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Abstract. Quantum vortices formed by a photoelectron obtained as a result of over-barrier ionization
of a two-dimensional hydrogen atom by an extremely short laser pulse are theoretically investigated.
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1. INTRODUCTION

The appearance of sources of electromagnet-
ic pulses with an intensity and duration compara-
ble to the corresponding atomic values has opened
up opportunities for studying and controlling the
states of single atoms and molecules, as well as their
ensembles. Such capabilities are in demand both
in quantum information applications and in the
study of new control modes at atomic scales [1—10].

One of the nontrivial effects when a laser pulse with
a duration of only a few atomic units of time is ap-
plied to an atom is the appearance of vortex structures
in the electron density. The first theoretical predic-
tion of such structures was made in 2010 in [11]. Lat-
er, in [12, 13], vortex structures were revealed in the
momentum distribution for a photoelectron torn out
during the ionization of a helium atom by a laser
pulse. Experimental confirmation of vortex forma-
tions appeared in 2017 in [14]. In this experiment, the
multiphoton ionization of potassium atoms by a se-
quence of femtosecond laser pulses was considered.

Currently, theoretical studies of such vortices
are conducted in many scientific groups [15—31].

Approaches to the study of these formations are pre-
sented both by the development of original numer-
ical methods for solving the nonstationary Schro-
dinger equation or equivalent equations of quantum
hydrodynamics (see, for example, [32]) and by find-
ing asymptotic solutions.

In [16—19], we investigated such vortex forma-
tions as quantum vortices [24] that arise during the
superbarrier ionization of a two-dimensional hy-
drogen-like atom by an ultrashort laser pulse. These
vortices manifest themselves as specific inhomoge-
neities in the spatial distribution of the photoelec-
tron: the center of the vortex is the zero of the wave
function, around which the velocity vector field cir-
culates (note that the first one who connected the
appearance of zeros of the wave function with the
appearance of vortices was Dirac [33]).

Using the nonstationary perturbation theory,
we obtained an analytical expression for the pho-
toelectron wave function, which allowed us to see
the interference nature of vortices and analyze their
dependence on some pulse parameters. The results
of the analytical approach were confirmed by nu-
merical calculations.
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In the mentioned works, the field of the laser pulse
was modeled by a cosine dependence on a time in-
terval [0,7] 1 < T <10 a.u.), containing only a few
oscillation periods. At the same time, at the mo-
ments of switching on and off the pulse, the maxi-
mum amplitude value was always set, i.e. a variation
of the limiting case of a sudden disturbance was re-
alized [34]. Other variations of the effect of the laser
pulse have not been investigated.

In this paper, remaining within the framework
of the solutions obtained in [17- 19], the influence
of the initial phase of the pulse field on the forma-
tion of quantum vortices will be investigated.

All calculations will be performed in the momen-
tum space. In particular, the so-called «<symmetric»
probability flow [19, 35], sensitive to the phase of the
wave function, will be used to identify quantum vor-
tices in this space.

Attention will also be paid to the interference
effects responsible for the formation of quantum
vortices: in the momentum distribution of the pho-
toelectron, we will highlight the corresponding in-
terference term.

The issue of choosing a gauge when finding an ap-
proximate solution to the Schrodinger equation for
the model under consideration will be considered
separately.

The article is structured as follows. In section
2 the derivation of the photoelectron wave function
is briefly presented and the approximations used are
discussed. Expressions for probability flows are giv-
en. In section 3 the results of calculations and their
analysis are shown. In section 4 the use of various
gauges in describing the interaction of an electron
with a field is discussed. The last section summariz-
es the work done.

The work uses the atomic system of units: 2 =1,
m,=1le=1

2. THEORETICAL APPROACH

The Hamiltonian H of a two-dimensional hydro-
gen atom interacting with a laser field has a standard
form:

A

H=H,+V=H,—dFQ), (1)

where ﬁo is the unpertubed Hamiltonian of the
atom, and the interaction V' is written in the dipole
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approximation, where d =t is the operator of the
dipole moment of the atom and F(t)is the electric
field of the laser.

The solution of the nonstationary Schroding-
er equation is sought in the form of the following
superposition:

—iE 7 —iE
W) =“I’{?3>e S| bk,m(t)‘wgme " kak. (2)
m

Here, the first term corresponds to the ground
(initial) state of an atom with energy E, = —1/2
[36, 37] (we assume the charge number Z = 1/2).

The subscripts «1,0» of the vector | ‘Pg% indicate
the main quantum number #» = land the projec-
tion of the moment m = Qonto the axis z. The
second term describes the state of a photoelectron
and is represented by a superposition of cylindri-
cal waves. The indices of the corresponding vectors

| ‘I’gﬂ) characterize the energy of the photoelectron
E =k /2=(k;j+k))/2

and the projection of the moment m = 0,£1,£2,....
Unknown amplitudes b, . (t)such that b, (0) =0,
Vik,m. ’ ’

The desired state in the form (2) is similar to the one
used in Keldysh’s theory [38, 39], except that instead
of the Volkov functions there are cylindrical waves.
Such an entry implies that the intensity of the laser
field should be less than the atomic one, so that the
probability of ionization of an atom is small. It is also
assumed that the effect of the Coulomb potential
of the residual ion on the photoelectron is negligible.

The study of quantum vortices in the work will
be carried out in the momentum space. To do this,
we project the desired state | \P(#)) (2) onto the ei-
genvectors of the momentum operator k. Then, us-
ing the explicit form of the necessary wave functions
[40]

\},(o) (k) q)o((Pk)
k2 1)y Q)
ml Ok — k)
¥, () = ()M, (o),

where
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Fig.1. a and b are the density of the momentum distribution of the photoelectron ln(p). c and d are the dependences of the absolute values
of the wave function b, b, on the components kx,ky respectively. Pulse parameters: fy = 04,0 =n,a=0,7 =4

im@
e k

@, (9,)= ﬁ,

(k,9, ) are the polar coordinates of the momentumKk,
we get

20,(9;) e—iElt
(k2 + 1)3/2 @)
+ 5 b D, (0 )e K

W(k,1) = <k|‘I’(t)> =

Further, substituting decomposition (4) into the
Schrodinger equation, we obtain a system of equa-
tions for finding unknown amplitudes b, ,, (t):
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iw, .t
6ke k1

b0 _ i
k2 +1)2

o . (F.(08,, .+ F,15,_,)

__p\m=1l=|m| o 1 5
+%F_(t)[a— ikt —mT]bk,m_l(’) + O

(_l-)|m+1|—|m|
2

m—+1

o
Fy(0)| 5~ ikt + T] B ),

where ®,, = (k2 +1) / 2 is the transition frequency
E, — E, and the designation is entered

F, () = F, () £ iF,(1).
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Fig.2. a and b are the density of the momentum distribution of the photoelectron ln(p). c and d are the dependences of the absolute values
of the wave function b, b, on the components kx,kyrespectively. Pulse parameters: Fy = 04,0 =n,a=0,7 =3
x Ty

In the derivation (5), an explicit expression was
used for the interaction operator in the momentum
representation:

V=Fniv,, V,=0/0k

The difference between system (5) and the corre-
sponding system of equations used by us earlier (see
[17—19]) consists in taking into account the arbitrary
polarization of the field F (t)

We are looking for a solution to system (5) in the
form of an perturbation series

by () = Z kmlO(t)
s=0

where b,(mz w~F ¥, and the added subscript “10” in
dicates the initial bound state of the electron. Hence
the wave function of a photoelectron in the second
order of perturbation theory is equal to

Pk, t)=—z\F B 1o () cos(p, )e -

(6)
1 lE
+Eb(2)10( e K 1/ b3 o (cos2p)e K,

where the tilde over W indicates that the bound state
is omitted, i.e. the interference between the initial
and final states of the electron is neglected. Note
that in our previous works [17, 18] the notation was
used

JETP, Vol. 165, No. 3, 2024
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B(k.1) = bk,pye K.

Also, when writing (6), it was taken into account
that

| _
bl(cl),lo(t) = bl(czl,lo(t)’

2 _ 0
bl(c2),10(t) = bl(c22,10(t)‘

For clarity, we will write out an explicit expression
for the density of the pulse distribution of a photo-
electron, which we will need when discussing inter-
ference effects.

p(k.1) = |W(k, 1) =

2
2cos2(@k)‘b1£11),10(t)‘ +
11,2 2 2 (2) 2
+5‘bk0,10(t)‘ + 2¢os (2(Pk)‘bk2,10(t)‘ -
* (7)

(1 2
lbl(cl),lo(t )bl(co),lo(’ )

*

B 10 (DB 10 (1)

—2Re COS((Pk) +

al~—

+4Re cos(¢, )cos(2¢, ) —

*

— 2Re|b{g) (B3 14 (1)

cos(2¢,)

where Re[z]means the real part z.

Now let’s write out and discuss the advantages
of the so-called [19, 35] “symmetric” probability
flow

- 1
i k,f = _
i(k,7) 5

—i[\?*(k,t)vk\?(k,z) — WK,V (k1) (8)

Let’s write the found wave function (6) in the form

Pk, 1) = \Jp(k, e 1E

where % (k,?) is the phase. Then, substituting P(k,1)
in (8), we get

Jk,1) = —p(k, )V 2k, 7).

Thus, the flow is j(k,t) sensitive to the phase
of the wave function W(k,?), while the standard flow
in the pulse space is given by the expression

i(k,7) = kp(k,?).

We will also use a normalized «symmetric» flow

v(k,1) = j(k1) / p(k,t) = =V, x(k,1),

which we will call the velocity field.

3. RESULTS AND DISCUSSIONS

A two-dimensional hydrogen atom is irradiated
by a linearly polarized laser pulse, the electric field
strength of which has the form

F(1) = e F cos(r — o)|6(T — 1) — 6(~1)|, (9)

where e _is the unit vector in the direction of the axis
x, F,— constant amplitude, o— frequency, o— ini-
tial phase, O(t)— Heaviside step function, 7'— pulse
duration.

The density of the distribution (7) and the «sym-
metric» flow (8) (hereinafter simply the flow) will
be considered at times ¢ > T':

p=plkykyot >T), 5= ),

where

J = Jikyokyot >T), i =x,y.

3.1 Interference contribution

First, let’s check which of the interference terms
in expression (7) is responsible for the formation
of quantum vortices. Let’s choose the pulse param-
eters close to those for which vortices have already
been identified [16, 17]: F, =04, o =7, o =0,
T =4.

Figure 1 shows graphs of the photoelectron mo-
mentum distribution p (for a clearer display, graphs
are plotted for In(p)), as well as the following depen-

dences of the absolute value of the wave function
normalized to their maxima:

max |’

b = (k0,6 > T)| /|

bky = “P(O,ky,t > T)M\if

max"

For the selected pulse parameters, two sym-

metrical vortices are formed with centers at points

k., =0, ky = 4+/2n — 1 =~ £2.3 (indicated by ar-
0 0

rows, Fig. la,c). Now, comparing density (7) with
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Fig. 4. A vector field for V.ot = 0 (@), t /10 (%), / 3(c),  / 2 (d). Forallgraphs Fy = 0.4, 0 = n,T = 4

the same density, but in which one of the three in-
terference terms is discarded, we find that the last
term in (7) is responsible for the formation of vor-
tices. This term describes the interference of pho-
toelectron states corresponding to cylindrical waves
with quantum numbers m = 0,42. These states are
the result of a two-photon transition through inter-
mediate states of a continuous spectrum:

(0) (0) 0)
’TI,m=O> - Z‘Tk,m=il> - ‘\Pk,m=0¢2>‘
k

In Fig. 1 b, d, graphs are plotted without taking
into account this interference term. It can be seen
that there are no vortices.

A similar result on the influence of interference
terms can be obtained for other values of the pulse
duration, for example, when T is odd and two pairs
of symmetric vortices are observed [16, 17].

In Fig. 2 for T' = 3 (the other parameters are the
same as in Fig. 1), the p and b, , b, are present-
X

y
ed. The exclusion of the last interference term in (7)

JETP, Vol. 165, No. 3, 2024

leads to the disappearance of vortices (Fig. 2 b,
d), the centers of which are given by coordinates
k. =0, kyo =4\4n /3 -1~ %178, kxo =0,

*0

Ky = +8m /31~ +2.71(fig. 2 a, o).

3.2 “Symmetric” flow j

As shown in [19], it is convenient to identify quan-
tum vortices in momentum space using «symmetric»
flow (8). In Fig. 3 vector field is presented for the two
pulse durations considered above.

Fig. 3a, ¢ shows that in both cases the field j di-
verges from the center and on large scales this diver-
gence is close to radial. However, in the area where
quantum vortices are observed, the streamlines are
curved (highlighted in red rectangles). In Fig. 3b,d,
these areas are enlarged.

For a single isolated vortex, which occursat 7" = 4,
the presence of a rotational component of the field
around the center of the vortex is clearly visible (see
also [19]). At T' = 3 there is no such beautiful pattern
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for the case, but the area of the broken streamlines
is visible. It is along this narrow region (the light
arc), as we showed earlier (see Fig. 4 in [16]), that
two vortices are localized.

3.3 Sensitivity of quantum vortices to the
initial phase of the field

Figure 4 shows the velocity vector field
v —(]x /p,] / p) for four cases: a =0 (a), © /10
b), /3 (c), 11: / 2 (d). The other pulse parameters
are the same as in Fig. 1.

It can be seen that as the phase increases, the vor-
. T ..
tex shifts. For a close to the Echaracterlstlc vortex

behavior of the field is observed in a significantly
narrower range of values &, than in the case when
o = 0. For sinusoidal dependence, i.e. when the
switching on and off of the pulse ceases to be sud-
den, it is no longer possible to identify the vortex.

Figure 5 shows the dependence of the modulus
of the wave function bk = Y(k »i>T) |

,min X,min ’

on k  at different prOJectlon values kx min COTTE-
sponding to the local minimum ¥. The graph shows
the displacement of the vortex center with increasing

phase .

It is important to note that the strict zero of the
found wave function ¥ (6), indicating the center
of the vortex, takes place only at oo = 0. For the oth-
ers considered oo = 0 corresponding values &

X,min
characterize local minima, while bk min = 0.

LARIONOV

4. INTERACTION
OF AN ELECTRON WITH A FIELD
IN “VELOCITY GAUGE”

As is known, the exact solutions of the Schro-
dinger equation obtained in two different gauges —
in “length gauge” and in “velocity gauge”, give the
same predictions for the probabilities of transitions
in atomic systems. Of course, this is the case only
when a non-relativistic system interacts with that
part of the electromagnetic field modes whose wave-
length significantly exceeds the size of the system
(see, for example, [41]).

In the case of approximate solutions found, for
example, using perturbation theory, the results ob-
tained in different gauges are not required to coin-
cide [38]. Therefore, it is of interest to consider the
problem solved here in «velocity gauge».

Let’s write out the corresponding perturbation
operator

AW +—=A2(),
2c

(10)

T
QI»—\

where the vector potential is
t
A(r) = —ce,, f F.(t")dr',

F.(t)=e -F@),

(see (9)). Taking the desired wave function in the
form (2) and performing the same manipulations
as in the case of “length gauge”, we obtain the fol-

B, min lowing equations for unknown amplitudes:
Ob (1) A (¢ O
0.0006} hem 1) _ A, ( )(8m+1 n Sm—l) 22ke —
ot 2c ’ T 1)
0.0004f — )i m =l Ax(t)k b (1) —
2c k,m—1 (11)
, e A A2<r>
: |+ 1= |m 41
0.0002 _ (l)|m|+ |m+1] ; by m+1( ) — k (1) —
c
: 2 o, 1
00 05 » A1) 'kl
& w1y

Fig. 5. Dependence of the modulus of the wave function
b minon the projection k,near the center of the vortex: o =0,
k = 0 —solid line, a0 = /10, k ~ 0.04 — strokes, oo = /3,

X,min X,min

k ~ 0.09 — dashpoint. For all graphs /y = 0.4, 0 =7, T =4

X,min

It can be seen that the sy

in “length gauge”: there are

stem (11) has a simpler

appearance compared to the system (5) obtained

no derivatives of k, i.e.

JETP, Vol. 165, No. 3, 2024
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these equations are relatively simple for numerical
calculations.

As preliminary calculations have shown, the ap-
plication of perturbation theory to the system (11),
up to and including the second order, makes it pos-
sible to detect the quantum vortices studied in this
work. The results obtained in two different calibra-
tions are close to each other. The small discrepan-
cies do not affect the main conclusions of the work
and can be investigated separately.

Note that in obtaining (11), the same basic func-
tions of the unperturbed problem were used as in de-
riving the system (5). This choice is justified by the
approximation made in the work of the sudden
switching on and off of the field [41].

5. CONCLUSION

In this article, the influence of the initial phase
of an extremely short ionizing laser pulse on the
formation of quantum vortices was theoretically in-
vestigated. It is shown that phase variation can lead
to both a localized vortex with a well-defined center
and a “smeared” vortex structure. At the same time,
an important aspect here is the implementation
of the limiting case of a sudden disturbance, which
is a kind of “Jarring” type “turn-on” [34].

The interference contribution to the photoelec-
tron distribution density responsible for the forma-
tion of vortices is extracted. This contribution is due
to the interference of photoelectron states formed
during a two-photon transition through intermedi-
ate states of a continuous spectrum.

The possibility of identifying quantum vortices
in momentum space using “symmetric” flow (8) has
been confirmed. Unlike the work [19], which con-
sidered the even case 7', this work also investigated
the odd case T', when two pairs of quantum vortices
appear.

The choice of gauge in describing the interaction
of an electron with a field is discussed.

The equations for the probability amplitudes
in “velocity gauge” (11) have a simpler form than
in the case of “length gauge” (5) and are relatively
simple for numerical calculations. The small differ-
ences found between the results of preliminary calcu-
lations obtained in different calibrations do not affect
the main conclusions of the article.
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