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1. INTRODUCTION

The tasks of macroscopic electrostatics primarily 
consist of determining the potentials created by 
external charges and fields, influenced by the 
presence of dielectric and conducting bodies. For 
example, this includes calculating the tensor of 
dipole polarizability of macroscopic bodies, as well 
as the more complex task of the Green’s function, 
which provides the potential created by a point 
charge in the presence of such bodies. Related 
issues include Dirichlet and Neumann boundary 
problems, typically included in the corresponding 
section of mathematical physics. Solving these 
tasks often requires the use of quite complex 
mathematical tools and is usually included in the 
section on Special Methods of Electrostatics. When 
considering each specific body of a given shape, an 
individual approach is used, for example, a certain 
system of curvilinear coordinates. However, the 
results obtained in this way cannot be transferred to 
bodies of another shape, which significantly narrows 
the scope of applicability of traditional methods of 
electrostatics. Therefore, there is interest in finding 
a method for solving such electrostatic problems that 
is applicable to bodies of arbitrary shape. Attempts to 
find such approaches were previously made in other 

works, but they turned out to be too complex and 
cumbersome.

In this work, a method is proposed for solving 
various electrostatic problems, independent of the 
use of specific coordinate systems. For this purpose, 
the eigenfunctions of the problem — regular solutions 
to the Laplace equation — are introduced. The main 
properties of these functions outside, inside the 
body, and on its surface are studied. The relationship 
between the volume eigenfunctions (outside the 
surface S) and their values on the surface of the body 
is established. The main assumption of the method 
presented is the completeness of the system of 
eigenfunctions on the interface surface S. It turns out 
that the system of surface eigenfunctions consists of 
two subsystems — values of the functions (potentials) 
on the surface S and their normal derivatives. 
Integrals over the entire surface area of the body 
from the product of elements of these subsystems 
yield the relations of orthonormality of the system of 
eigenfunctions. A bilinear combination of elements 
of these subsystems forms a completeness relation.

The properties of the eigenfunctions established in 
the work, along with the relations of orthonormality 
and completeness, allow for a consistent method of 
solving various electrostatic problems. The general 
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scheme for solving such problems is as follows. 
The value sought f ( )r , which obeys the Laplace 
equation, must be expressed through its value F(ρ) 
on the surface of the body S (where ρ is the radius 
vector of a point belonging to S). Then, by a limiting 
process (r → ρ), an equation for F(ρ) is found. 
The obtained equation is solved by expanding F(ρ) 
into a series using one of the subsystems of surface 
eigenfunctions. The value of F(ρ) found in this way 
determines the sought function f ( )r .

The consistent application of this action scheme 
allowed finding a general expression for the 
electrostatic Green’s function. Similarly, solutions to 
both external and internal Dirichlet and Neumann 
boundary problems are provided. The problem 
of a body placed in a uniform electric field and 
its tensor of polarizability is also considered. The 
results obtained in these tasks are not linked to any 
coordinate system and are valid for bodies of arbitrary 
shape. Applying these results to a body of a specific 
shape requires determining the corresponding 
system of eigenfunctions. If an adequate coordinate 
system exists for a body of a specific shape, then 
the eigenfunctions and eigenvalues can be found 
in analytical form [9–11]. Otherwise, to determine 
the eigenfunctions, approximate methods, such as 
numerical methods, should be used.

2. SYSTEM OF EIGENFUNCTIONS

In a standard electrostatic problem, a macroscopic 
body of arbitrary shape with a dielectric permittivity 
ε( )i  in a homogeneous medium with a dielectric 
permittivity ε( )e  is typically considered. Place the 
origin of coordinates at the center of this body and 
introduce the following notations: re – the position 
vector of a point outside the body, ri  – inside the 
body, and ρ – the position vector of a point on the 
surface of the body S.

In the absence of external charges, the 
fundamental equations of electrostatics are:

	 rot divE D= 0, = 0.	 (2.1)

Here, E = −∇ϕ   – represents the electric field 
intensity, and D represents the electric displacement 
vector. In equation (2.1),

	 D r E r r= ( ) = ( ) ( ),ε ε ϕ− ∇ 	 (2.2)

where ϕ( )r  is the electric potential and ε( )r  is the 
coordinate-dependent dielectric permittivity. Let’s 
express ε( )r  as:

	 � � �
�

�
( ) = [1 (1 ) ( )], = ,( )

( )

( )
r re

i

e
h h� � 	 (2.3)

where

θ θ( ) = 1, ( ) = 0.r ri e

Thus, the potential ϕ( )r  satisfies the equation:

	 � � � �{[1 (1 ) ( )] ( )} = 0,h � �r r 	 (2.4)

so that the potential both outside and inside the body 
obeys Laplace’s equation:

	 � �2 ( ) 2 ( )( ) = 0, ( ) = 0,� �e ir r 	 (2.5)

where:

ϕ ϕ ϕ ϕ( ) ( )( ) = ( ), ( ) = ( ).e
e

i
ir r r r

On the surface of the body (at the interface), when 
r = ρρ, the following conditions must be met:

	 � � � �( ) ( ) ( ) ( )( ) = ( ), ( ) = ( ).e i e i�� �� �� ��h 	 (2.6)

Here,

	 � �( ) ( )
=( ) = ( ) | ,e e�� ��n r r� � 	 (2.7.1)

	 � �( ) ( )
=( ) = ( ) |i i�� ��n r r� � 	 (2.7.2)

are the normal derivatives of the potential on the 
external and internal surfaces of the interface, 
respectively, and the vector n  is the unit outward 
normal to the surface of the body.

Calculating the potential that obeys equations 
(2.5) with boundary conditions (2.6), under certain 
additional requirements for ϕ( )r  or its normal 
derivative, is one of the main tasks of macroscopic 
electrostatics. To solve this and some other tasks, 
let’s introduce a system of eigenfunctions associated 
with a body of a given shape.

2.1. Polarization Functions
In the electrostatic problem of the same geometry 

as above, the polarization eigenfunctions ψν( )r  are 
solutions to Laplace’s equation both outside and 
inside the body:
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	 � �2 ( ) 2 ( )( ) = 0, ( ) = 0.� �� �
e ir r 	 (2.8)

On the surface of the body (at the interface), these 
functions obey the following conditions:

	 r = : ( ) = ( ) = ( ),( ) ( )�� �� �� ��� �� � �
e i � 	 (2.9)

	 � �� � ��( ) ( )( ) = ( ),e i�� ��� 	 (2.10)
where

	 �� ��
( ) ( )

=( ) = ( ) | ,e e�� ��n r r� � 	 (2.11.1)

	 �� ��
( ) ( )

=( ) = ( ) | .i i�� ��n r r� � 	 (2.11.2)
Here, as in (2.7), n  is the unit outward normal to 

the surface of the body. 
Inside the body, the function ��

( )( )i r  is regular 
at r → 0  and outside the body, ��

( )( )e r  goes to zero 
at r → ∞. In formula (2.10), εν are the eigenvalues 
of the problem, which, as will be shown later, are 
positive.

	 εν > 0. 	 (2.12)
Let’s integrate the second equation from (2.8) 

over the volume of the body v:

  
v

i

S

i i� � ��2 ( ) ( ) ( )( ) = ( ) = ( ) = 0,�� � �r rd dS d� ��� �� �� 	 (2.13)

where dS d= ρρ  is the surface area element. The 
integral over dρρ  as well as over dS  extends over 
the entire surface area of the body. In (2.13), 
when transitioning from volume integration to 
surface integration surrounding this volume, the 
Ostrogradsky–Gauss theorem is used. The same 
theorem is applied in the reverse operation—
transitioning from surface integration to volume 
integration. From (2.13) it follows that:

	 � �� �� � �( ) = 0, ( ) ( ).( )�� �� �� ��d � e 	 (2.14)

Here, ��( )��  is the surface charge density in state 
ν (see equation (3.30)), such that the corresponding 
total charge of the polarization state equals zero. 
Integrating the first equation from (2.8) over the 
volume outside the body Ve should also lead to result 
(2.14). In this case, the integral over Ve is transformed 
into integrals over the surface of the body S and 
over a sphere of radius R with a subsequent limit 
as R → ∞ . The integral over the sphere of infinite 
radius equals zero if the function ��

( )( )e r  decays in 
the following manner:

	 r
r

� � � �: ( )
1

, 2.( )��
e

k
kr 	 (2.15)

It turns out, therefore, that the polarization 
eigenfunctions have multipolar asymptotics. 

It is easy to see that both outside and inside the 
body, the following equality holds:

	 ∇ ∇ − ∇{ ( ) ( ) ( ) ( )} = 0.ψ ψ ψ ψν µ µ νr r r r 	 (2.16)

Integrating the equality (2.16) over the volume 
outside the body Ve, we obtain:

	

� �

�

�

�
�
�

{ ( ) ( ) ( ) ( )} =

= ( ) ( )

( ) ( )

( )

� � � �

� �

� � � �

� � �

�

�

�

�� �� �� �� ��

�� �� ��

e e

i

d

d

�� �� �( ) ( ) = 0.( )�� �� ��i d 	 (2.17)

From this, considering the equalities:

v

i� �� �� �� � � �( ) ( ) = ( ) ( ) =( )r r rd d� ��� �� ��

	 = ( ) ( ) ,( )�� �� ��� �� ��i d 	 (2.18)

it follows:

	 ( ) ( ) ( ) = 0.� � � �� � � �� � ��
v

r r rd 	 (2.19)

Similarly, integrating the equality (2.16) over the 
volume of the body v, we obtain:

	 1 1
( ) ( ) = 0.

� �
� �

� �
� ��

�

�
��

�

�
�� � ��

Ve

r r rd 	 (2.20)

Thus, when ε εµ ν≠ , the integrals of the ∇ ⋅ ∇ψ ψν µ 
product over the volumes v  and Ve  of the body, 
outside the body, and over the entire space are zero. 
Therefore, we set:
	

Ve

� � � �( ) = .� � �� � ��dr 	 (2.21)

Note that:

Ve

e� �� �[ ( )] = ( ) ( ) =2 ( )�� � �r rd d� ��� �� ��

= ( ) ( ) ,( )�� � ��� ��� �� ��i d

So that

	
Ve v
� �� �[ ( )] = [ ( )] .2 2� � �� � �r r r rd d 	 (2.22)

From this follows, in particular, that the eigenvalues  
εν are positive, see (2.12). 
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From (2.21) taking into account the equality 
(2.22) we find:

	
v
�� �� �

�
�� �

�
��( ) ( ) =

1
r r rd 	 (2.23)

or:

	 � �� �� � ���( ) ( ) = .( )�� �� ��e d 	 (2.24)

Equality (2.24) represents the orthonormality 
relation for the surface polarization eigenfunctions.

It should be noted that in [8, 9] a different 
normalization of eigenfunctions is chosen. Functions 
from [8, 9] (denoted here by a “tilde”) are related to  
ψν( )r , according to (2.24), by the relation:

	
ψ

ε
ε

ψν
ν

ν
ν( ) =

1
( ).r r

+
	 (2.25)

The same relation connects the values ��( ),��  
��

( )( )e ��  and ��
( )( )i ��  with ��( ),��  ��

( )( )e ��  and ��
( )( )i �� .

2.2. Charge functions
Laplace’s equation also has a solution with 

monopole asymptotics, which must be taken 
into account for a complete understanding. In 
electrostatics, this behavior at r � � is characteristic 
of the potential of a charged metallic body. This 
potential should be chosen as an additional 
eigenfunction. The corresponding function ψ( )r  
(let’s call it the charge function) outside the body 
satisfies Laplace’s equation and assumes a constant 
value on the surface of the body:

      �2 ( ) ( )( ) = 0, ( ) = ( ) = .� �e er �� ��� const 	 (2.26)

At large distances from the body, we have the 
following asymptotics:

	 r
q

� � : ( ) ,( )� e r 

r
	 (2.27)

where q  is the charge of the body in this state. 
Therefore, integrating the equation for ψ( )( )e r  from 
(2.26) over the volume outside the body Ve, we 
obtain:

	 q d e= ( ) , ( ) =
1

4
( ),( )� �� �

�
�� �� ��� � 	 (2.28)

where the value of �( )( )e ��  is defined according to:

	 �( ) ( )
=( ) = ( ) | .e e�� ��n r r� �� 	 (2.29)

In (2.28), �( )��  is the charge density on the surface 
of the body.

Inside the metallic body, we have:

	 �( ) ( )( ) = , ( ) = 0,i ir � � �� 	 (2.30)

so, to formally meet a boundary condition like 
(2.10), we should set ε = ∞. We will determine the 
normalization of the function ψ( )r  using a relation 
similar to (2.24):

	 � ���( )( ) = 1.e �� ��d 	 (2.31)

Note that from (2.31), considering (2.28), we get:

	 Ψq =
1

4
.

π
	 (2.32)

On the other hand, there is a relation [1]:

	 q C= ,Ψ 	 (2.33)

where C is the electrical capacity of the body. From 
here:

	 Ψ =
1

4
, =

4
.

π πC
q

C 	 (2.34)

Note that according to (2.14):

	 � ��� � �� �
( ) ( )( ) = ( ) = 0.e ed d�� �� �� �� 	 (2.35)

Next, we integrate the equation:

	 ∇ ∇ − ∇{ ( ) ( ) ( ) ( )} = 0ψ ψ ψ ψν νr r r r 	 (2.36)

over the volume outside the body:

	 ∫ ∫−ΨΦ Ψ Φν νρ ρ ρ ρ ρ( ) ( )( ) ( ) ( ) = 0.e ed d 	 (2.37)

According to (2.35), the first integral in (2.37) equals 
zero, so:

	 �� ��( ) ( ) = 0.( )�� �� ��e d 	 (2.38)

Thus, according to (2.24), (2.31), (2.35), and 
(2.38), the system of surface eigenfunctions is 
orthonormalized on the surface of the body.

It is known that in a two-dimensional problem, 
the monopole potential far from a charged body 
increases logarithmically without bound. In this 
case, the charge function ψ( )( )e r  at has the r → ∞ 
following asymptotics: ψ( )( )e r  ln r. Such a function 
is not normalizable over the entire infinite plane. 
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Therefore, when studying two-dimensional charge 
states, it is necessary to consider this problem in a 
region bounded by a circle of large, but finite radius 
R (R a , where a is a characteristic size of the 
body), and it is required that the ψ( )( )e r  function  
equals zero at r R= .

It is assumed that the system of surface 
eigenfunctions is complete. In this case, any arbitrary 
function f ( )ρρ  can be expanded into the following 
series:

	 f f f( ) = ( ) ( ).�� �� ��
�

� �� �� � 	 (2.39)

Considering (2.24), (2.31), (2.35), and (2.38), from 
the expansion (2.39) we find the coefficients fν and f :

	 f f de
� �= ( ) ( ) ,( )�� �� �� ��� 	 (2.40.1)

	 f f de= ( ) ( ) .( )�� �� �� ��� 	 (2.40.2)

By substituting coefficients fν and  f  into (2.39) 
and requiring that this expansion converges to the 
function f ( )ρρ  itself, we arrive at the equality:

�
� � �� � � � � � �� � � �( ) ( ) ( ) ( ) = ( ),( ) ( )�� �� �� �� �� ��e e 	 (2.41)

which is a completeness relation. A similar expansion 
of the function f ( )ρρ  into a series by the subsystem  
{ ( ), ( )}( ) ( )� ��

e e�� ��  also leads to a completeness 
relation of the form (2.41).

3. RELATIONSHIP BETWEEN VOLUME 
AND SURFACE FUNCTIONS

Let’s introduce the zeroth Green’s function:

	 G 0( ) =
1

4
,r r

r r
� � �

� ��
	 (3.1)

obeying the equation:

	 ∇ − ′ − ′′r r r r r2
0( ) = ( ).G δ 	 (3.2)

It is easy to see that both outside and inside the 
body the following equality holds:

ψ δν( ) ( ) =r r r− ′

	 = { ( ) ( ) ( ) ( )}.0 0∇ ′ ∇ − ′ − − ′ ∇ ′′ ′ ′r r rr r r r r rψ ψν νG G
� (3.3)

Let us multiply equation (3.3) by dr' and integrate it 
over the volume Ve outside the body:

ψ θν( )[1 ( )] =r r−

= ( , ) ( ) ( ) ( ) .0
( )� � � � � � � � �� �k G er r�� �� �� �� �� ��� �� �d d � (3.4)

Here:

θ θ( ) = 0, ( ) = 1r re i

and:

	 k G( , ) = ( ) | .' 0 =r r r r� � � � � � ��� ��n r 	 (3.5)

Let us integrate equation (3.2) over the volume of 
the body:

	
v

d k d� �� � � � � ��r r r r r r2
0( ) = ( , ) = ( ).G �� �� � 	 (3.6)

From this:

	 � � �k d( , ) = 0,re �� �� 	 (3.7)

	 � � �k d( , ) = 1.ri �� �� 	 (3.8)

From relation (3.4) at r r= e and   r r= i , we 
respectively find:

��
( )( ) =e r

= ( , ) ( )� � � � ��k re d� �� �� ��

	 � � � � ��G 0
( )( ) ( ) ,re �� �� ����
e d 	 (3.9)

� � � � �k( , ) ( )ri d�� �� ����

	 � � � � ��G i0
( )( ) ( ) = 0.r �� �� ����
e d 	 (3.10)

On the other hand, integrating (3.3) over the 
volume of the body v yields:

ψ θν( ) ( ) =r r

= ( , ) ( )� � � � �k dr �� �� ����

	 � � � � ��
1

( ) ( ) .0
( )

��
�G der �� �� ��� 	 (3.11)

From here at r r= i and  r r= e respectively, we find:
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��
( )( ) =i r

= ( , ) ( )� � � � �k dri �� �� ����

	 � � � � ��
1

( ) ( ) ,0
( )

��
�G dir �� �� ��� e 	 (3.12)

� � � � �k de( , ) ( )r �� �� ����

	 � � � � ��
1

( ) ( ) = 0.0
( )

��
�G der �� �� ��� e 	 (3.13)

From the equality (3.9) considering (3.13), and from 
(3.12) considering (3.10) we get:

	 � �� � �
( )( ) = (1 ) ( , ) ( ) ,e

ek dr r� � � � �� �� �� ��� 	 (3.14)

	 �
�

��
�

�
�

( )( ) =
1

( , ) ( ) .i
ik dr r

� � � �� �� �� ��� 	 (3.15)

From (3.14) at re � ��  and from (3.15) at ri � ��, 
we have:

	 � �� � ��( ) = (1 ) ( , ) ( ) ,( )�� �� �� �� ��� � � � ��K de 	(3.16)

	 � ��
�

�
�

�
�

( ) =
1

( , ) ( ) .( )�� �� �� �� ��
� � � ��K di 	 (3.17)

Here: 

	 K ke

e
e

( )( , ) = ( , ),�� �� ��
��

� �
�r

rlim 	 (3.18.1)

	 K k
i

i
( )( , ) = ( , ).i

r
rρ ρ ρ

ρ
′ ′

→
lim 	 (3.18.2)

The values (3.16) and (3.17) must be equal, which is 
possible only if the following equality is met:

	 K Ke i( ) ( )( , ) ( , ) = ( )�� �� �� �� �� ��� � � � � �� .	 (3.19)

Similarly, from (3.9) and (3.12), considering 
relations (3.10) and (3.13), we find:

	 �
�

��
�

�
�

( )
0

( )( ) =
1

( ) ( ) ,e
eG dr r

�
� � � �� �� �� ��� e 	(3.20)

	 �
�

��
�

�
�

( )
0

( )( ) =
1

( ) ( ) .i
i

eG dr r
�

� � � �� �� �� ��� 	 (3.21)

Integrating the equality:

ψ δ( ) ( ) =r r r− ′

 = { ( ) ( ) ( ) ( )}0 0� � � � � � � � � �� � �r r rG� �r r r r r rG 	 (3.22)

over the volume Ve outside the body, at r r= e and  
r r= i respectively, we obtain:

	 �( )
0

( )( ) = ( ) ( ) ,e
eG dr r� � � � ��� �� ��� e 	 (3.23)

	 � �= ( ) ( ) .0
( )� � � � �G di
er �� �� �� 	 (3.24)

In deriving formulas (3.23) and (3.24), equalities 
(3.7) and (3.8) were taken into account. 

Using the expansion

  r
r r

� � � � � �
�
��

�
�

�
�
�

: ( )
1

4
1

,0 3
G r r

rr�
�

� 	 (3.25)

from (3.23) we find the asymptotics of the charge 
function:

	 r
q

r
� � � �: ( ) ,( )

3
� e

r
r

rd� � 	 (3.26)

where q  is the total charge, see (2.28), d is the dipole 
moment of this state,

	 d = ( ) .��� �� ��� d 	 (3.27)

Here, �( )��  is the surface charge density defined in 
(2.28). Correspondingly, from (3.20) we find the 
asymptotics of the polarization function:

	 r
r

� � �: ( ) ,( )
3

��
�e r

rd
� � 	 (3.28)

where dν is the dipole moment of the state ν

	 d � ��= ( )��� �� ��d 	 (3.29)

and ��( )��  is the surface charge density of this state:

	 �
�

�
�� �

�

�
( ) =

1
4

( )
1

.( )�� ���
�

� e 	 (3.30)

L et  u s  mul tip ly  formula  (3 .20)  by 
( / (1 )) ( )� �� � �� � ��  and sum over ν . Adding 
� �� �( ) ( )( )�� ��e �  and subtracting the term ��( )( )e ���  we 
obtain, considering the completeness relation (2.41):

G e0( ) =r � ���

        = 1
( ) ( ) ( ) .( ) ( )�

�
� �

�
�
�

��

�
�
�

��
�
�

�

�
� �

�
�
� �e er r� ��� 	 (3.31)

Similarly, from (3.21) we find:
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G i0( ) =r � ���

	 =
1

( ) ( ) .( ) 2�
�

� �
�
�
�

��

�
�
�

��
�
�

�

�
� �

�
�
� i r � ��� 	 (3.32)

Considering the equation (3.2) for the zeroth 
Green’s function, we have:

G e i i0( ) ( ) =r r r r− ′ ′ − ′′δ

= { ( ) ( )0 0∇ − ′′ ∇ ′ − ′′ −′′ ′′r rr r r rG Ge i

� � � �� � � �� ���G i e0 0( ) ( )}r r r rr G

	 + − ′ − ′′G e i e0( ) ( ).r r r rδ 	 (3.33)
Integrate equality (3.33) over the volume of the 
body v:

G e i0( ) =r r− ′

= ( , ) ( )0� � �� � �� �� �k G di er r�� �� ��

	 � �� � � �� ���k G de i( , ) ( ) .0r r�� �� �� 	 (3.34)

By substituting formula (3.34) into expressions (3.31), 
(3.32) and using relations (3.14), (3.15), we find:

G 0( ) =r re i� �

=
1

( ) ( ) ( ) ( ) ,( ) ( ) ( ) ( )−
+ ′ + ′












∑

ν

ν

ν
ν ν

ε
ε

ψ ψ ψ ψe i e ir r r r �(3.35)

where �( )( ') = =i r � const. In deriving formula 
(3.35), relations (3.23) and (3.24) were also 
considered. 

Using expression (3.35) for G e i0( ' )r r−  we find 
values of k e( , )r ���  and  k( , )ri ��� , defined according to 
(3.5):

	 k( , ) =
1

1
( ) ( ),( ) ( )r re

e e�
�

���� ��
� �

� ��
� � 	 (3.36)

k i( , ) =r ���

	 =
1

( ) ( ) ( ) ( ) .( ) ( ) ( ) ( )�
�

� � �
�
�
�

��

�
�
�

��
�
�

�

�
� �

�
�
� �i e i er r� ��� �� 	

� (3.37)

Here also �( )( ) = =i r � const . From this, at re� ��  
and ri � �� respectively, we find:

	 K e( ) ( )( , ) =
1

1
( ) ( ),�� �� �� ���

�
��

� �
� ��

� � e 	 (3.38)

K ( )( , ) =i �� ���

 
=

1
( ) ( ) ( ) ( ) .( ) ( )�

�
� � �

�
�
�

��

�
�
�

��
�
�

�

�
� �

�
�
� � � ��� �� �� ��e e 	 (3.39)

The substitution of formulas (3.38) and (3.39) into 
relation (3.19) turns it, due to the completeness 
relation (2.41), into an identity.

4. GREEN’S FUNCTION

If there are external charges in the problem 
formulated in Section 2, the main equation of 
electrostatics takes the form:

	 divD = 4 ,��� 	 (4.1)

where ρρ( )r  is the volume density of these charges. In 
this case, the potential ϕ( )r  obeys the equation:

	 � � � � �{[1 (1 ) ( )] ( )} =
1

4 ,
( )

h � �
�

�r r
e

�� 	 (4.2)

where, as in (2.3), h = /( ) ( )ε εi e . The solution of 
equation (4.2), which gives the potential induced by 
external charges, is written in the form:

	 �
�

�
( ) =

4
( , ) ( ) .

( )
r r r r r� � � ��e

G �� d 	 (4.3)

Here G G( , ') = ( ', )r r r r  is the electrostatic Green’s 
function, satisfying the equation:

    � � � � � � � ��r' {[1 (1 ) ( )] ( , )} = ( ).h G� �r r r r rr 	 (4.4)

It follows that at r r' = 'e  and  r r' = 'i  we have:

	 � � � � � ��r r r r r rr= : ( , ) = ( ),2
e G � 	 (4.5)

	 � � � � � ��r r r r r rr= : ( , ) =
1

( ).2
i G

h
� 	 (4.6)

Green’s function obeys the following boundary 
conditions:

	 G ( , ) | = ( , ) | ,r r r rr r� �� � � �� �e e i i
G�� �� 	 (4.7)

	 j hj i( ) ( )( , ) = ( , ).e r r� ��� �� 	 (4.8)

Here:

	 j r n G r rr r
( )( , ) = ( , ) | ,e

e e
� � � �� � � ��� �� 	 (4.9)

	 j Gi
i i

( )( , ) = ( , ) | .r n r rr r� � � �� �� ��� �� 	 (4.10)

Integrating equation (4.9) over the volume Ve outside 
the body and (4.10) over the volume of the body v, 
we obtain:
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      � �� � �j d de
e

( ) ( )( , ) = 0, ( , ) = 1;r r�� �� �� ��j e
i 	 (4.11.1)

     � �� � � �j d
h

di
i e

( ) ( )( , ) =
1

, ( , ) = 0.r r�� �� �� ��j i 	 (4.11.2)

Here, it is assumed that G ( , )r r′  has the same 
asymptotics as G0( )r r− ′ :

	 r G
r

→ ∞ ′ −: ( , )
1

4
.r r 

π
	 (4.12)

This assumption will be directly confirmed below.
Considering equations (3.2), (4.5), and (4.6), we 

have the following equalities:

�� �� � � � ��r r r r r r= : ( , ) ( ) =e G �

= { ( , ) ( )0� �� � � � �� ��� ��r rr r r rG G

− ′ − ′′ ∇ ′′ +′′G G0( ) ( , )}r r r rr

	 +G0( ) ( ),′ − − ′′r r r rδ 	 (4.13)

�� �� � � � ��r r r r r ri= : ( , ) ( ) =G �

= { ( , ) ( )0∇ ′′ ∇ ′ − ′′ −′′ ′′r rr r r rG G

− ′ − ′′ ∇ ′′ +′′G G0( ) ( , )}r r r rr

	 + ′ − − ′′
1

( ) ( ).0h
G r r r rδ 	 (4.14)

Let us assume that in (4.13), r r= e, r r' = 'e , and 
integrate the obtained equality over the volume Ve
outside the body:

G e e( , ) =r r′

= ( , ) ( , )� � �� �� �� ��k G de er r�� �� ��

	 � �� � � �� �� � � �� j G d Ge
e e e e

( )
0 0( , ) ( ) ( ).r r r r�� �� �� 	(4.15)

Similarly, at r r= e, r r' = 'e  integrating the equality 
(4.14) over the volume of the body v gives:

� � �� �� �� �k G de e( , ) ( , )r r�� �� ��

	 � �� � � �� ���
1

( , ) ( ) = 0.( )
0h

j G de
e er r�� �� �� 	 (4.16)

Excluding from (4.15) and (4.16) the integral 
containing j e

e
( )( , )r ���� , we find:

G e e( , ) =r r′

   = (1 ) ( , ) ( , ) ( ).0� � � �� �� �� � � ��h k G d Ge e er r r re�� �� �� 	(4.17)

Setting in (4.17) r' =e ��� , we get an equation for 
the value of G e( , )r ��� :

G e( , ) =r ���

	 = (1 ) ( , ) ( , ) ( )( )
0� � � �� �� �� � � ��h K G d Ge

e e�� �� �� �� ��r r
� (4.18)

with K e( )( , )� ���� �� , defined according to (3.18). The 
value of G e( , )r ���  is sought as an expansion over the 
system of surface eigenfunctions:

	 G a ae( , ) = ( ) .r � � ���� ��
�

� �� � 	 (4.19)

Substituting (4.19) into (4.18) considering (3.7) and 
(3.16) gives:

�
� �� � �a a� �( ) =��

	 =
1
1

( ) ( ).0
�

�
�

��� �
�

� � � �a
h

G e� �� ��r 	 (4.20)

Changing in (4.20) the index ν µ→ , let us multiply 
the obtained equality by ��

( )( )e ��� , then integrate over 
���  and find the coefficient aν. Then, multiplying 

(4.20) by �( )( )e ���  and integrating over ���  we find the 
coefficient a . Thus,

	 a
h

ae e
�

�

�
�

�
�
� �= ( ), = ( ),( ) ( )�

�
�r r 	 (4.21)

so that: 

G e( , ) =r ���

       = ( ) ( ) ( ) .( ) ( )�
�

� ��
�

�

�
� �

�
�
� �

h
e er r� ��� 	 (4.22)

In deriving expressions for the coeff icients 
(4.21), formulas (3.20) and (3.23), as well as the 
orthonormality relation (2.24), (2.31), (2.35), (2.38) 
were used. Substitution of (4.22) into (4.17) gives:

G Ge e e e( , ) = ( )0r r r r′ − ′ −

	 − −
+ + ′∑

ν ν

ν

ν
ν νε

ε
ε

ψ ψ1
1

( ) ( ).( ) ( )h
h

e er r 	 (4.23)

Now set in (4.13), (4.14):

r r r r= , =e e′ ′

and integrate (4.13) over the volume Ve outside the 
body, and (4.14) — over the volume of the body v:

G k G di e e i( , ) = ( , ) ( , )r r r r� � � �� �� �� �� �� �� ��

	 � �� � � �� ��� j G de
i e

( )
0( , ) ( ) ,r r�� �� �� 	 (4.24)
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� � �� �� �� �k G de i( , ) ( , )r r�� �� ��

� �� � � �� �� � � ��
1

( , ) ( )
1

( ) = 0.( )
0 0h

G d
h

Ge
i e i ej r r r r�� �� ��

� (4.25)

Excluding from (4.24), (4.25), as usual, the integral 
with j e( )( , )ri ����  we obtain:

G i e( , ) =r r′

 = (1 ) ( , ) ( , ) ( ).0� � � �� �� �� � � ��h k G d Ge i i er r r r�� �� �� 	 (4.26)

Setting in (4.26) r' =e ��� , we find an equation for 
the value of G i( , )r ��� . Solving the obtained equation 
similarly as (4.18), we find for G i( , )r ���  an expression 
different from (4.22) only by replacing re with ri .  
Therefore, in general:

G ( , ) =r ���

	 = ( ) ( ) ( ) .�
�

� �
�
�
�

��

�
�
�

��
�
�

�

�
� �

�
�
� �

h
r r� ��� 	 (4.27)

Substituting (4.27) at r r= i in formula (4.26) gives:

G ( , ) =r ri e′

= ( ) ( ) ( ) ( )( ) ( ) ( ) ( )−
+ ′ + ′












∑

ν

ν

ν
ν ν

ε
ε

ψ ψ ψ ψ
h

i e i er r r r �(4.28)

with �( )( ) =i r � . In deriving (4.28), the expansion 
(3.35) for G 0( ' )r re i−  was used. Due to the symmetry 
of the Green’s function from (4.28), it follows:

G e i( , ) =r r′

	 = ( ) ( ) ( ) ( ) .( ) ( ) ( ) ( )−
+ ′ + ′












∑

ν

ν

ν
ν ν

ε
ε

ψ ψ ψ ψ
h

e i e ir r r r

� (4.29)

Finally, setting in (4.13), (4.14) r r= i, r r' = 'i, and 
integrating the obtained equalities, as usual, over Ve 
and  v, we get:

� � �� �� �� ��k G di i( , ) ( , )r r�� �� ��

	 � �� � � �� ��� j G de
i i

( )
0( , ) ( ) = 0,r r�� �� �� 	 (4.30)

G k G di i i i( , ' ) = ( ' , ) ( , )r r r r� �� �� �� ��� �� ��

    � �� � � �� �� � � ��
1

( , ) ( ) ( ).( )
0 0h

j G d Ge
i i i ir r r r�� �� �� 	 (4.31)

Excluding from (4.30) and (4.31) the integral 
containing j e

i
( )( , )r ����  we find:

G
h

h
k G di i i i( , ) =

1
( , ) ( , )r r r r� �

� � �� �� �� �� �� �� ��

	 + − ′
1

( ).0h
G i ir r 	 (4.32)

Setting in (4.32) � �ri = �� , we obtain an equation for 
the value of G i( , )r ��� , the solution to which is given 
by formula (4.27) at r r= i, so from (4.32) it follows:

G
h

Gi i i i( , ) =
1

( )0r r r r′ − ′ +

+ −
+ +

+∑1 1
1

( ) ( ')( ) ( )

h
h

h
i i

ν
ν

ν

ν

ν
ν νε

ε
ε

ε
ψ ψr r

	 + −
′

1
( ) ( ),( ) ( )h

h
i i

iψ ψr r 	 (4.33)

where:

ψ ψ( ) ( )( ) = ( ) = .i i
ir r′ Ψ

At large re, from formulas (4.23) and (4.29) we 
find:

    r r r r re e e e e
e

G G
r

→ ∞ ′ − ′ −: ( , ) ( )
1

4
;0 

π
� (4.34)

r r r r re e i
e iG→ ∞ ′ − ′: ( , ) ( ) ( )( ) ( )

 ψ ψ

	
 − −q

r re e
Ψ =

1
4

.
π

� (4.35)

In (4.35), the asymptotic behavior (2.27) for the 
charge function and relation (2.31) are considered.

5. BOUNDARY PROBLEMS

A number of physical problems in electrostatics, 
hydrodynamics of an ideal fluid, etc., leads to the 
following mathematical problem: outside or inside 
a macroscopic body of a given shape, it is necessary 
to find a solution to Laplace’s equation that satisfies 
a certain condition on the surface (S) of this body. 
Below, two main boundary (boundary) problems 
will be considered: Dirichlet, where the value of the 
potential itself is specified on the boundary of the 
body, and Neumann, where the normal derivative of 
the potential is specified on the surface S.

To consider the formulated problems, we start 
from the equality:
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ϕ δ( ) ( )r r r− ′ =

   = ∇ ′ ∇ − ′ − − ′ ∇ ′′ ′ ′r r r r r r r{ ( ) ( ) ( ) ( )},ϕ ϕr rG G0 0 	 (5.1)

valid inside and outside the body, if the potential  
ϕ( )r  satisfies Laplace’s equation. To derive the 
equations necessary to solve external problems, 
integrate (5.1) over the volume Ve outside the body. 
At r r= e  and r r= i  respectively, we obtain:

� �( ) ( )( ) ( , ) ( )e
e

ek dr r� � �� � �� �� �� ��

	 � � � � ��G de
e

0( ) ( ) ,( )r �� �� ��� 	 (5.2)

� � � � �k di
e( , ) ( )( )r �� �� ���

	 � � � � �� G di
e

0( ) ( ) .( )r �� �� ��� 	 (5.3)

Here, the value of k( , )r ���  is defined in (3.5), and the 
normal derivative �( )( )e ��  in (2.6).

5.1. External Dirichlet Problem

In this problem, the potential �( )( )e ��  itself is 
specified on the surface of the body. Therefore, using 
relation (5.3), express the value of �( )( )e ��  through 
the value of the potential �( )( )e ��  on the surface S. 
The value of �( )( )e ��  is sought in the form:

	 �
�

� �
( ) ( ) ( )( ) = ( ) ( ).e

D
e

D
eA A�� �� ��� �� � 	 (5.4)

Substituting (5.4) into equation (5.3), considering 
(3.21) and (3.24), gives:

ν
ν

ν

ν
ν

ε
ε

ψ∑ +
+A AD

i
D1

( ) =( ) r Ψ

	 � � � �� k di
e( , ) ( ) .( )r �� �� ��� 	 (5.5)

Set here ri = ρρ  and replace the index v with µ:

µ
µ

µ

µ
µ

ε
ε

ρ∑ +
+A AD D1

( ) =Ψ Ψ

	 � � � �� K di e( ) ( )( , ) ( ) .�� �� �� ��� 	 (5.6)

The value of K i( )( , )�� ���  is defined in (3.18). 
Multiply relation (5.6) successively by ��

( )( )e ��  and 
�( )( )e �� , and then integrate the obtained equalities 
over the entire surface area of the body. Using 
expression (3.39) we find:

     � � ��
�

K di e e( ) ( ) ( )( , ) ( ) ( ),�� �� �� ��� ��
�

�
��

�
�1

	 (5.7.1)

	 � � ��K di e e( ) ( ) ( )( , ) ( ) ( ),�� �� �� �� ��� � 	 (5.7.2)

so that: 

	 A dD
e e

� � �� � � � �� �( ) ( )( ) ( ) ,�� �� �� 	 (5.8.1)

	 A dD
e e� � � � �� �( ) ( )( ) ( ) .�� �� ��� 	 (5.8.2)

Here and subsequently, the orthonormality relations 
(2.24), (2.31), (2.35), (2.38) are applied. As a result, 
we obtain:

�( )( ) =e ��

� � � �� �� �{ ( ) ( ) ( ) ( )}( ) ( ) ( ) ( )

�
� �� � � �e e e e�� �� �� ��

	 � � ��( )( ) .e d�� �� 	 (5.9)

Substituting this expression into equality (5.2) gives:

ϕ( )( ) =e r

� � �
�

�� ��{ ( , )k er ��
�
�
�

��
1

� � �� �� �� �
( ) ( ) ( ) ( )( ) ( ) ( ) ( )}e e e er r� ��� ��

	 � � ��( )( ) .e d�� �� 	 (5.10)
In deriving this expression, equalities (3.20) and 
(3.23) were used. From relation (5.10), considering 
the expression (3.36) for the value of k re( , )��� , we 
obtain the solution to the external Dirichlet problem 
in the following form:

	 � �D
e

D
e eF d( ) ( ) ( )( ) ( , ) ( ) ,r r� � � �� �� �� �� 	 (5.11)

where:

FD
e( )( , )r � ���

   � � �
�
�
�

��

�
�
�

��
� ��

�
� �� �( ) ( ) ( ) ( )( ) ( ) ( ) ( ) .e e e er r� ��� �� 	 (5.12)

The potential ϕD
e( )( )r  outside the body obviously 

satisfies Laplace’s equation. On the surface of the 
body ( = )re ρρ , due to the completeness relation 
(2.41), we have:

FD
e( )( , ) ( ),�� �� �� ��� �� ��

so the equality (5.11) turns into an identity:

� �D
e e( ) ( )( ) = ( ).�� ��
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5.2. External Neumann Problem
In this case, the normal derivative of the potential 

�(e)( )��  is specified on the boundary of the body S. 
Therefore, using equation (5.3), let us express the 
surface potential �( )( )e ��  through the value of �( )( )e �� . 
Seek �( )( )e ��  in the form:

	 �
�

� �
( )( ) = ( ) ( ).e

N NA A�� �� ��� �� � 	 (5.13)

Substituting (5.13) into equation (5.3), considering 
(3.15) and (3.8), gives:

ν
ν

ν

ν
ν

ε
ε

ψ∑ +
+A AN

i
N1

( ) =( ) r Ψ

	 = ( ) ( ) .0
( )� �G di
er �� �� ��� 	 (5.14)

Set ri = ρρ  here and replace the index v with 
µ. The transformed equality (5.14), multiplied 
by ��

( )( )e �� , and then by �( )( )e �� . Integrating the 
obtained relations over the entire surface area of the 
body, we find the decomposition coefficients (5.13):

	 A dN
e

� � �� � � � �� � ( ) ( ) ,( )�� �� �� 	 (5.15.1)

	 A dN
e� � � � �� �( ) ( ) .( )�� �� ��� 	 (5.15.2)

Therefore, for �( )( )e ��  from (5.13), we obtain:

�( )( ) =e ��

   = { ( ) ( ) ( ) ( )} ( ) .( )� � � � � �� �
�

� �� � � �n
e d�� �� �� �� �� �� 	(5.16)

Here:

� � �( ) = ( ) = .�� ���

Substituting �( )( )e ��  from (5.16) into (5.2) gives:

ϕ( )( ) =e r

=
1

1
( ) ( ) ( )( )

0�
�

� � � �
�
�
�

��

�
�
�

��
�� �

� �
� ��

� e
eGr r� �� ��

	 � � ��( )( ) .e d�� �� 	 (5.17)

In deriving (5.17), relations (3.14) and (3.7) were 
taken into account. Using the explicit expression 
(3.31) for G re0( )� ���  in (5.17), we obtain the solution 
to the external Neumann problem in the following 
form:

	 � �N
e

N
e eF d( ) ( ) ( )( ) = ( , ) ( ) ,r r� � � ��� �� �� 	 (5.18)

where:

	 FN
e e e( ) ( ) ( )( , ) = ( ) ( ) ( ) ( ) .r r r� � � � �

�
�
�

��

�
�
�

��
��� �� ��
�

� �� �� �

The potential ϕN
e( )( )r  outside the body satisfies 

Laplace’s equation. Calculating the normal 
derivative �N

e( )( )��  of the potential (5.18), (5.19), we 
verify that it matches �( )( )e �� .

The goal of internal boundary (boundary) 
problems is to find a solution to Laplace’s equation 
inside a certain cavity, on the surface of which the 
value of the potential �( )( )i �� , itself, or its normal 
derivative �( )( )i �� , is specified. To derive the equations 
necessary for solving internal problems, integrate 
relation (5.1) over the volume v. As a result, at r r= i 
and r r= e respectively, we obtain:

� �( ) ( )( ) = ( , ) ( )i
i

ik dr r� � � � ��� �� ��

	 � � � � ��G di
i

0
( )( ) ( ) ,r �� �� ��� 	 (5.20)

� � � �k de
i( , ) ( ) =( )r �� �� ���

	 = ( ) ( ) .0
( )� � � � �G de
ir �� �� ��� 	 (5.21)

5.3. Internal Dirichlet Problem

In this case, the value of the potential �( )( )i ��  itself 
is specified on the surface S of the cavity. Therefore, 
solving equation (5.21), express the normal derivative 
�( )( )i ��  through the surface potential �( )( )i �� . The 
value of �( )( )i ��  is sought in the form:

	 �
�

� �
( ) ( ) ( )( ) = ( ) ( ).i

D
e

D
eB B�� �� ��� �� � 	 (5.22)

Substituting (5.22) into (5.21) considering (3.20) and 
(3.23) gives:

ν
ν

ν

ν
ν

ε
ε

ψ ψ∑ +
+B BD

e
D

e

1
( ) ( ) =( ) ( )r r

	 = ( , ) ( ) .( )� � � �k de
ir �� �� ��� 	 (5.23)

Let us set here re = ρρ and replace the index v with µ, 
so that (5.23) takes the form:

�
�

�

�
�

�
�� �

�B BD D1
( ) =� ���

	 = ( , ) ( ) .( ) ( )� � � �K de i�� �� �� ��� 	 (5.24)
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We multiply (5.24) by ��
( )( )e ��  and integrate over the 

entire surface area S. Then multiply (5.24) by �( )( )e ��  
and also integrate over the surface S. As, according 
to (3.38),

	 � �
�

�K de e e( ) ( ) ( )( , ) ( ) =
1

1
( ),�� �� �� ��� ��

�
��

�
	(5.25.1)

	 � �K de e( ) ( )( , ) ( ) = 0,�� �� �� ��� 	 (5.25.2)

then:

	 B d BD
e i

D�
�

��
� �=

1
( ) ( ') , = 0.( ) ( )� � �� �� �� 	(5.26)

Therefore, from (5.22) and (5.26) it follows:

	 �
�

�
� �

� �
( ) ( ) ( ) ( )( ) =

1
( ) ( ) ( ) .i e e i d�� �� �� �� ��� � � � �� �  (5.27)

Substituting �( )( )i ��  from (5.27) into (5.20) gives:

ϕ( )( ) =i r

= ( , )
1

1
( ) ( )( ) ( )� �� �

�
�

�
�
�

��

�
�
�

��
�k i

i er r�� ��
� �

� ��
� �

	 � � ��( )( ) .i d�� �� 	 (5.28)

Finally, using the expression (3.37) for k i( , )r ��� , we 
obtain the solution to the internal Dirichlet problem 
in the following form:

	 � �D
i

D
i iF d( ) ( ) ( )( ) = ( , ) ( ) ,r r� � � ��� �� �� 	 (5.29)

where:
FD

i i e i e( ) ( ) ( ) ( ) ( )( , ) = ( ) ( ) ( ) ( )r r r� � � � �
�
�
�

��

�
�
�

��
��� �� ��
�

� �� �� � ..

� (5.30)
The potential ϕD

i( )( )r  satisfies Laplace’s equation 
inside the cavity, and the boundary condition on its 
surface is met:

� �D
i i( ) ( )( ) = ( ).�� ��

5.4. Internal Neumann Problem

In this problem, the normal derivative of the 
potential �( )( )i ��  is specified on the surface of the 
cavity. Therefore, in solving equation (5.21), express 
the surface potential �( )( )i ��  through the value of 
�( )( )i �� . 

The potential is sought in the form of a 
decomposition:

	 �
�

� �
( )( ) = ( ) .i

N NB B�� ��� �� � 	 (5.31)

Substituting (5.31) into (5.21) considering (3.14) 
leads to a relationship:

�
�

� � � �� �
�

�
�

��
� �B G dN

e
e

i1
1

( )= ( ) ( ) .( )
0

( )r r �� �� ��

Due to the relationship (3.7), the coefficient BN  does 
not enter into this expression. Set in (5.32) re = ρρ , 
and replace the index v with µ, multiply by ��

( )( )e ��  
and integrate over the entire surface area S of the 
cavity. Thus, finding the coefficient BvN, for the 
surface potential �( )( )i ��  from (5.31) we get:

	 � � �
�

� � �
( ) ( )( ) = ( ) ( ) ( ) .i i d�� �� �� �� ��� � � � �� �  	(5.33)

Substituting �( )( )i ��  from (5.33) into the relationship 
(5.20) gives:

ϕ( )( ) =i r

=
1

( ) ( ) ( )
2

( )
0� � �

� � � �
�
�
�

��

�
�
�

��
�

�

�

�
� �

�
�
� i

iGr r� �� ��

	 � � ��( )( ) .i d�� �� 	 (5.34)

Using the expression (3.32) for G i0( )r � ���  we obtain 
the solution to the internal Neumann problem in the 
following form:

	 � �N
i

N
i iF d( ) ( ) ( )( ) = ( , ) ( ) ,r r� � � ��� �� �� 	 (5.35)

where:

FN
i i i( ) ( ) ( )( , ) = ( ) ( ) ( ) ( ).r r r� � � ���� �� ��

�
� � �� � �� �

Note that integrating the Laplace equation for the 
potential over the volume v of the cavity gives:

	
v

i idr d� ��2 ( ) ( )( ) = ( ) = 0.� �r �� �� 	 (5.37)

Since � �( ) = =��� const  is such that, due to (5.37) 
we have:

	 � �� � � � �� �( ) ( ) = ( ) = 0.( ) ( )�� �� �� �� ��� �i id d 	 (5.38)

Therefore, the product �( )( ) ( )i r � ���  in (5.36) should 
be omitted. 

Thus, for the potential ϕN
i( )( )r  we finally obtain:
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      � � � �
�

� � �N
i i i d( ) ( ) ( )( ) = ( ) ( ) ( ) .r r� � �

�
�
�

��

�
�
�

��
� �� �� �� �� 	 (5.39)

The potential ϕN
i( )( )r  inside the cavity satisfies 

Laplace’s equation. For the normal derivative of the 
potential �N

i( )( )��  from (5.39), we find:

     � �
�

� �N
i e i d( ) ( ) ( )( ) = ( ) ( ) ( ) ,�� �� �� �� ��� �

�
�
�

��

�
�
�

��
� �� �� � � (5.40)

where the relationship (2.10) is considered. Adding 
and subtracting � �( )( ) ( )e �� ���  in the curly brackets we 
bring (5.40) to the form:

�N
i( )( ) =��

= ( ) ( ) ( ) ( ) ( )( ) ( ) ( )� � � �
�
�
�

��

�
�
�

��
� ��� �

�
� � �� � � �e e i d�� �� �� �� �� ��

	 � � � ��� �( ) ( )( ) ( ) ( ) .e i d�� �� �� ��� 	 (5.41)

Here, the integral in the second term according 
to (5.38) equals zero. Therefore, due to the 
completeness relation (2.41) from (5.41) it follows:

� �N
i i( ) ( )( ) = ( ),�� ��

so the boundary conditions of the problem are met.

6. POLARIZABILITY TENSOR

Let us consider the following electrostatic problem: 
A macroscopic body with dielectric permittivity ε( )e  is 
situated in a medium with dielectric permittivity ε( )i . 
An external homogeneous electric field with intensity 
E0 is applied to this system. In this scenario, the 
external (outside the body) potential ϕ( )( )e r , which 
obeys Laplace’s equation, can be represented as:

	 ϕ δϕ( )
0

( )( ) = ( ),e er rE r− + 	 (6.1)

where δϕ( )( )e r  also obeys Laplace’s equation. At large 
distances from the body, the “truncated” potential 
δϕ( )( )e r  has the following asymptotic behavior:

	 r
r

e→ ∞ +: ( ) ,( )
3

δϕ r
pr� � 	 (6.2)

where:

	 p E= 0Λ 	 (6.3)

is the dipole moment of the body, and Λ  is the 
polarizability tensor. The task is to find an expression 

for the polarizability tensor Λ for a body of arbitrary 
shape.

This problem is solved using the method of 
eigenfunctions. It turns out that in this problem, 
the charge state does not contribute. Therefore, we 
will omit the charge function from the beginning. 
To find the potential ϕ( )( )i r  inside the body, we use 
the results of solving the internal Dirichlet problem, 
according to which specifying the surface potential  
allows determining its �( )( )i ��  normal derivative 
�( )( )i ��  according to relation (5.27), and the function 
ϕ( )( )i r  itself according to formulas (5.29), (5.30). 
Therefore, setting:

	 �
�

� �
( )( ) = ( ),i B�� ��� � 	 (6.4)

we find:	

�
�

�
� �

� �( )( ) =
1

( ) ( ) ( ) =( ) ( ) ( )i de e i�� �� �� �� ��� � � � �� �

	 =
1

( );( )��
� �

� ��
B e� �� 	 (6.5)

� � �
�

� �
( ) ( ) ( ) ( )( ) = ( ) ( ) ( ) =i i e i dr r� � � �� �� �� �� ��

	
ν

ν νψ∑B i( )( ).r 	 (6.6)

For the full potential ϕ( )( )e r  outside the body, the 
results of solving the external Dirichlet problem are 
unsuitable due to the divergence at r → ∞ of the term 
−rE0. However, they can be applied to the truncated 
potential δϕ( )( )e r . If the surface potential ��( )( )e ��  
is specified, its normal derivative ��( )( )e ��  can be 
determined according to equation (5.9), and the 
function δϕ( )( )e r  itself can be determined according 
to formulas (5.11), (5.12). Therefore, setting:

	 ��
�

� �
( )( ) = ( ),e A�� ��� � 	 (6.7)

we find:

�� ��
�

� �
( ) ( ) ( ) ( )( ) = ( ) ( ) ( ) =e e e e d�� �� �� �� ��� � � �� �� �

	 = ( );( )

�
� ��A e� �� 	 (6.8)

�� � ��
�

� �
( ) ( ) ( ) ( )( ) = ( ) ( ) ( ) =e e e e dr r� � � �� �� �� �� ��

	
= ( ).( )

ν
ν νψ∑A e r 	 (6.9)
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The full potential ϕ( )( )e r  is given by formula (6.1) 
with δϕ( )( )e r  from (6.9), and for its normal derivative, 
we have:

	 � ��( )
0

( )( ) = ( ),e e�� ��� �nE 	 (6.10)

Where n is a vector of the external normal and 
��( )( )e ��  is determined in (6.8).

For potentials ϕ( )( )e r  and  ϕ( )( )i r , boundary 
conditions (2.6) must be met, so:

	 � �� ��� �� ��E0 ( ) = ( ),
�

� �
�

� �A B� � 	 (6.11)

   � � �� �nE0
( ) ( )( ) =

1
( ),

�
� �

� �
� ��

A h Be e� ��� �� 	 (6.12)

where:

h
i

e
= .

( )

( )

ε
ε

In (6.11), (6.12), replace the index v with µ, multiply 
(6.11) by ��

( )( )e �� , and multiply (6.12) by ��( )�� . 
Integrating the obtained equalities over the entire 
surface area of the body, we find:

	 E0
( )( ) = ,� ��� �� ���� � �
e d A B 	 (6.13)

	 E n0 ( ) = .� � ��� �
�

��
�� ��d A

h
B 	 (6.14)

Note that:

� �
�
�

�
�

�
�
�

��

�
�
�

��
�� ����

�

�

�
�

�( )
( )

( ) =
( )

=i

v

i

d
x x

drr
r

	 = ( ) = ( ) ,( )

v

i dr d� ���� �r n� �� �� 	 (6.15)

so that:

	 � ��n� ��
�

��
( ) =

1
( ) .( )�� �� �� �� ��d de 	 (6.16)

Therefore, equality (6.14) takes the form:

	 � � ��E0
( )( ) = .�� �� ���� � � ��e d A hB 	 (6.17)

From (6.13) and (6.17), we find:

	 A
h

h
de

�
�

��
=

1
( ) ,0

( )�
� �E �� �� ��� 	 (6.18)

where, according to (3.29), (3.30):

	 � �
�

�� �� ���� �
�

�
�

�
�

( )( ) = 4
1

.e d d 	 (6.19)

At large distances from the body, expression (6.9), 
taking into account the asymptotics (3.28), takes the 
form of (6.2), where:

	 p d= .
�

� ��A 	 (6.20) 

By substituting the coefficient Aν from (6.18), (6.19) 
into formula (6.20) and comparing it with (6.3), we 
obtain an expression for the polarizability tensor:

	 Λαβ
ν

ν
να νβ

ν
π γ

ε
= 4 (1 ) ,− −

+∑h
d d

h
	 (6.21) 

where:

	 γ
ε

εν
ν

ν
=

1
.

+
 	

7. CONCLUSION

The method of eigenfunctions has been presented 
within the framework of macroscopic electrostatics. 
However, eigenfunctions and eigenvalues are 
determined by the geometry of the problem 
being considered, not by its physical content. 
Therefore, this method can be applied in all cases 
where the original problem reduces to solving 
Laplace’s equation. Such problems arise, as is well 
known, in the hydrodynamics of ideal fluids [12], 
aerodynamics [13], and in the steady-state theories 
of heat conduction, diffusion, conductivity, etc. For 
instance, in the works [10, 11, 14], the discussed 
method was used when considering the conductivity 
of a two-dimensional Rayleigh model — a thin film 
with a periodic distribution of circular inclusions. 
The application of the method made it possible to 
find an exact expression for the effective conductivity 
of the model in the area most difficult to study — 
the vicinity of the metal-dielectric phase transition 
point.
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