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Abstract. The phase transition from the paramagnetic to the ferromagnetic phase in a van der Waals vol-
ume Fe;GeTe, compound was studied. A renormalization group approach was used, the action for which
was constructed using group theoretical analysis to determine the irreducible representation of the spatial
group responsible for this transition, in the case of magnetic moments localized on iron. It is shown that
such a representation exists, which allows the orientation of magnetic moments along the ¢ axis of the
crystal. The influence of vacancies in one of the iron positions on this transition was considered using
replica method by analogy with the description of frozen impurities. Power law of change magnetization
was found near the transition taking into account the presence of vacancies. A condition has been de-
termined when vacancies are pressure this transition. Possible influence of strong electron correlations
and free electrons on the stability of the ferromagnetic phase was analyzed using the /—J model for
non-degenerate electrons. In the generalized random phase approximation, the additional contribution
of free electrons to the formation of long-range ferromagnetic order occurs through Pauli susceptibility
gas of free electrons. The condition for the stability of the ferromagnetic state in this case was written out.
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INTRODUCTION The compound Fe;GeTe, was first synthesized

i . ) in the 2006 [1]. It crystallizes into a hexagonal struc-
Layered materials with weak interlayer bond

of van der Waals are of increased interest. This
is due to the fact that the properties of the system
can be controlled by replacing one layer with an-
other or reducing the dimension of the connection,
highlighting single-layer components. Lowering
the dimension leads to an increase in quantum ef-
fects, which can be useful in applications. An ex-
ample of such a compound is iron dichalcogenide
Fe,GeTe,. This compound is a metallic ferromagnet

ture described by a spatial groupP63/mmc(Déh).
Iron atoms occupy two nonequivalent crystallo-

graphically positions, denoted in [4] as 2¢ and 4e re-
spectively. For the stoichiometric composition, pro-
vided that the positions are fully occupied, the Fe
mixed valence formula for the transition metal atom
can be written according to (Fez+) (Fngr) (Ge4_)

(Te%‘) [1]. The connection is layered. Each layer

[1, 2, 3]. At the same time, it was found from calcu-
lations based on the density functional that the long-
range order is preserved up to one layer. Therefore,
this connection is promising for information storage
devices. It should be noted that it has not yet been
possible to obtain an almost single-layer structure
of this compound.

is a sandwich structure with two layers of tellurium
atoms covering a triple layer Fe;Geon both sides
[1]. Below 230 K, spontaneous magnetization was
detected, indicating ferromagnetic behavior. There
is a strong magnetic anisotropy along the ¢ crystal
axis. Vacancies available in the position 2¢ suppress
ferromagnetic ordering.
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There is much debate in the literature about the
nature of the long-range magnetic order. Some pa-
pers claim that this compound is a band magnet |2,
3]. In this case, according to the authors of these pa-
pers, the Stoner criterion for ferromagnetic ordering
is fulfilled.

Let us now pay attention to the applicability of the
Stoner criterion itself to systems with strong elec-
tronic correlations. The presence of such correla-
tions in the compound under consideration is in-
dicated in [3]. It can be obtained for these systems
from the Hubbard Hamiltonian [5] in the approx-
imation when the two-particle Coulomb repulsion
is replaced by a single-particle interaction. How-
ever, this approximation is physically very rough.
The fact is that, in order of magnitude, the density
of states at the Fermi level is inversely proportional
to the Fermi energy. The Fermi energy itself is equal
in order of magnitude to the integral of the electron
jump to another node. The Stoner criterion allows
us to conclude that the Coulomb repulsion parame-
ter at the node is equal in order of magnitude to the
jump integral. Therefore, the theory of perturba-
tions with respect to a parameter equal to the ratio
of Coulomb repulsion to the leap integral is not valid
due to the fact that this ratio turns out to be of the
order of unity. The Stoner criterion itself is derived
precisely on the basis of this perturbation theory.
In addition, the Stoner criterion overestimates the
stability of the ferromagnetic phase.

In other works [6, 7, 8], attention is drawn to the
fact that ferromagnetism in this compound is not
described only by the presence of free electrons and
it is necessary to take into account the contribu-
tion of localized electrons, as well as the presence
of strong electronic correlations. It is also suggest-
ed that magnetic properties can be described in the
Heisenberg model of localized magnetic moments
[9, 10].

To complete the picture, we note that the bulk
Fe;GeTe, compound demonstrates a large anoma-
lous Hall effect [11], the physics of the kondo lattice
[12], a strong increase in the mass of the electron
[13] and the magnetocaloric effect.

The purpose of this work was to analyze the
magnetic phase transition from the paramagnet-
ic phase to the ferromagnetic phase based on the
renormalization group approach. At the same time,
within the framework of group-theoretic consid-
eration, an irreducible representation of a spatial
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group is found, along which a transition occurs, and
an action is constructed that is invariant with re-
spect to this representation. The effect of vacancies
in iron positions on this transition is described under
the assumption that they can be considered, based
on the replica method, by analogy with frozen im-
purities. Within the framework of the t — J model,
stability of the ferromagnetic phase is analyzed, tak-
ing into account the strong electronic correlations,
the presence of which was mentioned above in this
compound.

2. SENTATION P6, /mme(Dy,)

It has already been said in the Introduction that
the compound Fe;GeTe, has a phase transition
from a paramagnetic to a ferromagnetic phase with
a strong c-axial anisotropy below 230 K. The mag-
netically ordered phase is suppressed with increas-
ing vacancy concentration. In this case, vacancies
are observed only in the position of 2¢ iron atoms.
Let’s analyze this transition based on the theory
of phase transitions of the second kind. The re-
sults of elastic neutron scattering shown in [6]
in Fig. 1 indicate that this transition belongs to the
second kind.

First of all, let’s find an irreducible representation
(IR) of a spatial group P6, /mmc(Dgh) along which
this transition can occur. In this approach, we be-
lieve that 2c(3d6)and 4e(3a’5 ) magnetic moments
are localized on iron ions located in crystallograph-
ic positions [4]. This representation should be part
of the magnetic representation of the spatial group.
Therefore, we need to first determine the nature
of the magnetic representation. Let’s find the last
ones.

Using equality [14]

o =1 +a, ()

where g is the element of the spatial group, r ; is the
initial position of the iron ion in the zero cell r;
is its final position in this cell, a _ is the returning
translation by which the atom returns to the zero
cell, let’s define those elements of the spatial group
that leave the iron atoms in place. Let’s first con-
sider the iron ions in the position 2¢. At this posi-
tion in the zero cell, the coordinates of the atoms
are [15] (2/3,4/3,1/2and (4/3,2/3,3/2). They are
set in a hexagonal coordinate system. The setting
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in [15] coincides with the setting in the international
tables [4].

Using equality (1), it is simple to show that atoms
1 and 2 do not change their positions (up to the re-
turning translations) under the influence of the fol-
lowing elements of the spatial group (in the notation
of the monograph [15]):

e,y hs, g By By g Py Pyg s g oy s,

where only the “rotational” part of the element of the
spatial group is indicated g; = {#; | T;}, T; — non triv-
ial translation. The atoms are swapped by the action
of the remaining elements of the group. For the po-
sition, the 4e iron atoms do not change their position
under the action of the elements e, i, A5, 19, 1y, 1y 5.
Now let’s find the characters of the elements of the
magnetic representation, which for the zero wave
vector are determined by the equalities [14]

X " =SPRS,> S, 2)
J

where xl;fo is the character of the element of the
group, Sp R, is the sum of the diagonal elements
of the rotational part of the element g, 8, = 1 for ele-
ments of the first kind [16] and 8, = —1 for elements
of the second kind, the delta symbol 6 . means that
the summation goes over those atoms that do not
move under the action of the element g. From equal-
ity (2) we obtain the following values of non-zero
character elements in the magnetic representation

250e) = 18,

70 = % (gy0) =
k=0 k=0 )
= Xm (g12) =Xm (gIG) = -2,

X],(nzo(glg) = Xlr(n=0(g21) = xl’;=0(g23) = —6,

Xzzo(gm) = Xl;,ZO(g]g) =4

The characters of the other elements of the
group are zero. In the usual way, using the data
of the monograph [15] concerning the IR group

P6, /mmc(Dgh), we find that the magnetic represen-
tation includes only two two-fold one-dimensional
representations of this group, namely, 2t and 27,.
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Let us now consider the values [14]

kG _ *kf_,
;2 = Z MO
heGy “
xexp(—ik-a (g,]))x( x[B]’Rh[B]’th,[B] ’

which can be interpreted as vectors of atomic
magnetic moments of the system forming a mag-
netic structure with a wave vector k. In equality
(4), the d;j‘g] is conjugate matrix element of the {
-th IR of the spatial group, the indices , j,f must
be fixed, G,? is the point group of the wave vector.
Note that for ferromagnetic ordering, the wave vec-
tor is zero.

It can be shown, based on equality (4), that the
representation T, allows the existence of only a vec-
tor S = (0,0,1) on iron ions in position 2c, i.e., their
magnetic moments are oriented along the axis z.
Since all the elements of the spatial group are even
elements for magnetization [17], the spatial inver-
sion g5 in the notation of the monograph [15] does
not change the direction of the magnetic moment
{h1000}M, = 6,113(—Mz) = M. Similarly, it is es-

tablished that for the position of 4e iron ions, the
representation t,. Thus, the theory of groups allows
the transition to a ferromagnetic state with anisotro-
py along the axis zonly in IR 7, .

Let us now note that the decomposition of the
magnetic representation according to the IR of the
spatial group, taking into account two-dimensional
representations, includes two-dimensional repre-
sentations 214,27,,,T,,,T;;- These representations,
however, do not generate vectors S, oriented along
the axis z.

Thus, we conclude that the transition from the
paramagnetic state to the ferromagnetic phase can
only occur according to the representation 1, , and
iron atoms in both crystallographic positions partic-
ipate in the formation of the long-range order. Note
that the group-theoretic analysis confirms that this
phase will have anisotropy along the axis z.

Let ‘s return now to the presentation 5. The phase
transition from the paramagnetic to the ferromag-
netic phase is characterized by a one-component
order parameter, which is denoted as @(x). Then the
action .S, invariant with respect to the representation
T5, is written as

JETP, Vol. 165, No. 3, 2024
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199(x) d9(x)
S((p)=fddx 2 Ox 8)(7 , (5)
—é(P (x) — (P ()

where E =T —T, ¢» T is the temperature of the sys-
tem, 7, is the Curie seed temperature, b — is the
charge [18] (a constant characterizing the interac-
tion in the system). Expression (5) completely coin-
cides with the non-normalized action of the one-di-
mensional model (p4. The description of the phase
transition based on this model by the renormaliza-
tion group method is well known [19, 20]. A stable
critical point is found and all critical indices in the
5-loop approximation are determined. We will not
write them out here. They can be found, for exam-
ple, in the monograph [18].

The effect of vacancies on this phase transition
will be carried out similarly to the accounting of fro-
zen impurities in the replica method. Then the ac-
counting of vacancies can be carried out in the form

of an addition to the usual (p4 interaction action
of the form [21]

Vige = [d x9(x)97 (x), (©)

where y(x) is a Gaussian random field of vacancies
with an average value

(y(x)) =0

and a correlator
A, () = (YY) = AgBlx — x')

with a primeval constant A, >0, proportional
to the vacancy concentration, d =4 —2¢,e <« 1,d
is the dimension of the space. The formal descrip-
tion of vacancies by the replica method allows you
to apply n-component field ¢, a =1,...,n n with
a non-normalized action

CV(®) 109,000, (x)
2\, 2 Ox ox

s, = [a"x —%cpa ()0, (x)—%;cpi () +1- (1)

+y(x)e, (09, (x)
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Equality (7) implies summation by repeating in-
dexes. Since we are not interested in the properties
of the vacancies themselves, in action (7) we can get
rid of the field y(x). Let’s integrate the functionality
for this

199, (x) 09, (x)

Z=waD(pexp fddx
0,09, (- —Zcpa w| ®

v (x)

7, ’

+y(x)o, (X)9, (x)

xexp‘fdd X

where
=[1De,,
a

a meaningful statistical sum, by field y(x). This can
be done precisely, since the functional integral over
this field is Gaussian. We have

[ Dwexp[ Jaixe ¥ i )+w<x)<pa )0, (x»]

&)
= exp{ [ a x}‘70(<pa(x)<pa(x))2},/2nxo.
Then action (7) can be rewritten as
| 109,(x) 9, (x)
2 Ox Ox
5, = [a'x] —%(pa(x)(pa (x) - —Zcpa< )—t, (10)

b,
— 549 (x X)9,(x))

where b = —12A,, and «/211:7&0 we omitted as in-
significant. Action (10) is an action for a dual-
charge-model 0n(p4. A complete analysis of the crit-
ical behavior of such a model in the two-loop ap-
proximation is given in the monograph [18]. The
peculiarity of the case under consideration is that

at the end of the calculations it is necessary to put
n=0/[18].

It turns out that in this case it is necessary to build
decompositions not by a small parameter €, but by
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\/E [22]. For this situation, n = 0 critical indices are
found in the three-loop approximation (in the limit)
[23]. The behavior of magnetization M in the vicin-
ity of the critical point, based on the data [23], has
the form

M~NT-T; P,
2
1 3(6 1284 +189¢(3)
=3 4[53] V2e 572 ¢

Tc* — the temperature of transition to the ferromag-
netic phase, { is the Riemann zeta function. How-
ever, for the model under consideration, the stability
of the critical point may be violated if the inequality
holds

—124 +5<0 11)

As the vacancy concentration increases, the pos-
itive constant A increases in magnitude, which will
lead to the fulfillment of (11). Then the transition
to the ferromagnetic phase will be suppressed.

The approach used above, based on group-theo-
retic analysis, was based on the assumption that the
magnetic moment is localized on iron ions. The ra-
tionale for its presence within the framework of the
zone theory is as follows. It has long been known
in the band theory of metals that the wave functions
of d states are very strongly localized inside the
atomic backbone. Therefore, their overlap between
neighboring atoms can lead to the formation of only
narrow zones. In transition metals, not all internal
dlevels are filled and they are close to s- the p-levels
of valency electron. Hybridization of s- and p-lev-
els leads to the emergence of a conductivity zone.
The narrow d zone is located inside the conduction
band and hybridizes with it at the points where these
zones intersect [24]. This hybridization leads to the
fact that the d electrons are only partially localized.
The fact is that when a crystal is formed, the atom-
ic wave functions of electrons disappear due to the
overlap of atomic potentials. However, this disap-
pearance will not always be complete; for example,
virtual connected states may persist near the initial
d-levels. The wave function in these states is char-
acterized by a large amplitude inside the core, but
is not strictly localized there [24]. As a result, the
electron is most likely located on the transition
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ion, participating in the formation of a local mo-
ment, but there is a possibility that it is also involved
in conduction. However, this one-electron approach
to substantiate the appearance of a local magnetic
moment in highly correlated 3dtransition met-
al-based metals does not work well. The approach
using the Hubbard model turns out to be more ap-
propriate. For the strong repulsion of two electrons
at a node, two Hubbard subzones of once and twice
occupied states appear in the electronic spectrum
of this model [25]. If the repulsion at the node tends
to infinity, and the average number of electrons
at the node is less than one, then the number of pairs
tends to zero. Then the once occupied states form
local magnetic moments [25].

Therefore, let us approach the problem of the ap-
pearance of a ferromagnetic phase in a compound
Fe,GeTe,using the Hubbard model, or rather z — J
model. The only condition that we need from the
previous consideration is that the transition takes
place according to a one-dimensional representa-
tion. Therefore, we assume that the Hubbard model
for non-degenerate electrons can be used to describe
the ferromagnetic state. Let’s explain what is meant
by the words non-degenerate electrons in this model.
It is known [24] that the general model of interact-
ing electrons, the band structure of which can be de-
scribed in the strong coupling approach, is extreme-
ly difficult to study. A significant simplification for
studying the properties of such electrons is carried
out in the Hubbard model, in which only one or-
bitally non-degenerate level is essential for research,
and all other levels are not included in the consider-
ation. The latter statement is based on the assump-
tion of a large energy gap between these levels and
the selected level.

In [6], the value of the parameter U, describing
the Coulomb repulsion of electrons at one node
U ~ 5 eV is given. With such a large value of the
parameter, the Uterm in the Hubbard Hamiltoni-
an describing the Coulomb repulsion of electrons
at a node is considered as the Hamiltonian of the
zero approximation, and the kinetic term associated
with the jump of an electron to a neighboring node
plays the role of a perturbation [5]. Excluding from
consideration the state of a system with two electrons
at a node and discarding terms that depend on three
nodes, one can find a Hamiltonian of the 7—J model
in which the Hamiltonian of the zero approximation
is linear with respect to Hubbard operators, and the

JETP, Vol. 165, No. 3, 2024
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perturbation is quadratic with respect to these op-
erators. The latter circumstance makes it possible
to construct a diagrammatic technique for Hubbard
operators, in which the electronic Green function
and the Green functions for transverse and longi-
tudinal spin components differ significantly from
those in the diagrammatic technique for fermionic
and spin operators [3].

The Hamiltonian of the r~—J model has the form

H=1y XX+
i,j,o

e e = e (12)
+JZ(X,. XXX,
LJ

In the Hamiltonian (12) ¢t — the matrix element

of the electron jump to a neighboring node, X I.O‘B —
the Hubbard operatora, o, = 0,4,—, where «+»
means a state with spin up, «—» — a state with spin
down, «0» — a state without spin at the node, J —
the exchange integral. For this model, it was shown
in [5] that the Fourier image of the Green function
for transverse spin components,

D (1-2)= <T)~(+_ mx (2)>, (13)

where T is the time ordering, the symbol “tilde”
means the representation of the interaction in the
paramagnetic state in a generalized approximation
of random phases can be written as

1= AGK)|[1- 0(k)] +
+xo ()| @(K) + J (k)|

-1

=D (k) = y(k) = (k) 14)

In the last equality
_ 1 My 5
Xo(k) - 5? w(n),0 H(k):
w(n) — Matsubara frequency,
_ n u
=2 L =
" exp[T] T]

and the values A,Q,I1,® in the paramagnetic phase
are determined by the equalities

~1
1+ 2exp

3

(k) = %ZG(k(l) — k) G(k(1)),

k(1)
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O(k) = %Za(k(l)) Gk(1) — k) G(k(1)),

k(1)

Ak) = %Zg(m) — k)G k(1) — k)G (k(1)), (15)

k(1)

D (k) = %Ze(k(l) — k) e(k(1)) x
k(1)
xG k(1) — k) G(k(1)),

where Nis the number of lattice nodes. In the latter
relations, the electronic Green function is taken as

G(k) = (i(n) — E®)) ',
(16)
E(k) =

1—ﬂam—w

where 7 is the average number of electrons at a given
node, W is a chemical potential.

After the analytical continuation

in(n) — o+ id

expression (14) describes the susceptibility of the
paramagnetic phase. In the monograph [5], a state-
ment is formulated that (), (k,®) represents the sum
of contributions from localized and collectivized
states of electrons. The localized contribution, in-
versely proportional to temperature, corresponds
to Curie’s law. The collectivized contribution is Pau-
lian. This contribution associated with the electron
loop is responsible for the susceptibility of the gas
of non-interacting free electrons. In the same mono-
graph, it is shown that at Fermi energy, the e, > 0
paramagnetic phase loses stability at 7 = 0, as can
be seen from (14) if the condition is fulfilled

®(0,0) + 1z <0, 17)

that is,

xrz <

[t (18)
(1-n/2? U1-n/2)

In inequality (17) x =¢ /U, z is the number
of nearest neighbors, N (¢) the density of states of the
initial electronic zone before its splitting into two
Hubbard subzones [5]. It can be seen that at k = 0
(U — o0) the ground state is ferromagnetic at zero
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temperature. With growth of ¥ ferromagnetic state
is suppressed. Thus, it follows from the 7 -/ model
that both localized and free electrons participate
in the formation of the ferromagnetic phase.

CONCLUSION

The paper analyzes the magnetic phase transition
of the second kind from the paramagnetic to the fer-
romagnetic phase in a layered van-der Waals com-
pound Fe;GeTe,. An important component of this
consideration was to establish the fact that magnetic
moments localized on iron atoms participate in the
formation of a long-range magnetic order. This was
done within the framework of the group-theoretic
definition of the irreducible representation of the
spatial group P6, /mmc(Dgh), through which the
transition takes place, based on the initial assump-
tion of the presence of such magnetic moments.
It is shown that the magnetic transition into a uni-
axial ferromagnetic with a moment orientation along
the axis of the ¢ crystal can occur only according
to the representation 5, the basic function of which
is the magnetic moment with the above orientation.
It is important to pay attention to the fact that the
group-theoretic analysis implicitly takes into ac-
count all the interactions responsible for the forma-
tion of both the crystal structure and the magnetic
state of the system. The transition order parameter
turns out to be one-dimensional. An action of the
system is constructed that is invariant with respect
to the representation 1,. This action coincides with

the action of the one-dimensional (p4—model. There-
fore, all critical indices of this transition are known,
obtained from renormalization group analysis.

The influence of vacancies on this transition was
carried out using the replica method and reduced
to the description of a two-charge On(p4 model in the
limit » — 0 in the final results. The renormaliza-
tion group analysis of the problem in this limit was
carried out in the works mentioned above. Based
on these results, the temperature behavior of the
magnetic moment near the critical point is found,
and a condition is given under which ferromag-
netism is suppressed by vacancies.

Calculations carried out in [6] based on the Hub-
bard model showed that for the studied compound,
the electron repulsion parameter at the U ~ 5
eV node. Based on this result, it was assumed that
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the stability of the ferromagnetic phase can be an-
alyzed using the r—J - model for non-degenerate
electrons. In this case, it is possible to show that
both localized and free electrons participate in the
formation of ferromagnetic ordering. Free electrons
provide a Paulian contribution to the dynamic mag-
netic susceptibility of the system.

Thus, the Stoner criterion, which is an indication
that the long-range magnetic order is formed only
by free electrons, is not accurate in the Fe,GeTe,.
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