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Abstract. Localization of electrons in 1D disordered systems is usually described in the random phase
approximation, when distributions of phases ¢ and 0, entering the transfer matrix, are considered as uni-
form. In the general case, the random phase approximation is violated, and the evolution equations
(when the system length L is increased) contain three independent variables, i.e. the Landauer resistance
p and the combined phases y = 0 - ¢ and y = 6 + ¢. The phase y does not affect the evolution of p and
was not considered in previous papers. The distribution of the phase y is found to exhibit an unusual
phase transition at the point &, when changing the electron energy &, which manifests itself in the ap-
pearance of the imaginary part of y. The resistance distribution P(p) has no singularity at the point &,
and the transition looks unobservable in the electron disordered systems. However, the theory of 1D lo-
calization is immediately applicable to propagation of waves in single-mode optical waveguides. The
optical methods are more efficient and provide possibility to measure phases y and . On the one hand,
it makes observable the phase transition in the distribution P(y), which can be considered as a “trace”
of the mobility edge remaining in 1D systems. On the other hand, observability of the phase y makes
actual derivation of its evolution equation, which is presented below. Relaxation of the distribution P(y)
to the limiting distribution P_, (y) at L — oo is described by two exponents, whose exponentials have
jumps of the second derivative, when the energy £ is changed.
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1. INTRODUCTION where ¢ and r are the transmission and reflection ampli-
tudes and p = |r/4* is the dimensionless Landauer re-
sistance [2]. When the scatterers are arranged in series,
their transfer matrices are multiplied. For a weak scat-

Electron localization in one-dimensional disordered
systems can be described by a transfer matrix 7, which

relates the wave amplitudes on the left (4e™ + Be™) terer, the matrix T'is close to the unit one, which allows
and right (Ce™ + De™™) of the scatterer, us to derive differential evolution equations (when the
system length L changes) for its parameters.
A C . . .
[ J = T[ ), D Usually, such equations are derived in the random
B D phase approximation, where the distributions of ¢ and

0 are assumed to be homogeneous [3-8]. Such approx-
imation works well for weak disorder in depth of the
allowed zone, which is usually assumed in theoreti-
1/t —r/t cal works (see references in [9-11]); fluctuation states

= in the forbidden band are discussed relatively rarely and

and in the presence of time-reversal invariance admits
parameterization [1]:

-r/t 1/t ) only at the level of wave functions [12-14]. A systematic
pHe® \/E e analysis shows that the random phase approximation
i ip | is strongly violated near the initial band edge and in the
\/Ee \/ﬁ € forbidden band of an ideal crystal [15]. In the general
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case, the evolution equations are written in terms of the
Landauer resistance p and the combined phases (Sec-
tion 2)

y=0-¢, x=6+0. 3
The y phase does not affect the evolution of p and
is not of interest for condensed state physics; therefore,
it was not discussed in previous papers [15-17]. Optical
measurements (see below) allow us to study the dis-
tribution of the y phase, which makes its theoretical
study relevant.

The full evolution equation for the distribution P(p,
v, x) is derived in the Appendix. In fact, it has no prac-
tical significance: only its general structure, which pro-
vides the separation of variables, is essential (Section
2). The factorization P(p, vy, x) = P(p, y)P(y) is valid
for arbitrary system length L, which allows us to re-
strict ourselves to the equations for P(p, ) and P(y).
At large L the factorization P(p, y) = P(p)P(vy) arises,
leading to the closed equation for P(p) and the equa-
tion for the stationary distribution P(y).

The stationary phase distribution y was studied
in [16, 17]; in the depth of the disordered system,
it experiences a peculiar phase transition at the point
&, at a change in the electron energy & [17], consisting
in the appearance of the imaginary part of v (Sec-
tion 3). In this case, the resistance distribution P(p)
has no singularity at the point &, and the transition
looks unobservable in the framework of condensed
state physics.

The evolution equation for P(y) is derived in Sec-
tion 4: it has the form of an ordinary diffusion equation
in which the diffusion coefficient and the drift velocity
depend exponentially on L. The corresponding expo-
nentials have singularities at changing &, consisting
in a jump of the second derivative (Sec. 5). Such phase
transitions are also unobservable for electron disor-
dered systems.

However, the approach used in [15-17] is directly
applicable to describe the scattering of waves propagat-
ing in single-mode waveguides (Section 6.1). Existing
optical methods (heterodyne approach, near-field mi-
croscopy, etc.) are efficient enough to measure the dis-
tribution of all parameters p, v, 7 inside the waveguide'
(Sect. 6.3). This extends the observable aspects of the
one-dimensional localization theory and makes pos-
sible its deep experimental verification. In particular,

I Of course, in this case the parameter p no longer has the
sense of the Landauer resistance, but determines the ampli-
tudes of the transmitted and reflected waves (Section 6.2).
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phase transitions in the distributions of P(y) and P(y)
become observable (Sects. 6.2, 6.3). Possible measure-
ment schemes are discussed in Sect. 6.4.

A summary of the issues discussed is contained
in the author’s note with S.I. Bozhevolny [18].

2.GENERAL STRUCTURE OF THE
EVOLUTION EQUATIONS

The most general evolution equation describes the
change of the joint distribution function P(p, v, )
with increasing system length L and has the following
structure (see Appendix):

2 (o PY [ PY +{Ro?) @

where i, M s K are some operators depending on the
specified variables. The right part is the sum of full
derivatives, which provides the conservation of prob-
ability. As discussed in [17, 19], the conditions for sep-
aration of variables in diffusion-type equations turn
out to be weaker than for the eigenvalue problem. The
independence of operators L and M from y provides
factorization P(p,y,x) = P(p,y)P(x), where P(p,y)
and P(y) are defined by equations

LON = [, Pow] + [, Pow) | ©)
and
28~ {5 poo) ©)

K, = [K, .y Po-w)dpdy.

The specific form of equation (5) is given in [16, 17],
and equation (6) is derived in Sect. 4. In the limit
of large L, when typical values of p are large, the op-
erator M o becomes independent of p; then the solu-
tion of equation (9) is factorized, P(p,y) = P(p)P(V),
where for P(p) and P(y) the following equations are
true

PO _ [ poV

L= P} (™
aP(p)_ A / A ~
L S UGPe) . L= [ Pendy. )
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PHASE DISTRIBUTION IN ID LOCALIZATION

The equation (7) ensures the existence of a station-
ary distribution of phase y. The equation (8) for P(p)
has the form [15]

9P() _ i{ Y(1+ 20)P(p) + p(1 + p) 2L P

BP(p)
oL op }(9)

and at large L leads to a lognormal distribution

1 2
- . (0
pvarDL eXp{ } o

where v = (2y +1)D The typical value of p grows ex-
ponentially with length L, which is an observable man-
ifestation of the localization of states in one-dimen-
sional systems. In the random phase approximation,
the parameter vy is zero, and equations (9), (10) coin-
cide with the results of [3-8]. The dependences of the
parameters y, D, v on the reduced energy E=¢&/ wh/3 ,
obtained on the basis of the analysis of moments for
distribution of the transfer matrix elements [15], are
shown in Fig. 1; here € is the energy counted from
the initial band edge, and W is the amplitude of the
random potential. All energies are measured in units
of the hopping integral for the one-dimensional An-
derson model, which is of the order of the initial band
width. The violation of the random phase approxima-
tion is obvious.

[Inp —vL]
4DL

P(p) =
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It is clear from the above that the explicit form
of equation (4) is of no practical importance, but only
its general structure is essential. At arbitrary L it de-
composes into two equations (5) and (6), and at large
L — into three equations (6), (7), (8). It is also clear that
the choice of independent variables p, v, ¥ is objective.

3. PHASE TRANSITION IN P@)
DISTRIBUTION

The meaning of the phase transition in the y dis-
tribution is that the distinction between the allowed
and forbidden bands is preserved (in some sense)
in the presence of a random potential, although the
singularity of the density of states is smoothed out.
This is reminiscent of the well-known argument
by Mott [20] that the role of the allowed band edge
comes to the mobility edge. In the one-dimension-
al case there is no mobility edge, but some “trace”
of it remains. The fact is that in the allowed band
(€ > 0) the trial scatterer is described by the trans-
fer matrix (2), and in the forbidden zone (¢ < 0) —
by the pseudo-transfer matrix 7 [15] linking the co-
efficients at increasing and decreasing exponentials

on the left (4e™ + Be™™) and right (Ce™ + De™™)
of the scatterer. In the simplest case, the matrix 71is real
and corresponds to the purely imaginary values of the
phases 6 and ¢ in formula (2). Let us compare the

7 (a)
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(b)
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Fig. 1. Dependences of the parametersy, vV = v / w?3and D =D / W3 on the reduced energy £ = <‘,‘/W4/3 obtained on the basis of the
analysis of moments for the transfer matrix elements [15]. These moments are regular functions of energy, which ensures the regularity
of the reduced dependences. The smallness of the parameter y and the equality v = D, which take place in the random phase approxi-
mation, are realized only in the depth of the allowed band. The points &), &, &, correspond to the phase transitions discussed in Sects.
3and 5.
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Fig. 2. External and internal phase distribution.
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situation at £ >0 and £ < 0: at a sufficient separation in
energy the difference between the two types of matrices
can be made as large as desired, and it cannot be over-
come by adding weak disorder to the system. There-
fore, the boundary between true and pseudo-transfer
matrices can only shift, but cannot disappear?. In fact,
this manifests itself in the appearance of the imaginary
part of the y phase at energies £ < &, [17].

The formal statements of [17] are summarized as fol-
lows. First of all, it is necessary to distinguish between
“external” and “internal” phase distributions (Fig. 2).
The internal distribution arises in the depth of a suf-
ficiently long disordered system and does not depend
on the boundary conditions. When considering the
system from the side of ideal contacts, the “external”
phase distribution, determined by boundary conditions,
is observed; namely these phases appear in the trans-
fer matrix. The influence of the interfaces is signifi-
cant on a scale of the order of the localization length &,
which defines a transition region in which the internal
phase distribution is gradually transformed to the ex-
ternal one. In the limit of large L, the distribution P(p)
is determined by the internal phase distribution, which
ensures its independence from the boundary condi-
tions: the latter can be asserted at the formal level [15,
17]. However, it is the external phase distribution that
enter the evolution equations, and it is necessary to un-
derstand why this does not affect the limiting distribu-
tion P(p). The second question, related to the first one,
is as follows: how can the internal phase distribution
be found if it is not present in the equations?

The questions posed are resolved as follows. Phase
y turns out to be a “bad” variable, and the “correct”
variable is

w = —coty /2. 1n

2 Of course, one can object that in the presence of a random
potential, spatial homogeneity is violated, and the shift of this
boundary will depend on the position of the sample scatter-
er, leading to smearing of the phase transition. Physically, this
is exactly what happens, ensuring the regularity of the Landau-
er resistivity p. However, the indicated band edge fluctuations
are accounted for by spatial fluctuations in the phase y. The key
point is that the distribution P(y) is stationary and away from
the system boundaries has spatial homogeneity: it is defined
by some set of parameters that are coordinate independent.
Therefore, for the distribution y in whole, the boundary be-
tween true and pseudo-transfer matrices is at a strictly defined
energy. The stationary distribution P(y) turns out to be the
same both at a change of coordinate for a particular realization
of the potential and at a change of the potential realization:
in fact, this is ordinary ergodicity, since the coordinate x (Sec-
tion 6) plays the role of time.
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The shape of the stationary distribution P(w) is de-
termined by the internal properties of the system and
does not depend on the boundary conditions. Chang-
es in the boundary conditions lead to three effects: the
scale transformation w - sw and translationsw—->w + w,
and y ~ vy + y,,. The corresponding change in the dis-
tribution P(y) is easily predictable [17] and can be ob-
served in the external phase distribution. The evolution
equations are invariant with respect to the translation
v =y + vy, and the inner phase distribution can be dis-
cussed under some fixed choice of the origin. The in-
variance of the limiting distribution P(p) with respect
to the transformations w = sw and w = w + w; is real-
ized dynamically. Similar to the aperiodic oscillations
of P(p) [21,22], in the region L < & the scale factor
s and the translational shift w, experience oscillations
as L changes, which decay when L — oo, As a result,
s and w, tend to some “correct” values, which provide
the correct values of D and v in the limiting distribution
(10). The specified “correct” values® correspond to the
intrinsic phase distribution and the latter can be found
by returning to the variable . It turns out that at £ <
&, the translational shift w, becomes complex-valued
indicated the appearance of the imaginary part of the
phase y. This change has a qualitative character, indi-
cating the existence of a phase transition.

The point &, is not singular for the resistance of the
system p, so that the singular for distribution function
P(p) passes through it in a completely smooth way
(Fig. 1 b). Therefore, in the framework of condensed
state physics, the described phase transition looks un-
observable. However, in optics it has observable man-
ifestations in the form of root singularities in the fre-
quency dependences (Sect. 6.2, 6.3).

4. EVOLUTION EQUATION FOR P(y)

According to [17]. the change of the transfer matrix
T® under increasing the number of scatterers # is de-
termined by the recurrence relation

T+ = T(”)TSTSn, (12)

3 The meaning of these values of s and w,, is that the distribution
P(y) becomes stationary only at some “correct” boundary con-
ditions, which are automatically formed at a distance of order
¢ from the boundaries of the system. If the “correct” boundary
conditions (defining s and w,) are chosen at the boundary of the
system with ideal contacts, the transition region of order § dis-
appears and the stationary distribution is formed on very small
scales, so that the distinction between the “outer” and “inner”
phase distribution (Fig. 2) practically disappears. This provides
a way to determine the “internal” phase distribution, which
is not contained in the equations, through the “external” phase
distribution, which enters the equations.

JETP, Vol. 165, No. 2, 2024
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where the matrices 7™ and 7, are statistically inde-
n
pendent and 7j is constant. It can be assumed that

_ i iy
7= 1 ig, ¢g,e
En ee™ 14ie |

n n

A B
T6 — % % —3
B A
V1+Aa%e™ AeP
Ae® 1+ A%

516 amplitude of the

(13)

(14)

n-th scatterer (and (g, ) = 0, ei = 82), while 75 is de-
termined by a parameter & proportional to the distance
between the scatterers*, and A ~ o ~ & [17]. In the fol-
lowing we consider the limit

where g, is proportional t§

8§50, €60, &/¢>=const (15)

and we keep the first order terms on & and the second
order terms on €.

Taking the parameterization (2) for 7 and de-
noting the parameters of the matrix 7Y as p, @, 0,
we have

J1+pe® = 1+ pe®(4+eC)+Jpe®(B+eD"), (16)

Jpe® = J1+pe® (B +eD)+ Jpe®(A'+eC),
where we set
D= Ae" +iB.

C =Be™ ' — A, (17)

Squaring modulo one of equations (16), we obtain
(omitting the index at €,)

p=p+ Kyp(l+p)+e*(1+2p),

(18)
where
K =2Acos(y — B) + 2ecos(y — v) — 2¢? sin(y — 7). (19)

By taking the product of the second equation (16) with
the complex-conjugate of the first and eliminating p
using equation (18), we obtain the relation \y and y [17]

4 Ty is constant if the distance between the scatterers is the
same. Thus, in the one-dimensional Anderson model, scatter-
ers are located at each site of the lattice: in this case, the num-
ber of scatterers n coincides with the system length L in units
of the lattice constant.

JETP, Vol. 165, No. 2, 2024
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¥ =y +2e-o)+(R2/2-1e?sin2(y - 7) -
_R[A sin(y — B) + esin(y — 7) + € cos(y — y)}, 20

where

R= 1+2p 1)

Jo(l+p)

Relations (18) and (20) allow us to derive the evolution
equation for P(p, y) [17]. Now let us take the product
of two equations (16)

P+ p)e™™ = \Jp(1+ p)(1 + 2e%) +

+A[ei(l3_“’) +2pcos(B - w)} +

. (22)
+e[e’("’_“’) +2pcos(y — \y)] -
—¢? [iei(y"") - 2psin(y — \u)}
and, excluding p, we obtain
X=x-/pw),
flp.y) =
_ Asin(y — B) + esin(y —y) + g cos(y —7v) (23)
Jp(1+p)
21+ 2p)sin2(y — y)
2p(1+p)
Composing the evolution equation for P(y),
P = [3(%—x+ fo.w)) P, (0) X b

X B, (p, W) P, (e)dydpdy de,
and performing trivial integration over y, we have

Pt @) = (P, (x+ (o)), (25)

where p, v, € are averaged over p, y, €. Expanding the
right-hand side over small quantity f (p, y), one has

P )-P,(x)=

dP, 1 d’p (26)
= (W)~ "+ 5<f(p,w)2>—2”,
X dy,
which leads to the required equation
aP _ * o * o
a_L__V PX+D PXX’ (27)
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which has the form of an ordinary diffusion equation
with variable coefficients

. <— Asin(y - ) + g’ cos(y — y)[R sin(y — ) - 1]>
v = >
(28)

Vp(1+p)
P )
2p(1+p)
which are determined by averages over the distribution
P(p, y).

5. PHASE TRANSITIONS IN P(x)
DISTRIBUTION

For large L, the typical values of p are large, and
in (28) we can restrict ourselves to the main order
on 1/p. Moreover, the distribution P(p, ) is factor-
ized, and the averaging over p and v is independent:

% —Asin(y — B) — e2cos(y —
= (v : B) (- <p_1>’ (29)
—p) +€%sin2(y - 7)
_ _
D = 5<82sin2(\|f—v)><p 2>.

The moments <pm> for the log-normal distribution (10)

have exponential behavior

<p’”> o exp(x, L) (30)

with exponents
vm+ Dm*, m > -v /2D

K = . (3la), (31b)
—v2 /4D, m<—v /2D

m

K m

Fig. 3. Parameter «,, in formula (30) as a function of m. The solid
curve is realized, if restriction p 2 1 is accepted for the lognor-
mal distribution (10), the dashed curve — in the absence of such
a restriction
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When computing <pm> one must take into account

that the lognormal distribution (10) is not valid for ar-
bitrary p, but only for p = 1; in the first case the result
(31a) would be valid without restrictions’ (Fig. 3).

The parameter «, is negative at m <0, and it is con-
venient to put for clarity

m> 0. (32)

Due to the stationarity of the distribution P(y), the
average values for y in expressions (29) are reduced
to constants, so that the equation for P(y) takes the
form

3_1; = cle_f(‘LPX’ + cze,»‘ﬁzLPX';C (33)

and at large L is solved by iterative method:
P =

[C— Cy _f%
= PO - z-e VP - e PG, (34
1 2

where P_(y) is the limiting distribution at L — oo,

In Fig. 1 b, the points 5’1 and 52, corresponding
to the conditions v = 2D and v = 4D, are marked. If the
lognormal distribution (10) were valid at arbitrary p,
then at the point ENI there would be a striking phase
transition associated with the change of the sign of
&, (point — v/D in Fig. 3 at £ = £ coincides with —2,
sothatk, >0 at & = & and K, <0 at & = &): the ef-
fective diffusion coefficient in the equation (33) would
grow with increasing L when E> <E'~1 and would de-
crease when £ < €. At large L, the distribution of P()Q
would be homogeneous with high accuracy at £ 2
, While at £ < & some nontrivial distribution P_(x)
would stabilize, which is determined by the early stage
of evolution and lacking any universality.

3 The integrand p™P(p) after substituting x = In p has a Gauss-
ian form, which is valid only at x > 1. For m > — v/2D the
Gaussian function is strongly localized near a maximum lo-
cated at large positive x, so that the restriction x > 1 is insig-
nificant for it. For m < — v/2D, the maximum of the Gaussian
function goes to large negative x, and the integral is defined
by its tail in the region x > 1; the proportionality factor in (30)
depends on the details of the distribution at p < 1, but the index
k., does not depend on them.

JETP, Vol. 165, No. 2, 2024
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KRm

m

Fig. 4. Mutual location of the points —v/2D, —1 and -2 for € > 51,
52<5<€1and5<52

In the presence of the restriction p 2 1, such strik-
ing phase transition cannot be realized®, but some
singularity is preserved at the point 5’1; a similar sin-
gularity arises at the point £,. As is clear from Fig. 4,
the point —v/2D, corresponding to matching of the pa-
rabola and the constant, at E> f:’l, is to the right of the
point -1 so that

kK, =%, for £>§. (35)
When 4‘:'2 <EX 5‘1 the point —v/2D is between the
values —2 and —1, and when &£ < &, it is to the left
of the point —2. It is not difficult to see that k; has
a jump of the second derivative at £ =&, and
K, has a similar jump at = 52 Such jumps can

¢ It is possible that under some special conditions the log-nor-
mal distribution may extend to the region of small p and this
conclusion may be reconsidered.
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be easily detected using equation (34): for this purpose,
it is enough to find the limiting distribution P_ ()
and to fit P,(x) by the dependence P_ + aP. + bP’:
this is a linear fitting procedure implemented by stan-
dard programs [23]. The condition (15) corresponds
to a large concentration of weak impurities: in this
case, the coeflicients in equation (27) change slowly,
which leads to the formation for P(y) of a Gaussian
distribution with variable parameters’. It is determined
by the first two moments, which significantly simplifies
the processing.

Note that at point g'l there is a qualitative change
consisting in violation of equality (35), whereas
at point &, there is simply a singularity.

6. MEASUREMENT CAPABILITIES
IN SINGLE-MODE WAVEGUIDES

6.1. Analogy with optics

Localization of classical waves has been discussed
in many papers [10,11, 24-30], which includes con-
sideration of weak [25] and strong [26, 27] localiza-
tion, absorption near the photon mobility threshold
[24], near-field study of the intensity of optical modes
in disordered waveguides [29], and many other aspects
(see review [28]). The use of transfer matrices in this
context has been discussed in [10, 11, 30]. As applied
to optics, the corresponding analysis reduces to a few
simple relations.

The propagation of an electromagnetic wave
in a homogeneous dielectric medium is described
by the wave equation

2 02
o

where YV is any component of an electric or a magnetic
field. In a spatially inhomogeneous system, the refrac-
tive index n fluctuates with when change of coordinate
X, i.e.

CAY —n =, (36)

n*(x) = ng +dn* (x), (37)

and for a monochromatic wave ¥ ~ e’ leads to the
equation

2 dn%(x)
2

gy

FCAY +| 0* + @ ¥=0, é=c/ny, (38)

7 The above is true in the case of sufficiently strong localization
of the distribution P(y); in the general case it looks like a sum
of Gaussian functions whose centers are separated by 2r, which
provides 27 periodicity of the solution.
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which structure corresponds to the Schroding-
er equation for an electron with energy £ and mass
m in a random potential V(x). In this case there
is a correspondence

2 2 8n2(x).

My

Eoo ,i@?,V(x)@—m (39)
2m

Some difference from condensed state physics is relat-
ed to the dependence of V(x) on ® (and hence on &),
which does not play an essential role if we restrict our-
selves to a small range of frequencies in the continuous
spectrum.

The spectrum of waves in a metal waveguide
is analogous to the spectrum of electrons in a metal
wire. In the latter case the transverse motion is quan-
tized, which gives a set of discrete levels €. Taking into
account the longitudinal motion, these levels turn into
one-dimensional bands with dispersion laws (Fig. 5 a)

e (k) =¢, +k*/2m. (40)

o* /

2
@y k

&,(k)

\>

(®)

Fig. 5. Spectra of electrons in a metal wire (@) and waves in a metal
waveguide (b)

To obtain a strictly one-dimensional system, the Fer-
mi level should be small enough to fill only the lower
band. In the presence of impurities, the lower bound-
ary of the spectrum g is smeared out due to the ap-
pearance of fluctuation states at £ < g,. The depen-
dencies in Fig. 1 correspond to the energy £ counted
fromeg,.

Similarly, in a metallic waveguide, quantization

of the transverse motion gives a set of discrete fre-

quencies o, such that o, = ¢k, where —K? is an ei-

genvalue of the two-dimensional Laplace operator with
appropriate boundary conditions [31]. A zero eigenval-
ue is possible only when the cross section of the wave-
guide is multi-connected (as in a coaxial cable). For
a singly connected cross section, the minimum value
of o, is finite [31], and taking into account the longitu-
dinal motion we have the following spectrum branches
(Fig. 5 b)

SUSLOV

ol (k) = o} + &K% 1)
In order to realize the single-mode regime, it is nec-
essary to work near the lower bound of the spectrum
®,. In the presence of disorder, the lower bound
®, is blurred by the appearance of fluctuation states.
Thus, all the effects that take place in the electron-
ic system when the Fermi level changes can be ob-
served in a single-mode waveguide when the frequency
o changes in the vicinity of .

The spectrum in Fig. 5 b is valid for a metallic
waveguide, which is a hollow metallic tube that can
be filled with a non-absorbing dielectric. The latter
case (dielectric waveguide with a metallic coating)
is of primary interest for our purposes because of the
possibility of introducing impurities that provide suf-
ficiently strong elastic scattering. The thickness of the
metal coating should be of the order of the skin lay-
er depth to provide partial transparency to an electric
field (Sect. 6.4). In a metallic waveguide, the trans-
verse motion is confined to a potential well with in-
finite walls so that the multiplier o in (39) does not
matter and the parameters «k, are constants depending
only on the shape of the waveguide cross section; ac-
cordingly, the spectrum in Fig. 5 b is strictly parabolic.

)
k* In}

Fig. 6. Wave spectrum in a dielectric waveguide with refractive
index n,inside the waveguide and », in the surrounding space.
At large o, the spectrum is the same as in the metallic waveguide
(the walls of the potential well are almost infinite); as o decreases,
deviations from the parabolic dependence shown by the dashed line
occur. The restriction from below for the allowed values of the lon-
gitudinal momentum k arises due to the violation at small k of the
conditions for total internal reflection. The disappearance of the
boundary frequency o, is due to the fact that the value of «3 is lim-
ited from above by the depth of the potential well proportional to w?.

In the absence of a metallic coating (purely di-
electric waveguide), the transverse motion is limited
by a potential well with finite walls, so the depen-
dence of the effective potential V(x) on frequency (see
(39)) becomes significant. The parameters k, cease
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to be constant and acquire dependence on ®, which
leads to deviations from the parabolic dependence
in the coordinates (o?, k). In particular, the value of «3
is limited by the depth of the potential well propor-
tional to w?, which leads to the disappearance of the
boundary frequency o, (Fig. 6). In addition, there are
restrictions from below on the allowed values of the
longitudinal momentum k, due to the violation at small
k of the conditions for total internal reflection. In the
usual Schrodinger equation, the bound states in the po-
tential well V(x) lie in the energy interval V_,, < E<V_,
where V,;, is the minimum value of the potential
V(x), and V_, is its limiting (constant) value at infini-
ty. In a dielectric waveguide, the analogous condition
is n3w? < ¢?k? < niw? , where n, and n, are refractive
indices inside the waveguide and in the surrounding
space: as a result, the wave spectrum in the waveguide
is bounded by two parabolas (Fig. 6). It is easy to see
that in the case of a purely dielectric waveguide, the
analogy with electronic systems is broken: everything
that corresponds to the forbidden zone is missing,
and some differences occur near the edge of the zone.
However, the allowed band remains accessible for in-
vestigation®: in particular, the phase transition in the
distribution P(y) is in the allowed band (Fig. 1 b) and
can be preserved in a dielectric waveguide (although
this cannot be asserted at a formal level). Its preser-
vation is likely if the disorder is strong enough and the
expected transition falls in the region where the dif-
ference between the real spectrum and the parabolic
spectrum is not too large.

6.2. Registration of phase transition in the
distribution P(y)

A

B

Fig. 7. Wave propagation in a waveguide with point scatterers.

Suppose a wave of unit amplitude is incident on the
left side of the waveguide, which with amplitude ¢ pass-
es through the entire waveguide, and with amplitude
r is reflected (Fig. 7). If there are point scatterers
in the waveguide, partial reflection occurs at each
of them. Therefore, at an arbitrary point x of the wave-
guide, we have a superposition of two waves traveling

8 For experiments, a purely dielectric waveguide has the advan-
tage of no ohmic losses in the metal coating.
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in a opposite directions; the electric field E(x,?) is de-
termined by its real part:

E(x.1) = Re[Ae""x”‘*” + Be_ikx+i“”]. 42)

If the transfer matrix 7 is defined according to (1),
(2), then the wave amplitudes in superposition (42) are

determined by the relation
A1) lf|\Jp + 1%
[B B (0]_ |t|\/ge—i9—i(p0 ,

where p, v, 0 depend on x and it is assumed ¢ = [f|e" %,
If the amplitude 7] is small enough, then the magni-
tude of p is large in almost the entire waveguide (except
in the neighborhood of the right edge). Then ’A| = |B
and in this approximation (42) gives

43)

b

|A|eikx+imt+i(p—i(p0 4
E(x,t) =Re =~

_i_|B|e—ikx+imt—ie—i(p(J (44)

~ 2|A|cos(kx +y/ 2)cos(0)t -y /2- (PO),

so that the phase y defines the coordinate depen-
dence and the phase y — the time dependence. The
phases y and y remain constant between scatterers
and change by a jump as they pass through the scat-
terer. At large impurity concentrations, their coordi-
nate dependence becomes practically continuous and
corresponds to random fluctuations on the scattering
length scale.

Since the field E(x, f) is measurable, both phases
v and y are theoretically observable. This is a funda-
mental difference from condensed state physics, where
the superposition of waves refers to the wave function,
and for the transition to observable quantities must
be squared modulo: in this case the phase y is unob-
servable at all. However, the phase y becomes un-
observable also in optics if only the average intensity
is measured, i.e. if (44) is squared and averaged over
time. It is not difficult to check that this conclusion
holds also under the condition |A| #* |B|
Nevertheless, the appearance of the imaginary part
W can be registered in this case as well. Assuming
o= +i¢p), 6=0+i0", 45)

we have for the amplitudes in the linear combination
42)

4] = o+ 167 8] = 1| Jpe””

(46)
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Fig. 8. (@) — Dependence of the amplitude A of the traveling wave on the coordinate x inside the waveguide. (b) — Dependence of |A|

on the frequencies in the vicinity of the phase transition

The flux conservation requires’ that the condition
|A]> = |B]? + |£]> must be satisfied, which reduces to

(p+ e =pe®+1 47)

and at large p gives 0" = — @". It is easy to see that the
imaginary part is absent for the phase y, but is admissi-
ble for phase y; thus y"= 20"= —2¢", and in particular

A = o+ 1ev 2.

The critical behavior of the imaginary part y can
be established from general considerations. Let there
be an equation F(x) = 0, where the function F(x) de-
pends on some external parameter ¢ in a regular way.
If two real roots become complex at the intersection
of the point € = 0, then at € = 0 there is a multiple root
x = p in the neighborhood of which (assuming finite-
ness of the first derivative of €) the equation has the
form

48)

(x - p)? —ae =0, (49)

which at ae > 0 gives the roots p = vae, and at ae <0
the roots p £ i |as|. Thus, the appearance of the imag-

inary part of x is related to the square root singulari-
ty. According to Sect. 3, the imaginary part y arises
as a result of the selection of the parameters s and o,
providing the correct values of v and D in the lognor-
mal distribution (10). Thus, s and », are determined
by the solution of some equations, the numerical anal-
ysis of which shows [17] that the appearance of the

? The scattering is assumed to be purely elastic. The inevitable
ohmic losses in the metallic coating of the waveguide are as-
sumed to be weak enough for localization effects to dominate.
Sufficiently strong elastic scattering can in principle be en-
sured: so, in the case of optical fibers it is considered to be es-
tablished that scattering on impurities is the main scattering for
not too pure fibers [32].

imaginary part o, is associated with the merging
of two real roots and their subsequent transition to the
complex plane'’. Therefore, the above considerations
are directly relevant: if the imaginary part y appears
when © < o, then it has the behavior'!

Y~ o, - 00(m, - ).

According to [17], the distribution P(p) has no singu-
larity at ® = o, (Fig. 1 b). This applies to the value
of p at any point in the waveguide, and in particu-
lar to its value at the full length of L, which is relat-
ed to 7 by the relation || = (1 + p)""/2. Therefore, the
singularity in (48) is entirely determined by the value
of y'" and has a square root nature. Such singularities
at the point &, are visually distinguishable in Figures
8 and 11 of [17], although they are obtained as a result
of numerical analysis.

(50)

The general picture appears as follows. The mod-
ulus A varies inside the waveguide basically according
to the exponential law |A| ~ e~%, but there are devi-
ations from it at a distance of order § from the edg-
es of the system, related to the influence of bound-
ary conditions (Fig. 8 a); thus |4| = 1 for x = 0 and
|A| = |t| for x = L. The latter value is related to p and
is therefore regular for . However, far from the edges
of the waveguide, the magnitude |A4| has a square root
singularity (Fig. 8 b), which can be detected already
in the average intensity measurement. Such a singu-
larity is observable at a particular point in the system

10 The second real root corresponds to a non-physical branch
and therefore was not discussed in [17].

1 Usually in the theory of phase transitions the square root
behavior of the order parameter corresponds to the mean-field
theory, whereas the accounting of fluctuations leads to the for-
mation of a nontrivial critical index  smaller than 1/2. At pres-
ent, we see no grounds for the realization of such scenario.
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for a particular realization of the potential, since the
transition from the true to the pseudo-transfer matrix
occurs at an energy corresponding to the renormalized
edge of the zone shifted by the random potential'?.
This shift varies from point to point (see footnote 2),
but for the distribution function as a whole corresponds
to a strictly defined energy. Therefore, the phase dis-
tribution moments also have a square root singularity
(see the end of Section 6.3)

According to [17], the transition point & is located
in the initial allowed band at a distance of the order
of W*3 from the band edge (Fig. 1 b). Accordingly,
in optics the critical point o, is greater than the bound-
ary frequency o,, and the distance between them is de-
termined by the degree of disorder.

6.3 Observability of phases v and y

Measuring the time dependence at optical fre-
quencies is generally not possible. However, the ob-
servability of the phase y can be ensured by using the
heterodyne technique, when an auxiliary field £ (x,1)
is added to the measured field, whose frequency
is shifted by a small value Q:

E+E, = Re{|E|e""”+"‘Pf +|E |/ Ds } 1)

Passing to the intensity and averaging fast oscillations
over time, we have

AE+E) =|E[ +|E[" + )
+ 2|E||Es|cos(§2t + 0, —9p),

so that the phase ¢ enters in combination with Qz,
which provides the possibility of its measurement.
For the field E(x,t) corresponding to the result (44),
we obtain

AE+E,) = {4|A|2 cos (o +/2) + |Es|2} +
+ 2|A|cos(kx + x/2) X
x 2| E,|cos(Qr + w/2+ @) + ¢,),

53)

12 In this case, the square root singularity can be obtained triv-
ially from the behavior of the true and pseudo transfer matrix
for a point scatterer as it approaches the edge of the initial band
(see [15]), taking into account its fluctuation shift.
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so that both phases y and y turn out to be observable,
and can be extracted from the experiment by the fol-
lowing treatment.

The stationary first term in the right-hand side
of (53) and the time oscillating second term can
be separated by Fourier analysis. The stationary
contribution |E(? is easily separated because the
minimum value of the first term in the curly brack-
et is zero. Since the cosine varies in a regular way
and changes sign each time it passes through zero,
the square root of the first term in curly brackets
can be extracted to an insignificant common sign.
As a result, two combinations are known separately
| A|cos(kx +x/2) and |E[cos(Qr + y/2 + ¢y + ¢, ).(54)

The multiplier |E| in the second combination is de-
termined from the time amplitude of the oscillations'?,
and then the dependence of this combination on x can
be assigned to the phase .

The processing of the first combination in (54)
is complicated by the fact that |4(x)| does not strictly
follow the exponential exp(—owx) relation, but has sig-
nificant fluctuations around it E(x,?), being determined
by the log-normal distribution the (10). The correct
treatment appears as follows.

1. Determine k from the average oscillation
period.

2. Find the values of y at discrete points — max-
ima, minima, and zeros of the oscillatory depen-
dence — by the deviation of their positions from the
pure cosine. If the value of k is chosen correctly, the
resulting values of y will fluctuate near a constant level
and will not grow systematically. This defines the data
set for analyzing the distribution of y.

3. Determine the values of |A(x)| at the points
of maxima and minima. This allows to accumulate
statistics to check the log-normal distribution and
to detect systematic deviations from the exponential
dependence at the edges of the waveguide.

The observability of the phase y gives additional
possibilities to register the phase transition in the dis-
tribution P(y). If we pass from v to the variable w de-
fined in (11), the moments of the distribution P(w)
(in particular {w)) will have singularities \/o— @,
in the region ® > o,. The phase y does not affect the
evolution of the resistivity distribution and therefore
has not been studied in [16, 17]. However, its observ-
ability in optics makes such studies relevant.

13 Another way to reach the same result is to make measure-
ments at several values of |E S| and fit the right-hand side of (53)

by the dependence o + [3|ES| + y|Es|2.
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6.4. Possible measurement schemes

Measurement of the electric field inside the wave-
guide is possible using a near-field scanning opti-
cal microscope [33-35]. There are two types of such
a microscope — detecting and scattering: depending
on this, two different measurement schemes are pos-
sible. The comparison of these two schemes leads
to a combined variant in which the detection problem
is reduced to atomic force [36, 37] or tunneling [38]
microscopy.

Fig. 9. Measurement of the field in a waveguide using a near-field
scanning optical microscope.

Detecting regime. In this case, the optical micro-
scope needle (a fragment of metal-coated optical fiber)
is a waveguide with a constriction at the end and a hole
of diameter d smaller than the wavelength (Fig. 9). The
field created by it in the near zone can be represented
as a “cloud” of finite volume ¥ ~ & (see Fig. 4 in [35]),
the electric field E, in which is approximately constant
and oriented parallel to the field inside the needle.
Let the tip of the probe is approaching at some an-
gle the surface of the given waveguide, so that some
volume V of the “cloud” penetrates inside the wave-
guide (Fig. 9). IT E is the electric field inside the wave-
guide, the energy change due to the penetration of the
“cloud” is defined by the expression

[(E+ E,)’ -E2- Ef]]V =2E-E,V. (55

At small displacements of the needle x, the vol-
ume change is proportional to the displacement,
oV = Sx, where § is the area of intersection of the
“cloud” with the surface of the waveguide. Therefore,
the force acting on the microscope needle is deter-
mined by expression (55) with V replaced by S and
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depends on the measured field. It can be converted
into a displacement of the needle or a change in the
voltage holding the needle in a constant position.
In reality, the E, field depends on the coordinates and
instead of (55) we should write

[2E-E (nd’r (56)

with integration over the waveguide volume, which,
as a result of a rough evaluation of the integral, returns
to (59).

Considering that £ ~ E, and introducing atomic
units of field strength and force

2
e e _
E, = = 10°V /sm, F, = i 102 dyn, (57)

we obtain an estimate of the force acting on the needle

afg )]

Since the hole size d is limited by the condition
d < A~ 10%a, it can be assumed that

2
F ~ 106[5} dyn.

0

(58)

(9

The maximum field value is limited by the dielectric
breakdown field of the order of 107 V/cm. If we take
the value F ~ 10-® dyn, which is characteristic for tun-
neling microscopy [38], as the limit of sensitivity, there
is a wide range of fields

107 E, < E S1072E,, (60)

for which the outlined scheme is realistic.

If the field E, with shifted frequency is used
as E, (see (51)), the force acting on the needle is deter-
mined by the quantity

F ~ S|A||E/| x
(61)

xcos(kx + X/Z)cos(Qt +Y/24 ¢, + @ ),
whose treatment is even simpler than expression (53).
Above, we did not take into account the presence
of a semi-permeable metallic coating (Sect. 6.1) and
the difference from unity of the dielectric constant
inside the waveguide. Taking these factors into ac-
count leads to the addition in the right part of (61)
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of an additive term of the order E sz, independent of the
measured field and easily separable during processing.

The general scheme of measurements is presented
as follows (Fig. 10). The beam from the laser is split
into two parts, one of which is directed into the wave-
guide. The second part falls on an oscillating mirror,
which leads to a frequency shift by Q due to the Dop-
pler effect. Since the velocity of the mirror is variable, it
leads to a variable shift Q. This problem can be solved
by recording the time dependence at discrete points,
equidistant of the harmonic one. Another possibility
is to realize a saw-toothed regime of oscillations rath-
er than a harmonic oscillation. From the mirror, the
beam is directed into the microscope needle, at the end
of which a field E + E_ appears, which makes it possi-
ble to measure the coordinate dependence of the field
E as a result of scanning the waveguide surface.

Microscope
probe

Oscillating
mirror

Waveguide

Mirror
Laser

Beam splitter

Fig. 10. General scheme of measurements in the detecting regime
of a near-field optical microscope.

Scattering regime. In this case, the optical micro-
scope needle is used not for immediate field detection,
but only as a source of scattering'. A wave, propagat-
ing in the waveguide, penetrates beyond its boundaries
due to the tunneling effect and can be scattered at the
tip of the needle, located close to the waveguide sur-
face. For sub-wavelength-sized probe tips, the scat-
tering occurs in the Rayleigh regime, and the electric
field in the scattered wave is proportional to the field
E(x, 1) in the waveguide' at the scattering point x.

14 Tt can be replaced by a tunneling microscope needle, which,
in the presence of a metal coating (Section 6.1), allows all the
advantages of scanning tunneling microscopy [38].

15 In Rayleigh scattering, the field of the scattered wave in the
main approximation is determined by the electric field of the
incident wave and does not depend on the wave vector of the
latter [31]. Therefore, the two waves entering the superposition
(42) are scattered equally, and the total field of the scattered
wave is proportional to the field in the waveguide.
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The general scheme of measurements is as fol-
lows (Fig. 11). The beam from the laser is split into
two parts, one of which is directed into the waveguide
and scattered on the microscope needle. The scattered
light is collected by a parabolic mirror and directed
to a beam combiner. The second part of the laser beam
falls on the oscillating mirror and acquires a shift fre-
quency Q due to the Doppler effect. From the mir-
ror, the beam is directed to the beam combiner, where
it is mixed with the first beam and directed to the
photodiode for intensity measurement. The outlined
scheme is practically realized in [39], where the miss-
ing experimental details can be found.

~ I(x) hoBeam combiner
Photodiode

Parabolic / t

mirror

Waveguide

Oscillating
mirror

Mirror Laser

Beam splitter

Fig. 11. Schematic of electric field measurements in the waveguide
for the scattering mode of the near-field optical microscope.

The combined scheme differs from the scheme
in Fig. 10 in that the second beam from the mirror
does not go to the microscope needle, but is directed
to the waveguide, shining through it in the transverse
direction near the surface (Fig. 12). Since the field
E due to the tunnel effect penetrates beyond the wave-
guide, there is a field E + E_ near its surface, the energy
of which changes as the microscope needle approaches
the surface due to the dielectric polarizability of the
needle. As a result, the force acting on the needle
is proportional to the intensity of the field E + E_, and
the problem of its measurement is reduced to atomic
force [36, 37] or tunnel [38] microscopy.

7. CONCLUSIONS

It has been shown above that all the results obtained
for electrons in one-dimensional disordered systems
are directly applicable to the scattering of waves prop-
agating in single-mode waveguides. Modern optical
methods make it possible to measure all parameters
P, , x entering the transfer matrix. As a result, it be-
comes possible to observe a phase transition in the
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Microscope Waveguide

probe

Oscillating
mirror

Mirror
Laser

Beam splitter

Fig. 12. Measuring the electric field in a waveguide using an atom-
ic force or tunneling microscope.

phase distribution y, which looks unobservable in the
context of condensed state physics.

The observability of the x phase makes it relevant
to derive an equation for the evolution of its distribu-
tion, which has not been studied in previous works.
At large L, the distribution of y has singularities con-
sisting in jumps of the second derivative for the expo-
nents describing the relaxation of P,(y) to the limit
distribution P ().

As indicated above, one of the measurement
schemes described in Sect. 6.4 was implemented
in [39]. In contrast to the experiments [40, 41], where
only the transmission matrix was measured, the ap-
proach proposed in [39] allows measuring the phase
distribution inside the waveguide. However, the mea-
surements performed in [39] are not related to light
propagation in disordered systems, but only to the
study of regular modes in homogeneous waveguides.

Essentially new experiments are required to verify
the validity of the statements made in the present work.
First of all, such experiments should use a tunable la-
ser that allows changing the frequency of emission,
and its frequency range should overlap the position
of the expected phase transition. The latter requires
establishing the most suitable waveguide configuration
and dimensions. An efficient method for introducing
a large concentration of impurities into the waveguide
is required. A detailed analysis is needed to find the
parameter region in which elastic scattering dominates
absorption inside the waveguide and radiation losses
through its walls. The latter problem is somewhat al-
leviated when a purely dielectric waveguide is used,
but in this case, the analogy with electronic disordered
systems becomes incomplete (Section 6.1).

We hope that the results will stimulate experimental
research in this area and lead to a better understanding
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of localization effects in both electronic and optical
systems.

ACKNOWLEDGMENTS

The author is grateful to S.I. Bozhevolny for discus-
sion of the optical aspects of the paper.

APPENDIX

Equation of evolution for P(p, , %)

The following derivation of the evolution equation
differs from that in [16, 17]: it leads to longer calcu-
lations, but is more systematic, guaranteeing a re-
sult when its nature is not known in advance. The
more compact way of derivation given in [16, 17] can
be found only if there is some information about the
structure of the result.

At the level of relations (18), (19), (20), (22), we can
understand that the value of y enters the evolution
equations in the form of two combinations y — y and
v — B, so that by shifting y = v + vy, the parame-
ter y can be reduced to the value — /2 correspond-
ing to a sharp interface [17]; to simplify the formulas
we will restrict ourselves to this case. Relations (12)—
(14) at low order in o give

T = (14 o e, YT + (5, — 18, + ie, T3,
(A.1)
T1(2n+1) = (8, +id, - ign)Tl(ln) +(1-io+ ien)Tl(Z")

and similar equations for Tz(l”) and Tz(zn) , obtained
by complex conjugation; here §, = Acos B, 5, = Asin f3.
Assuming

B = x i T =5 b, (A)

we have

X1 = Xp T (00— 8n)yn + 81Zn + (82 _8n)wn,
Vyop = (@—g,)x, +y, —(8, —€,)z, +Ow,,
Z,0 = 0%, — (8, —¢,)y, + 7, +(a—¢,)w,,(A.3)

Woel = (82 - 8n)xn + 8lyn — (o - 8n)zn T W
which when written in matrix form gives a matrix with
unit determinant. If the distribution P,(x,, y,, 2, ®,)

at the step » is known, then the analogous distribution
at the step (n + 1) is composed according to the rule

Pn+l(in+l’j)n+l’zn+l’Wn+1) = J-dendxndyndzndwn X
><P(en)Pn(xn’yn’Zn’wn)s()znﬂ - xn+1) X

XS(j;nH - yn+1)8(zn-(|—l?ﬁ)zn+l)8(wn+l - Wn+1)’
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where X, 11, V11> Zns1s On4 are expressed through x,,
Vs Zn» ©,, by formula (A4.3). Let us inverse relation (4.3)
and come to integration over X, ,, V11> Znt1» Opts SINCE
the Jacobian is equal to unity and the 3-functions are
trivially removed, we obtain

Pn+1(xn+l’ yn+1’zn+1’wn+l) -

(A.5)
= jdi—:nP(En)Pn(Xn,yn,Zn,Wn),

where x,, y,, 2,, ®, are expressed through x, ,,, 11>
Zat1> O,y bY the inverse of (A4.3). Expanding over the
deviations x,,; — X,,, Y41 — Va» - - - and keeping the first
order terms in o, A and the second order terms in €,
we get

op_ [or_ op_ op  op)
on Y 0x dy 0z ow
-9, a wa—P+xa—P+ opP +
ox TV T 0 T o
oP oP 0P ap'
+0,| - —+y —
0x ay az 8w_
2 2 2p ]
+l:32(w—y)2 0P 0P P,
2 ox0z 972
2| 02P  _9°P  9*P
+2 +
ay? dyow 8w2_
3P 3P PP a%}
+ + +

(A.6)

1
+ Egz(x—z)

+

200 —
+e°(x=z)(w y){axay oxdw  0zdy Jzow |

Introducing the polar coordinates

X = 1, COSQ,
Z = r,cosb,

Yy = R sing,
w = r,sin0, (A7)
we obtain

opP

Fri oc[—Pq; + Pe’] — Acos(6—¢ - B)[@P}I + rlP;z] +

+ASIn(® — @ — B){rlpe' - QP(;} +
- I

1 (A-8)

+;8 {sinz(e—(P)[rzP” + 2r1r2P” +r%Pr,;':|
P

3 r2 ’7’ 144 r2 ’
+2sin(0 — (p)[r]—r2 cos(e—(p)J 7P’|¢+P’z@ -5 Bt
1 rl
+2sin(0 — q))[r1 cos(e—(p)—rJ[ P”+P” Pe’}
"2

+[r1 — rycos(6 — (p)] l S Poo t ! P}
r
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+[rlcos(9 0¢)— r2]

P” +iP'
1”2 2

1 ”
+2[r1 — 1, cos(0 — (p)][r1 cos(0 — @) — rz]EP(pe }
Now come from 7, ryto the variables p, &

rirs=1+2, ri-r3=E& (A.9)

It is easy to check that all terms with derivatives
over § disappear; hence the value of & remains constant
during the evolution, and for physical reasons we can

put & = 1. Then

r2=\/5

in accordance with the canonical representation (2).
In this case, the evolution equation will take the form

1+p, (A.10)

?)_i = a[ P+ Pe'} ~ Acos(8- ¢ — B)2rn Py +

+Asm(6 ¢ - B){ 1 Fy - Pq;}+
H "
il aririsin’@ - o)py +
) 28in ®)fop

+ [27‘1 +2r2 — 411y cos(B - (p)} P+
+4r, sin(6 — (p)[r1 — 1, cos(0 — (p)] Pp’(’p +
+4rsin(0 - (p)[r1 cos(6 — @) — rz]Pp’(; -
r [”1 — 1, co8(0 — (p)} p

(A.11)

—2sin(6 — @) -
2 ¢
r| rcos(6—)-—r
—2sin(0 — @) 17 cost - ?) 2]Pe
)

) cos(0 — @) 2P” K cos(0 — @) — " 2P”
"1 [010) I‘2 00 +

+2{r1 — 1, co8(0 — (p)}{r1 cos(0 — @) — }P” }
i n

At substitutions (4.7) and (A4.9) we did not renor-
malize the probability; however, as a result of two sub-
stitutions we have

4P(x, v, z,w)dx dydzdw =

(A.12)
= P(p.&,.0)dp d& de db,

and the above renormalization is reduced to a constant
multiplier, which is insignificant due to the linearity
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of the evolution equation. Introducing the combined
phases (3), we have

oP
on

+Asin(y - B) S Y R S
non)Y o \n o n)t

+ %.92 {4r12r§ sinzwf:)";-f-[2r%+2r§ —4nr, cos q}} Pp’ +

= ZOLP“’I — Acos(y — B)2r1r2Pp’ +

+4sin\|1(r1r2 - r% cosw)(—Pp’\’V + Pp’)’() +
+4sin\|l(r% cosy — qrz)(Pp"’V + Pp’)’() -

2

—2sin\|;{:—2—r—§cosw](—P\", +Px’)— (A.13)

1 rl
2

—2siny %COSW—LI (P“’, + PX')+
s 1)

2
r'l - r2 COSW ” ” n
J{—r] ] (PW ~2P) + PXX) +

2
’i COSW B r2 ” ’” ”
+(T) (PW + ZPW + Pxx) +

+[ 1 J[ r ]( P“""+P’“‘)}'

Substituting (4.10) and transforming the right-hand
side to the sum of full derivatives, we have the final
evolution equation having the structure (4):

P o ,
F {— 2Acos(y — B)yJp(l + p)P + 2&7sin “yp(l + p) B +

e [(1 — 2siny)(1+ 2p) — 2cosyfp(1 + p)]P +
+2¢? sin\y[cosw(l +2p) — 24p(1+ p)}P“’,} +
p

+{[20c + RAsin(y — B)] P +e*siny(R - 2cosy)P + (A.14)

1 > 2 b
+§8 (2 - Rcosvy) PW} +
v
Asin(y — B) + €2 siny(1 - R
N sin(y — B) + € siny( cosw)P+
Vp(1+p)

LEoosy(Reosy =), elcos’y P,} .
x

Jp(1+p) Yo 2p(1+p) *

Integration over y leads to the evolution equation for
P(p, y) obtained in [16,17], and integration over p and
v leads to equation (27) for P(y).
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