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Abstract. An analytical solution to the canonical problem of diffraction radiation of a uniformly moving
point charge at the open end of a circular waveguide with a uniform dielectric filling is presented. The
case of motion along the axis is considered. A modified mode-matching method was used in the solution,
leading to the Wiener—Hopf—Fock equation, and after its formal solution, to an infinite linear system
of equations for the excitation coefficients of waveguide modes. This system is solved numerically by the
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1. INTRODUCTION

Diffraction radiation is usually understood as ra-
diation generated by a uniformly moving point
charge (or other source) at various inhomogeneities
which cannot be reduced to transition radiation
or Vavilov—Cherenkov radiation [1]. From classi-
cal diffraction problems (the most characteristic
of which are, for example, the diffraction of a plane
wave on a half-plane, a round hole in a conductive
screen or wedge, as well as the emission of a wave-
guide mode from the open end of a waveguide), this
problem differs not in its mathematical essence, but
only in a specific type of source that interacts with
inhomogeneity with its Coulomb field (the latter can
be decomposed into plane waves decreasing from the
trajectory of the charge). However, historically, the
situation has developed in such a way that, despite
the commonality of tasks and methods of solution,
the theory of diffraction radiation (DR) has devel-
oped quite isolated from the theory of diffraction,
especially in recent decades, therefore a number
of important diffraction problems with a moving
source have not been considered so far.
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The fundamentals of the theory of DR are de-
scribed, for example, in fundamental reviews [1, 2],
where ideally conducting inhomogeneities in vacu-
um were considered. In [1], the theory of DR is pre-
sented for a number of two-dimensional problems
with a rigorous solution, the work [2] is devot-
ed to the development of the scalar theory of DR.
It is also worth mentioning a number of works where
waveguide problems were considered [3 —5] and oth-
er methods for calculating the DR from complex in-
homogeneities were developed [6 — 9].

However, in recent years, the importance of the
theory of DR in the presence of dielectric inhomo-
geneities has increased significantly. In a certain
sense, it all started with Vavilov—Cherenkov radi-
ation in layered waveguides, which has been suc-
cessfully used in the wakefield acceleration method
of charged particles over the past decades [10 — 16].
A typical structure used is the so-called “capillary”,
i.e. a dielectric tube with an axisymmetric vacuum
channel (for passing charged particles) and a met-
al coating on the outside. The same capillaries that
are used in the framework of wakefield acceleration,
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as well as similar, but more multilayer structures,
have been proposed to be used to generate narrow-
band radiation (including in the terahertz range) [9,
17 —20]. At the same time, an important question
arises of the effective output of the generated radia-
tion from the waveguide into the open space, which,
when formulated mathematically, leads to a family
of problems in the theory of DR at the open end
of a waveguide with dielectric filling.

As is known from the theory of diffraction
on similar structures, the presence of a dielectric
significantly complicates the problem: for example,
infinite linear [21 —24] or nonlinear [25, 26] systems
arise, and the solution is not constructed in a closed
form. Perhaps for this reason, there is still no rigor-
ous solution in the literature to a number of classical
problems with dielectric inhomogeneity of the type
described above (with the exception of a number
of works by the author of this article [27, 26], where,
however, “closed” geometry was considered), while
similar vacuum structures were analyzed from vari-
ous sides [3 —5].

This paper is devoted to the presentation
of a rigorous analytical approach for the analysis
of DR at the open end of a circular waveguide with
layered dielectric filling, which eliminates the not-
ed gap in the theory of DR (for clarity, the simplest
case of continuous filling is considered). The idea
of this method (using the example of waveguide
mode diffraction) is presented in articles [21, 22] for
plane-parallel geometry, while for cylindrical geom-
etry this method was developed in our recent works
[28, 29], although some of its elements are also con-
tained in the article [30].

Finally, it should be noted that from the point
of view of terminology, in this case it would proba-
bly be more correct to talk not only about DR, but
about the combination of DR and transition radi-
ation. However, the problem under consideration,
both in terms of formulation and solution meth-
ods, is closest to the theory of diffraction, therefore
we do not mention transition radiation either in the
title or in the Introduction, but we will touch on this
issue when discussing analytical results.

2. FORMULATION OF THE PROBLEM AND SOLUTION

We will solve the problem for the amplitudes of the Fourier harmonics of the desired fields (in fact, in the
harmonic mode), i.e. we assume that the components of the field are decomposed into a Fourier integral

of the form

400 ) +00 )
Hy= [Hye ™ do=2Re [ Hy,e™ do, (1)
—00 0

PEC (2) (2)

Fig. 1. Geometry of the problem and main designations

and it is necessary to find H_, and similar ampli-
tudes of the other components (a cylindrical co-
ordinate system p,@,z is used). Due to the second
equality in (1), it is sufficient to assume that o > 0.
A semi-infinite circular waveguide of radius a
in vacuum filled with a dielectric with € > 1 is con-
sidered (Fig. 1). A point charge ¢ moves uniformly
along the axis of the waveguide at a speed v = ¢} (

¢ — the speed of light in a vacuum). For the sake
of certainty, we will assume that the Cherenkov
condition is fulfilled, i. e. £B2 > 1, however, this as-
sumption does not affect the structure of the general
solution in any way.

The problem is axisymmetric, so outside the
source, the remaining nonzero components of the
field are expressed as follows:
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where ky, = o / ¢ 48 (8 — +0, i.e., the presence of a small positive imaginary part of k is assumed, which
can be interpreted as the introduction of a small attenuation into a vacuum).

The incident field inside the waveguide (p < a, z < 0) has the form
H, (()1)(as)
J(as)

. NOJ
(i) — 1495 ¢

w0 =50 ¢ " |09 -

g (PS)‘, ©)

where

s= k2 /BB ~ 1), Tms> 0.

The incident field in a vacuum is set everywhere outside the waveguide, it has the form

. NOJ
; iqs, i—z
HYD = _2c0 e v HV(psy), )

where

Sy =100y, Oy = k0\/B72 —1, Reoc, > 0.

The field reflected back into the waveguide has the form

_ g & Pom | —k,,2
L o
m=1
where j,, — are the zeros of the Bessel function J,,(§),
2. Jo
_ 0
Koy = lko€ —a—;”, Imk_,, > 0. ©6)
The coefficients {M, } need to be found. However, from the Meixner condition on the edgep = a -0,z = -0

it is possible to determine the behavior of these coefficients for large numbers [25- 29]:

M, ~ m D at m— oo,
1 . e—1 (7)
T = —asin ,
i 2(e +1)

with0 <t <1/6.

The further course of the solution is similar to the work [28]. Diffraction field in vacuum (regions “1” and
“27, see Fig. 1) is described by the Helmholtz equation:

0> /92> +9* / 0p* +p 10/ dp + (k§ - p‘z)}Hf,,L;z’ = 0. (8)

We introduce into consideration functions =+ means that the function is holomorphic and has
Y_(p,a) that are essentially one-sided Fourier no zeros, respectively, in the upper half-plane,
transforms of the field H 00 (hereafter, the subscript Ima > —96, or in the lower half-plane, Im o < 3):
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OO .
Y2 ) = @m0 [dH D (b2, ©)
0
O .
¥l pa) = n) " [ dHE) (p,2)e™, (10)
—0Q
and similar Fourier transforms of the field £ 2);2), for example
(1,2) _ i Ko (1,2) iz
OV (po) = @y [de—LEL P (p.2)e™ . (11)
0

Further transformations are described in detail
in the article [28], so here we give them schematically.
In the domain “1” (p < a, z > 0) we apply the one-sid-
ed transformation (9) to (8) and obtain an inhomoge-
neous differential equation for a function ‘I‘(le)(p,oc),
in the left-hand part of which there is a Bessel opera-
tor, and the right-hand part is determined by the val-

ues()H(pm /8z‘ andH(pm‘

z=0 z=0

and is found from the

boundary conditions of continuity of the tangential
components of the field in the cross-section z = 0.
In domain “2” (p > a, —oo < z < +00) we apply the
usual Fourier transform to (8), representing it as the
sum of (9) and (10), and obtain a homogeneous Bes-

sel equation for the function ‘I’(E)(p,oc) + lI’(f)(p,oc).
The general solutions of these equations have the
following form:

(12)

¥ (p.0) = € J,(px) + D H" (px) + ¥ (p.00),

¥ (p,a) + PP (p,0) = C, HV (px), (13)

g
21 2c

(y)/(ns-:)—ocs><

2 2

¥ (p,0) =
K™ —S

(1
X [Hf”(ps) —~ MJl<ps> —~ (14)

J(as)

S, 0 k, /e+a
————H{D(psy) ~ > M, S
O/V+o o] o —o

a

Dom ]

where C, ,, D, are some constants that will be defined below,

-2
m 0 2
a

, Imao, >0,

(15)

— longitudinal wave numbers of a vacuum wave-
guide of radius a.

Note that the fundamental point for construct-
ing a correct solution is the presence of a summand

DlHl(l)(pK) in the general solution (12). Recall that
‘I‘:Ll)(p, o) is a transformation of the diffraction field
in the vacuum region, i.e. it corresponds to the solu-

tion of homogeneous Maxwell equations. The partic-
ular solution (14) contains functions singular on the

axis (taking into account the difference in the inci-
dent field to the left and right of the boundary z = 0),
this singularity at p =0 should be compensated
by the selection of a constant D;. This circumstance
is atypical, since usually only regular solutions, i.e.
Bessel functions, are taken as solutions of the homo-
geneous Bessel equation in the region containing the
zero point.

So, the singularity at p — 0 in (12) will be com-
pensated when choosing
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_ =i

qum/(De)—oc_ 1

1 2w 2c KZ

therefore, you can rewrite

(1) _
lP+ (pa(x) -

where

(1) _iiq
¥, (p,o)

2w 2c

Similarly

1 _ i
o (p,a) = clk—./o

o (p,0) + @V (p,0r) =

g

o/ (ve) — o

K2 —S2

_w/1)+oc

o)

ZM

0

o / (ve) — o

K2—S2

_ 42 o/v+ao)

CJ,(px) + W) (p, 00),

sHV (ps) —xH" (px) —

H (()1)(as) -

—s Jo(as) J,(ps)

(soH{"(psy) — xH (" prc)) -

k,,/€+a

OC —(12

J
N a

ijm]

(px) + @V (p, ),

iK
C,— H{P (px),
kO

sPH{ (ps) —«* H{V (px) —

§2 H(l)(as)

J( s) ———J,(ps)

o (p,cr
P P e 2

_w/u+

j{:Al

From the condition Eg)) =0atp=a,z<0we get

®(2)(a o)+ ~—

G =

jom /8+O€J

2 0
(Xm—OC

Pj 0m
a

I ig i SOH( )(GSO)

2W2Ckooc+(m) Lo

Stitching E  atp=a,z> 0, we get
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Next, by stitching H o0 AP =a,2 > 0 and using (23) and (21), we obtain the connection
ky @D @@ | iig 1
i KJ,,(ax) 21 2¢ Jy(ax)

2i @/ (ve) —a Jy(as) — Jy(ax)
an 2 _§? J(as)

6) -
Y (a,00)

X

X 20 [V (asy ), (ax) - (24)
40 b
2i

—1
ov o) g (ax)H " (asy) -
TTJCZSO

i iqiM I kzm/e+oc

T, 1Uom) =5 ———
21 2¢ m=1 m m afn _ (x2

It is easy to see that the right-hand side in (24) has no branching points, and also has no poles at the zeros

of the denominators @v~! + o and k> — s However, formally, it has “parasitic” poles at o0 = o pP= 1,2,...,

which must be compensated by imposing the so-called “regularizing relations” on the function d)(f)(a,oc)
(see [28]):

i ig 1

k,
0 p?
. oY (a,ocp)+

—_— - X
21w 2c Jl(jop)

2i ®/(ve) -0, 1 y
. lam . 2 452 o/v+o
J J al —s P
0p ( 0p / ) +
“ TP 2i —0 (25)
X X|= ‘]](.]QP)HQ (as())_ >
Jop an
M alk
p zp 20
+ > e +o, J; (jop)
p=12,..

Now, substituting (22) into (13) and using the connection (24), we obtain the Wiener—Hopf—Fock
equation:

2k @ P iig 1
KG(01) 2m 2¢ J(ax)
2i o/ (ve) — o Jy(as) — Jy(ax) o
an 2 _§? J(as) ®/v+o
" _
S, 2i
x| -2 H{D(asy)d,(ax) — Jy(ax) H (asy) —
K ason

¥ (a,0) +

X

(26)

' ig & k,, /€+0
I 9 . zm

LNy gy LT
1t ¢ — m I(JOm) chn —012

i g ng(()l)(aso)Hl(l)(aK)

— =0,
21 2¢ e H§D (ax) (o0 + wv~ ! — i0)

where
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G(o) = max/y(ax)H{" (ax).

By performing standard factorizations and asymptotic estimates, we obtain a formal solution to the equa-
tion (26) in the following form:
i ig X, ()G, (o
o2 (a,0) = 1 g 506, (@)
2n 2¢ 2k,

27)

hgE

I(M,,,Jl(jo”, W,y (0) 4V, (00)) -

— sozH(()l)(as0 )T (o)

Xm

where

K, = ,/ko o, Ga)=G0 ()6 (o)
(standart integral formulas from [25] can be used for calculation of G _(a0)),

_ kzm /e—a,
Uy (0) = G (00 ) (01,) 520 (28)

Vo (o) = ﬁ G+(am)K+((xm)j0m
T an @o, J (o) (@, + )

(29)

o/ (ve) + o, 1
X . 5 5 + o
(JOm/a) S %m =
2i «
o+w/v—Ii0
Jor I
G, (x, (o) G (—0/V)K (—0/v)|

b

T, (o) =
(30)

Substituting solution (27) into condition (25), we obtain an infinite linear system of equations for the
desired coefficients {M, }:

ZmeMm =W, p=12,..., (31)
m=1
where
x,(0,)G, (o), (a,)+
w =J1(j0 ) |k )
pm " +3,,ia %—i—ocm
2i ®/(ve) -0,
.. ] 2
_ %y oy /af =5 3
Wp J— - ( )
a I(JO[J) 1 sga 1) 2i
200 Gy H () —
ocp~|—00/1) Jop an
= 2 (1
-k, (a,)G, (o)) Zle+(0cp)+is0H(() )(asO)T+(ocp) ,
—
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where & mp is the Kronecker symbol. As can be shown,
this system converges and can be solved numerically
by the reduction method (similar to how a similar
system was solved in [28]), as a result of which the
set of coefficients {M, } can be considered known.
After that, it is not difficult to calculate the field out-
side the waveguide.

H(l’z) , >0 =Lﬂ
oo (P22 0) 2m 2¢ 2= o

ng(()l)(aso)

i

GALYAMIN

In particular, for the domain z > 0 we have the
following unified representation for all p (the cor-
responding transformations are similar to the
transformations in [28] and are quite cumbersome,
so we do not give them here):

>,k (a,)G, (o) y

" 33)

x 0, 2maL’ (p,z) +

2n2c G, (—0 / VK, (-0 /v)

2maly (p,2).

Here
ﬁ 5 ]Om %
™ a*d,(jom)
1| | ®/(ve)+o 1
Q’"ZEX 2 mz o —®/v 34
(Jom / @) == Fm
ok, /e—o
+ MmJl (-IOm) = 2 -
The function L; has the form (its definition coincides with formula (47) in [28]):
k(o)J, (px)J,(ax)
Lieo= [ LA 102 g, (35)

'

, +
where the contour —T", goes from a point k;, along
the branch cut of the function x(a) in the first

K, ()G, ()(o—0o,)

quadrant along the shore with argk = 0. The follow-
ing parameterization is valid for this contour:

o= kikl! /o +ia”, o’ €[kl\o0).

The function LE; differs from the L; by replacement o, — ® /v and looks like

K(o)J | (px)J,(ax)

ioz

(36)

Leo= [

/!
-,

For asymptotic field analysis, the following rep-
resentation is more convenient for a field in the

K ()G (a)(o— o / V)

domain “2” (p > a, —oo < z < o00) with integrals
along the real axis o

G (a,)

g &KL (@,,)
HO ’ - ! g9 +m
go(P:2) 2152cmZ::1 o

0, 1%(p,2) +

N " (37)
I iq soHy (asy) 1(2)(13 2)
27[2CG+(—(D/U)K+(—(JJ/U)B o
where
+oo )
10, = [ DO O ey, (39)
“K(O)H (k) (o + o, )
+oo (1)
P00 = [ SR RO g, (9)

—00

k(o) H§V (ax)(o + o / v —i0)

JETP, Vol. 165, No. 3, 2024



DIFFRACTION RADIATION AT THE OPEN...

The second term in (33) and (37) describes diffrac-
tion radiation when a charge escapes from the open
end of a vacuum waveguide. In particular, the second
term in (37) will coincide with the corresponding ex-
pression in [4] (taking into account the obvious re-
designations). The first term in (33) and (37) (the sum
over m) is due to the presence of a vacuum-dielectric
interface at the end of the waveguide, therefore it can
be interpreted as transition radiation at the interface
of a finite size bounded by the walls of the waveguide.
Note also that the above solution is valid for the case
of charge escape from the waveguide (v > 0, Fig. 1),
and for the case of flight (v < 0), however, only the
case v > 0 is discussed later.

We will discuss the procedure for the asmyptotic
calculation of the field in the far-field zone (in the

exp(ikyR) ¥ _(k,cos0) 2J,(ak,sinB)
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region “2”) using the steepest descent method [32].
Let ‘s place the x = y = z = 0 point to the beginning
of the spherical coordinate system R,0,¢, the angle 0
will be counted from the positive direction of the axis
z. The asymptotics of the integral (38) were investi-
gated in [28]. As usual, we assume that the inequali-
ties defining the far-field zone are fulfilled: k, R > 1,
as well as R > a and the viewing angle 06 lie
in the range 6>0_, , t—06>6_, , where
0., =1/ W (note that everywhere in the future
it is assumed that 1 / \/k(TR >a /R, ,i.e., the mini-
mum and maximum viewing angles always lie in the
region “2”).

The main term of the asymptotic integral (38) has
the form of a spherical wave:

I}(n2) (p,2) = ma R

The asymptotics of the integral (39) are construct-
ed in a generally similar way. Note that the contri-
bution of the pole oo = —w / v + i0 is exponentially
small at B far from 1, so it is usually not taken into
account in the main term [33]. However, for § — 1

19,2~

1é2>” (P 2)D(6 — B) + ma x
K_(kycos0) 2J(ak,sin0)

(40)

G (kycosB) k,cosb — o,

contribution of this pole ceases to be negligible
in the general case, in addition, at small viewing
angles, 0 it is located near the saddle point. Taking
into account this fact, the asymptotics (39) has the
following form (see [32]):

exp(ikyR)
— X

. 741((0) /)

G, (kycosB) kycosb —w /v
\/EJO (aK(m / 1)))

+ma

Jkosin® B (®)G (w0 /v)x, (@ /)

(@1)

VRsin®

exp(ikyR — i3 / 4)) 20|+ roRe,gbo(e) y

2k(0 / v)J (ax(® / v))

X exp[—ikORbg (e)]

where ®(0) is the Heaviside step function, the angle
GB is determined by equality cose = B or equality

G, (o /v)x (o/v)

residue in the pole oo = —w / v+ i0, denoted as
1 )P (p,2), is related to the incident field outside the

sme (y =1/ [3 — Lorentz factor), the Wavegu1de (4) by the expression
2O

oH,
L4 @) 107 0y = —gOp,2), “2)
2n2cG (- OJ/D)K+( -0/ )

by () = (/1 —sin(6 +6,)),

0, = /2 —iarcch(™"), (43)

Rep, <0,
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the signs & correspond to argh, < 3 / 4,

e.¢]

00) = [[exp(-£2)de = ¢ [exp(~£> — 22t

y

The first term in (41), according to equalities (37)
and (42), compensates the incident field H g(g)(p,z)

in the area of angles 6 > 9[3' Thus, the eigenfield
of the charge outside the waveguide turns out
to be concentrated inside a cone 6 < 6, the span-
ning angle of which decreases with an increase in the
Lorentz factor v, BB ~1/vaty> 1. However, the
boundaries of this cone are not sharp, since the

S02H(()1)(61S0)

GALYAMIN

@4
0

uniform asymptotic formula (41) describes a smooth
transition from the presence of a pole contribution
to its absence. Also, since the first term under dis-
cussion in expression (41) is proportional to the in-
cident field H gg)(p,z), this asymptotic must be con-
sidered together with the incident field. It is useful to
introduce the appropriate value / (i0) (p,z) according
to the equality

; i
H(p.2) =L

17(p,2). (45)

2n2c G (-0 /V)K (-0 /)

Then the sum I(io)(p,z)—i—]éz)(p,z) is propor-

tional to the total field in the region “2” in the
case of charge exit from the open end of the vac-
uum waveguide and, taking into account the uni-
form asymptotics (41) for the second term, describes
a smooth transition from the presence of its own
charge field inside the cone 6 < 6ﬁ to its absence
outside this cone.

When the f — 1 first term in square brack-
ets in (41) has a singularity at 6 — 0 (the pole

approaches the saddle point), this peculiarity is com-
pensated by the second term in square brackets, and
in general the square bracket is always finite. The
jump of the first term in (41) at ® = 6., associated
with the “switching on” of the Heaviside function
ato > GB, is compensated by a jump in the last term,
since when passing 6 through the value GB the pole
o = — /v +i0 crosses the contour of the steepest
descent, argh,(0) passes through the value 3n / 4 and
the value of the function Q(y) changes by a jump, the
value of which is determined by the expression

() + 0(—y) = Jr.

In case when the pole is far from the saddle point, i.e. when the angle 0 satisfies the inequality

| JkoRby(8) [> 1,

we have

LT
+2iQ| i [k, Re * b, (6) exp[—ikoRbg (9)} ~

and the asymptotics takes a simpler form (i.e. it goes into the usual “non-uniform” asymptotics):

190,20 ~ IP7 (0,200 — 8,) +

ik, R k 0) 2J,(ak,sin6
—i—nanp(l oR) x_(k, cos0) o(ak, sin©)

—exp(—int / 4) (46)
JkoRby(©)
(47)

R G _(kycosB) kjcosb—w /v’
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where the second term is similar in form to expres-
sion (40) and describes a spherical wave of diffrac-
tion radiation.

We will discuss in more detail the condition
of sufficient distance of the pole from the saddle
point, which we will write as

ko Rey(®) = VA,

where A is some “large” number. After simple trans-
formations, we have

‘mbo(e)‘ = W\/B’l —cos0 = \/X

(48)

At the viewing angle 6 = GB condition (48) gives

kyR = AByz,
that at y >> 1 transforms into

koR ~ AY2.

With a minimum viewing angle
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0=0_.=1/JkR, kR>1I,
condition (48) gives
_A-1/2
B -1’

that at y > 1 transforms into

ko R

koR ~ 2A —1)y*.

The asymptotics of the function Q(y), follow-
ing from (46) works quite well already at A = 10.
Therefore, with this value of A and y > 1 the use
of “non-uniform” asymptotics (47) for 6 = QB
is justified at distances R > 10\(2 / ky, while at
0= 1/\/1607]3 (i.e., at a minimum angle) it is justi-

fied at distances R > 19y2 / kg, i.e. starting from
almost twice the distance. It also follows from
(48) that if “non-uniform” asymptotics is applica-
ble at the corresponding R, for example, at 0 = 0,,
then it is also applicable for all others 0 (| b0(6§|

increases monotonously with the growth of 0).

For 6 ~ 6; using “non-uniform” asymptotics is
unjustified at A <10, as will be illustrated below.

90 105|

min

5 6 7 8 2 3 4

9910 1 2 3 4 5 6 7 8

99 10

Fig. 2. (In color online) The Fourier harmonic modulus of the full field (for the case of charge departure from a vacuum waveguide) in the
far-field zone of the region “2” at small angles 6 ~ GB, the value of the Lorentz factor y = 20 and various distances R at the first Cherenkov

frequency, ® = u)ICR. The blue line is calculated according to the formula of uniform asymptotics (41), the red line is calculated according
to the formula of “non-uniform” asymptotics (47). Each graph is normalized to the maximum of the blue curve. Problem parameters:

a=024cm, e=2+0.00li,¢=-InColR ~2r-47.8 GHz

3. NUMERICAL RESULTS

Within the framework of modern practical ap-
plications of the waveguide structure under con-
sideration, the generation of Vavilov—Cherenkov
radiation (VCR) by relativistic electron bunch-
es in a waveguide (in the form of a discrete set

JETP, Vol. 165, No. 3, 2024

of so-called Cherenkov modes) and its output from
the open end into free space is of the greatest inter-
est. It should be noted that in recent years, experi-
ments on the registration of an VCR in a fairly nar-
row spectral range have been typical. For example,
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in [34] the VCR spectrum was measured in the
wavelength range 0.8-1.6cm, in [35] an ultra-nar-
rowband VCR in the far infrared range with a rela-

tive spectral band width of the order of 1074 —1073
was studied, in [36] the results of the registration
of an VCR at a wavelength of 600 nm with a band
width of 10nm are presented. Therefore, bearing
in mind such narrow-band measurements, in this
paper we will limit ourselves to analyzing the Fourier

o =2 = By, / (aep? ~ 1),

where j, is the / zero of the Bessel function Jo(ﬁ).
The expression (49) means that k; = (o,CR /0,
i.e., the / waveguide mode is synchronous with the
charge, while equality as = jj,, is also fulfilled.

At this frequency, generally speaking, the incident
field inside the waveguide (3) is equal to infinity due
to the presence Jj,(as) in the denominator, which
is also reflected in the final formulas (32) and (34),
where there is an expression in the denominator

jgma_2 — 5% that also vanishes. Therefore, we pro-
ceed as follows: we introduce a small absorption into
the dielectric, i.e. we suppose that

e=¢ +ie”, €">0®>0), ¢"<¢.

The Cherenkov frequency, calculated by the formu-
la (49) with such €, also becomes a complex quantity

with a small negative imaginary part. Further calcu-

lations are performed at the frequency o = RemlCR,

at which the incident field (3) and the correspond-
ing terms in formulas (34) and (32) are finite, but

1> 90

0.8
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harmonics of the field. Relativistic charge velocities
will also be considered in the future, and the corre-
sponding Cherenkov frequencies will be mainly used
to obtain graphical results for Fourier harmonics
of the field.

For a given charge velocity 3 (or for a given Lo-
rentz factor y) the frequency of the “Cherenkov

mode” flCR (! is the mode number) is determined
from the known expression

(49)

have sharp maxima. Thus, the frequency spectrum
of transition radiation at the considered interface
of finite size (the first term in (33) and (37)) has
pronounced maxima at Cherenkov frequencies, i.e.
it has the same characteristic features as the incident
field (3).

First of all, let us consider the asymptotic be-
havior of the sum [/ (io)(p,z) + Iéz)(p,z) that coin-
cides with the Fourier harmonic of the full field
up to a multiplier in the region “2” in the absence
of dielectric filling of the waveguide (i.e., when
the charge escapes from the vacuum waveguide).
Figure 2 shows the dependences of the modu-
lus of this value in the far-field zone (k,R > 1)
at vy =20 and relatively small angles 6 (6 ~ GB).
The frequency m is to be equal to the first Che-
renkov frequency wICR for certainty, but there
is no strong dependence on the proximity (or re-
moteness) of this frequency to the Cherenkov fre-
quencies for the full field in the vacuum, which
is quite natural. Mathematically, this is expressed
in the fact that the value Q, (34), which has a sharp

60

30

Fig. 3. (In color online) Normalized radiation patterns of a point charge when it escapes from the open end of a vacuum waveguide at differ-
enty and angles in the range 6 € [eB,n - GB]. The problem parameters are the same as in Fig. 2. The dotted line shows the angle 9[3 fory =20
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dependence on the frequency in the vicinity (:)ER,

m =1,2.... isincluded only in the first term in (37).
The blue lines are calculated using the uniform as-
ymptotic formula (41), the red lines are calculated
using the “non-uniform” asymptotic formula (47).
It can be seen that at kR = 572 = 2000 (A =5, the
left graph in Fig. 2) the “non-uniform” asymptotics
has a noticeable jump at 6 = 6, and differs signifi-
cantly from the uniform one 1n almost the entire
range of angles presented on the graph. Mathemat-
ically, this is due to the fact that for A = 5 the argu-
ment of the function Q in (41) is not large enough
at these viewing angles and the formula (46) is un-
applicable. From a physical point of view, this
means that the considered range of angles for given
R lies in an area similar in essence to the penumbra
region, where the spherical radiation wave is insep-
arable from the full field.

90
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AtkyR = 1072 = 4000 (A =10, the middle graph
in Fig. 2) the argument of the function Q in (41)
is quite large at 0 = GB and larger angles, so the
curves practically coincide at 6 > OB (the jump at
0= GB als becomes insignificant), but there are still
noticeable differences at 6 < eﬁ. Finally, at A =19
(the right graph in Fig. 2) the curves practically co-
incide in the entire range of angles presented, in-
cludingat®=#0_, .

However, the range of angles at which (47)
is an asymptotic of the original integral (39) is lim-
ited in the area of small angles by an additional in-
equality © >0 _. . Aty > 1 the angle GB ~ y_l and
therefore at kOR > 1072 satisfies this additional in-
equality, since at the same time 6 . < (\/ﬁy)’l.
Therefore for 6 > 613 and R > IOy2 /k,, formula (47)
describes the asymptotics of the integral (39), and

90

(2)
‘H(pw 120 250 e - boOth terms in (37) 5 0
- first term in (37) 0
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Fig. 4. (In color online) Radiation patterns of a point charge when it escapes from the open end of a waveguide with dilectric filling at
y=20andR = 10«{2 / ko in the range of angles 6 [6g,m — Og] at frequencies shifted from the first Cherenkov frequency mICR by a fraction

of the difference m2CR

- m1CR, indicated as a percentage on each graph. The solid (red) line is calculated according to the formula (37), the

green (dotted) line is the contribution of the first term of (37), the blue (dashed) line is the contribution of the second term of (37). The
curves are normalized to the maximum of the blue (dashed) line. The other parameters are the same as in Fig. 2, 0)2CR ~ 2n-109.9 GHz
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the second term in this formula describes the asymp-
totics of the sum 1"(p, 2) + I§”(p, 2), i.€., up to a mul-
tiplier— the asymptotics of the Fourier harmonic
of the full field in the vacuum case. In this range
of angles and distances, the full field is represent-
ed only by a spherical wave of “vacuum” diffraction
radiation, we can talk about the directional pattern
of this radiation, and the self field of the charge is in-
significant, since the jump in the curves of Fig. 2 as-
sociated with this field is negligible.

Fig. 3 shows normalized directional patterns
of diffraction radiation at the open end of a vacu-
um waveguide (i.e., “vacuum” diffraction radiation)
at different y angles in the range 0 € [9 ,TT— GB]
at the frequency of the first “Cherenkov mode”.
These diagrams are determined by the multiplier for
the exp(ik,R) / R of the second term in (47). It can
be seen that with growth of y within the selected
limits, the diagram practically does not change its
shape, but the size of the main lobe increases.

Next, radiation in the presence of dielectric filling
of the waveguide will be considered. Figure 4 shows ra-
diation patterns in the far-field zone (1 — GB >0> GB,
R= 107 / ky), calculated using the general

GALYAMIN

formula (37), taking into account the asymptot-

ics of the integral / ,(nz)(p,z) in the form of a spher-
ical wave (40) and the asymptotics of the integral

I[gz)(p,z) in the form of a spherical wave (47) (the
second term). The solid (red) line corresponds to the
full field, i.e. both terms in (37) are taken into ac-
count, the dotted (green) line corresponds to the
first term in (37) (sum over m), the dashed (blue) line
corresponds to the second term in (37). The curves
are normalized to the maximum of the dashed line,
i.e. to the maximum of diffraction radiation in the
vacuum case. The frequency increases from graph
to graph: in the upper left graph (marked “0%”) the

frequency is equal to ‘”1 , then each graph shows

an increase to 0)1CR as a a percentage of the differ-

ence O)gR — OJICR.

Exactly at the Cherenkov frequency “vacuum”
diffraction radiation is negligible (the dotted line
is practically not visible on the graph “0%”) and the
radiation field is completely determined by the first
term in the formula (37), radiation at small angles
(“forward”) is practically absent, there is strong
“backward” radiation, i.e. at angles close to w — 6j,.
Note that significant radiation in the direction

(2) — 2
|H(,M, 0 a0 koR =10y %0 80
120 60 }, — 20 120 60
=1 (=2 60
200
150 30 150 40 30

f_” HD
180 0 180 0

90
80

120 60

60

150 4 30

20

180

120 60

150 30

0 180 0

Fig. 5. Radiation patterns of a point charge when it escapes from the open end of a waveguide with dilectric fillingaty = 20, R = 10\(2 / ky
atthe Cherenkov frequency with a number / = 1,2,5,10 (the number is indicated on each graph) in the angle range 0 [Gﬁ,n - GB]. The
curves are calculated according to formula (37) and normalized to the maximum of the second term in this formula. The task parameters

are the same as in Fig. 4, ng

~ 21-297.2 GHz, o} ~ 2r-609.8 GHz
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of a small angle with the wall of the waveguide
also occurs when the waveguide is excited by the
TM mode [33, 28]. With increasing frequency (ad-
ditive 2-10%), “vacuum” diffraction radiation begins
to affect at small angles 6 ~ 6,, and with an addi-
tion of 20% it exceeds the “backward” radiation
due to the first term in (37). At the same time, the
radiation in other directions (other than “forward”
and “backward”) is significantly less. Finally, with
an addition of 50%, “vacuum” diffraction radiation
practically determines the total radiation.

Fig. 4 shows diagrams of radiation at Cherenkov
frequencies with numbers / =1,2,5,10, the curves

are normalized to the maximum of “vacuum” dif-
fraction radiation (it is not represented itself due
to its negligible smallness, as can be seen from the
normalization). It is also seen that with an increase
in the number of the Cherenkov mode, the angle
of maximum radiation into the forward half-space
increases and the width of the corresponding main
lobe decreases. At small /, the “backward” radiation
is very strong, with an increase in the mode number
its role decreases. At the same time, at [ > 2 there
are weak side lobes, the presence of which is asso-
ciated with the radiation of propagating modes, the
number of which is different from /.

4. CONCLUSION

This paper presents a rigorous solution to the
problem of diffraction radiation of a uniformly
moving point charge at the open end of a circu-
lar waveguide with a uniform dielectric filling. The
solution consists of two components. The first com-
ponent is diffraction radiation at the open end of the
waveguide without dielectric filling, the so—called
“vacuum” diffraction radiation. The second com-
ponent can be interpreted as transition radiation
at the dielectric-vacuum interface limited by the
edges of the waveguide. At the Vavilov — Cheren-
kov radiation frequencies (they satisfy the condition
as = jg,,» m=1,2...) the first component is negligi-
ble, and the radiation pattern is determined by the
second component, as a rule it has a pronounced
main lobe at an observation angle significantly larger
than zero. Away from the Cherenkov frequencies, the
first component dominates and forms a directional
pattern with a narrow lobe in the vicinity of the axis
of the structure (the corresponding maximum angle

is equal in order of magnitude to the inverse Lorentz
factor).

Note that from the point of view of practical ap-
plications described in the Introduction, it would
be necessary to investigate a more realistic structure
having a vacuum channel on the axis for an unob-
structed charge passage. The approximation made
about the uniformity of the dielectric filling is main-
ly due to considerations of the maximum possible
simplicity and clarity of presentation. The problem
solved in this paper is a necessary first step towards
solving more complex problems, for example, the
problem of diffraction radiation at the open end
of a waveguide with a vacuum channel and a di-
electric layer. The presented method can be applied
without fundamental difficulties both to the de-
scribed two-layer structure and to more multilay-
er structures in the same way as it was done in our
works [28, 29, 37], where problems without an exter-
nal source with excitation in the form of a waveguide
mode were considered.
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