polarization vector, I is a unit matrix
and the trace of the density matrix is equal to one.
If the polarization of the initial beam is zero, the ex-
pression (7) takes the form

Pr exp((p(cn)) = %(ch(p + (Gn)sh(p). )

N | —

At the exit from the target, the beam acquires po-
larization p,= n ch¢ and a new intensity normalization
equal to she. In order to pass to the number of sam-
ples, the beam must pass through the analyzer, the
density matrix of which is determined by its efficiency

1
Pe=5(I+0-8,),

then for the count rate we have

N, =Trpp,.. 9)

where the signs indicate the efficiency of polarization
measurement along the pulse and against it. Calculat-
ing the ratio of the difference in the number of neutron
counts with the opposite polarizations to their sum,
we obtain the value of asymmetry

A, = (p,mthe = —(p, -n)th(Amg, /2).  (10)

In this expression the pseudoscalar violates spatial
parity, and the hyperbolic tangent changes sign at time
reversal. As a result, the asymmetry becomes P-odd
and T-noninvariant. Because the neutron beam densi-
ty matrix commutes with the analyzer density matrix,
the analyzer device, which we will now call a polarizer,
can be placed in front of the target. The asymmetry
in this case remains the same.

Let us now calculate the effect of spin precession
in the pseudomagnetic field of the weak interaction.
For this purpose we will assume that in expression (7)
the neutron momentum is directed along the x axis
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and this direction is given by the unit vector n,, where
the index p indicates the momentum, and the initial
neutron flux has transverse polarization along the unit
pseudovector, e.g., P, =n P, Then in expression (7)

the initial density matrix will be equal to
(11)

Neutrons after passing the target enter the analyzer,
for which we choose the direction z and the efficiency
P .

azg*

P, =%(1+cz -Paz). 12)

Here, the polarization pseudovector P, = n,P_.
Then, using expressions (7), (9), (11) and (12), for the
magnitude of the effect we can write

) _([npx xn, |-n, )PP, sin®. .
cho

_N+_N—
N, +N_

In this expression, the scalar product is a time-de-
pendent pseudoscalar. When time is reversed, the sign
of the angle ¢ also reverses, therefore this expres-
sion is P-odd and 7T-invariant, and by virtue of the
CPT-theorem, if it is valid, violates the charge parity.
CP-parity in in this case is preserved. With decreas-
ing energy p-wave resonance and increasing the target
length, the effect of breaking 7-invariance according
to (10) grows, since the angle ¢ increases. At the same
time, the spin rotation angle ¢ also grows and the value
of the sine amplitude in (13) decreases, i.e. the value
of the P-odd effect decreases.

The described apparatus is applicable for determi-
nation the symmetry properties of the strong interac-
tion. For this purpose, we introduce a new parame-
terization: v = fReg . /h and ¢ = —fImg_,. / h, and
a unitary pseudovector n, in the direction of the angu-
lar momentum of the nucleus. Then the unitary group
SU(2) will correspond to the spin group in three-di-
mensional space SO(3) describing the spin precession
in the pseudomagnetic field, directed along the angular
momentum of the nucleus. In polarized targets such
fields can be significant [7]. All discrete symmetries
are preserved.

With the parameterization by the strong interaction
in equation (6), the definition of left and right changes.
The scalar product in this equation defines the projec-
tion of the neutron spin on the direction of the angular
momentum of the nucleus. And for right spinors this
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projection is positive, and for left spinors it is nega-
tive. In the time reversal operation, the spinors change
places. This means that the strong spin-dependent in-
teraction has divided the world into “left” and “right”.
Neutrons are more strongly involved in this interac-
tion with left polarization, and antineutrons with right
polarization.

By changing the parameterization in expression
(10), we obtain an expression for the scattering asym-
metry for the spin-dependent strong interaction:

Ay, = (p,n)the.

This expression does not preserve 7-invariance,
since it changes sign at time reversal. According to the
CPT-theorem, the charge parity must be violated also.

Finally, let us consider the symmetries of the in-
teraction of the neutron spin with the vector field
V = [IXp], represented by the last term in the ampli-
tude (1). In accordance with the above approach, the
real part of such interaction describes the preces-
sion of the spin around this field and this precession
is P-odd and T-noninvariant. If there is an imaginary
component in the interaction with the vector field, the
expression for the asymmetry has the following form:

A, = _(pa 'nv)th(p’

where n, is a unit vector in the direction of the vector
field. As follows from the form of this expression, the
scattering asymmetry is P-odd and 7-invariant.

5. DISCUSSION

The weak interaction for small nucleon systems
is 7 orders of magnitude smaller than the strong in-
teraction, so it is extremely difficult to observe it. But,
as was predicted in [8-11], the effect of spatial parity
violation is enhanced by a factor of a million in neu-
tron reactions occurring near the p-wave resonance.
This enhancement arises because, when neutrons scat-
ter through the compound state, the weak interaction
mixes closely lying levels of the same spin but opposite
parity. A state with indeterminate parity arises and
the decay of this state leads to a violation of spatial
symmetry.

Experiments performed at JINR [12-14] con-
firmed this prediction and initiated an intensive study
of neutron scattering through compound states near
the p-wave resonance. The experiments were carried
out at PNFI (Gatchina), JINR (Dubna), LANL (Los
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Alamos), and KEK (Tsukuba). Detailed information
is available in reviews [15, 16]. The same mechanism
of the weak interaction enhancement was extend-
ed to the effects that do not preserve CP-parity due
to symmetry breaking in time reversal and spatial par-
ity violation [17-20].

The scope of the research is indicated by 125 ref-
erences in [21] to papers related to the discussed is-
sue. As noted in the review [21], the parity violation
effect was measured at 150 resonances. The asym-
metry in neutron scattering with right and left polar-
izations has magnitudes ranging from a few fractions
of a percent to 10%. In La'3® the effect, accord-
ing to [22], is 10.2%. This value at neutron energy
E = 0.734 eV and target length of 10 cm, according
to (10), allows us to determine the imaginary part
of the interaction Img . By order of magnitude, this
value turns out to be equal to 10! eV.

Combinatorial parity violation or symmetry break-
ing in time reversal was discovered in 1964 in K,-me-
son decays and later in B,-meson decays. The search
for CP-parity violation in other physical phenomena,
e.g., nuclear reactions, nucleus scattering, atomic and
molecular physics, molecules and crystals, has not yet
been successful, as well as many years of measurements
of the electric dipole moment of the neutron, which
give only a constraint on this quantity. But, as shown
in this paper, the helicity-dependent zero-angle scat-
tering of neutrons due to the weak interaction has
been shown to be a well-measured effect of symmetry
non-preservation under time reversal. The real part
of this interaction violates the P-parity along with the
preserving CP-parity, and the imaginary part creates
the P-odd effect with violation of the CP-parity.

The fact that the violation of the 7-invariance
in neutron scattering near the p-wave resonance,
measured more than 40 years ago in numerous ex-
periments, has not been reported until now should
be ascribed to a historical curiosity. Another miscon-
ception, lasting about 40 years, is the notion of a way
to detect the effect of symmetry breaking in time re-
versal. It was believed that this effect would be discov-
ered by measuring the magnitude of the interaction
of the neutron with the vector field represented by the
last term in relation (1).

The values of Red and Imd were not measured,
only the schemes of Imd emission were discussed,
since the spin-dependent absorption is easier to mea-
sure than the spin precession. A large number of pa-
pers have been devoted to the discussion of these
schemes, references to which can be found in [23].
Up to now it was considered that the measure of the
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T-noninvariant effect is the value Imd. But this is not
true, since at time reversal the value ilmd (o -[Ixp])
does not change the sign, i.e., is 7-invariant. For the
same reason, the imaginary pseudoscalar /lmg, (c - p)
and the imaginary scalar ilmg, (o - I), respectively, are
T-noninvariant. That is, in this case the study of triple
correlation does not make sense.

Another stable stereotype is the statement that
in strong interactions all discrete symmetries are con-
served separately. But, as it has been shown, the strong
spin-dependent interaction of neutrons with polar-
ized nuclei breaks the symmetry at time reversal. The
magnitude of such a violation can be quite significant.
As an example, let us point to the neutron passage
through a polarized medium from He’. At neutron
energies less than 10 eV, the absorption cross section
at oppositely directed spins is much larger than the
cross section in the case of parallel spins [24]. In this
work, the polarization of the neutron beam obtained
by passing a polarized He?, is 25%. This is the maxi-
mum value of the effect of 7-invariance violation.

In K -meson decays, the effect of CP-parity vio-
lation is three cases per thousand, in B,-meson de-
cays — eight cases per thousand. In neutron scatter-
ing, the 7T-noninvariant effect is much stronger. For
the isotopes studied, its value ranges from a few frac-
tions of a percent to 10%, but the 7-noninvariant effect
is even more pronounced in the strong interaction.

In conclusion, we note that both in neutron trans-
mission and in the decays of K- and B;- mesons the
effects of the 7-noninvariant are explained by the use
of the non-Hermitian Hamiltonians.

Let us point out a close analogy in the explanation
of T-noninvariant neutron scattering and K-meson de-
cays. In Okun’s book [25] it is noted that in the first
order of perturbation theory with an effective four-fer-
mion local interaction the effect of CP-parity viola-
tion is enhanced by about six orders of magnitude due
to the small mass difference between K- and K,- me-
sons. The interaction violating CP-parity mixes these
states, so that the mixing matrix element is equal
to the non-diagonal imaginary mass, which deter-
mines the imaginary constant of the interaction and,
consequently, the violation of the 7-invariance. At the
quark level, the imaginary part of the interaction arises
in the product of current by current when an imagi-
nary phase is introduced into the quark mixing matrix.

In all cases, the primary effect is the 7-noninvari-
ant effect, which is equivalent to CP-symmetry break-
ing when CPT-parity is preserved.
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