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Abstract. A theory of Ramsey resonance excitation has been developed, taking into account the complete 
magnetic structure of levels D₁-line of ⁸⁷Rb atoms, as well as the finite temperature of the ensemble. 
The dependences of the shape and shifts of resonances on parameters such as external magnetic field 
magnitude, degree of laser field ellipticity, and medium temperature have been analyzed. The possibility 
of interference between different channels of Ramsey resonance excitation, observed when varying the 
magnetic field magnitude, is shown. The existence of optimal field ellipticity at certain polarization, 
leading to the highest resonance amplitude, has also been discovered.
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1. INTRODUCTION

The phenomenon of coherent population 
trapping (CPT) represents the emergence of such a 
superposition quantum state that does not interact 
with laser radiation. This situation can be realized 
through the interaction of bichromatic laser radiation 
with atomic ensembles [1-4]. In the absorption 
spectrum, this manifests as the emergence of a 
transparency window, which can be hundreds or even 
tens of hertz wide. The presence of a narrow resonance 
allows the use of the CPT phenomenon in various 
practical applications: optical magnetometry [5-8], 
lasing without inversion [9], quantum informatics 
[10-12], compact frequency standards [13-20].

One of the most important tasks of high-precision 
spectroscopy is obtaining narrow and highcontrast 
CPT resonances. The use of continuous pumping 
of laser sources imposes certain limitations on the 
resonance width. At the same time, a significant 
narrowing of the CPT resonance line can be 
achieved by implementing pulsed pumping or the 
Ramsey scheme [21]. The essence of this method lies 
in the interaction of an atomic ensemble with two 
consecutive pulses (pumping and reading), separated 
by a dark pause [22]. As a result, the width of the 

CPT resonance is determined only by the dark pause, 
which allows achieving a significantly narrower CPT 
resonance line [22].

Currently, active research is being conducted 
on two-photon resonances (coherent population 
trapping and double radio-optical resonance 
(DROR)) using pulsed pumping. The authors of 
work [23] described a method for stabilizing the 
amplitude of the interrogating microwave field in 
compact atomic clocks based on DROR using the 
Ramsey interrogation scheme. In work [24], it was 
shown that Raman-Ramsey interference is a highly 
effective method for implementing compact and 
high-performance frequency standards based on 
CPT in buffer gas cells. In this work, the authors 
theoretically investigated Raman-Ramsey resonances 
in optically dense atomic vapors. The emergence of 
Ramsey comb shifts and "clipping" of its maxima in 
the Ramsey interrogation scheme of CPT resonance 
in a cold dilute atomic ensemble in an optically 
dense medium is shown in [25]. Experimental 
study of CPT resonances based on the Raman-
Ramsey technique in cells containing gas mixture  
87Rb–Ar–Ne for lin lin lin  configuration was 
conducted in [26], and for cells with atoms 133Cs — in 
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[27]. The influence of hyperfine structure on the 
CPT resonance shape in the Ramsey interrogation 
scheme in cold and hot atoms is analyzed in works 
[28, 29]. A consistent theory of bichromatic laser 
radiation interaction with an optically dense medium 
of alkali atoms having non-zero temperature under 
pulsed pumping is presented in [30]. Methods for 
suppressing light shifts of CPT resonances under 
pulsed pumping based on the auto-balanced scheme 
were experimentally investigated in [31]. The auto-
balanced scheme in an optically dense medium 
is theoretically considered in [32]. The possibility 
of suppressing field shifts of CPT resonance 
using methods of generalized auto-balanced 
Ramsey spectroscopy and combined error signal 
is demonstrated in [33]. The authors of work [34] 
succeeded in implementing a rubidium quantum 
frequency standard based on DROR, using pulsed 
pumping and achieving stability 132 .5 10-×  per second. 
The results of work [35] showed that this is not the 
limit. The authors of this work managed to improve 
the previous result and achieve atomic clock stability, 
also based on DROR and using pulsed optical 
pumping of "hot" atoms, to values of 131 .2 10-×  per 
second [35]. Work [36] emphasizes that multi-pulse 
CPT-Ramsey interferometry is a powerful tool for 
improving the characteristics of CPT-based atomic 
clocks. The authors analyzed multi-pulse CPT-
Ramsey interferometry for arbitrary pulse sequences 
and obtained a generalized analytical expression.

Summarizing, we can see that the study of CPT 
resonances under pulsed pumping is a relevant 
direction. Currently, theoretical research in this 
direction has allowed developing the theory of laser 
pulse radiation interaction under CPT resonance 
conditions in "hot" atoms in the absence of degeneracy 
between hyperfine levels in optically thin [29,36] and 
optically dense [24, 25, 28, 30] media. The theory of 
CPT resonances in alkali metal vapors in cells with 
buffer gas, considering the "real" structure of energy 
levels and polarization of light waves for continuous 
excitation by a two-frequency field [37], has been 
constructed quite comprehensively. However, there 
is no similar theory of CPT resonance for pulsed 
pumping. The aim of this work is to fill this gap 
and describe the interaction of laser radiation with 
alkali atoms at room (and higher) temperatures. 
Simultaneously, we assume that laser radiation has 
arbitrary polarization, and active atoms are in an 
external magnetic field, which leads to the removal of 
degeneracy between Zeeman sublevels.

2. MATHEMATICAL MODEL

Let's consider a medium of atoms 87Rb in the field 
of bichromatic laser radiation, quasiresonant to the 

1D -line of atoms (see Fig. 1). The external electric 
field strength vector can be written as 

	 - - +t t i t k z1 1 1( , ) = ( , )exp ( )E r E r ω

	 + - - +t i t k z2 2 2( , )exp ( ) c .c .,E r ω            (1)

where ωj, jk  — frequencies and wave vectors of the 
corresponding frequency components of the wave  
( = 1,2j ). Here 

+ -
+ -+( , ) = (r, )e = (r, )( e e )j j j j j jt E t E t p pE r  (2)

 — complex amplitudes of the frequency components 
of the electric field strength, decomposed into 
covariant cyclic unit vectors 

±
± ±

*e = e = (e e ) / 2x yi

with coefficients jp±. The values of these coefficients 
determine the polarization state of radiation. Note 
that these amplitudes are related to intensities jI  as 

| |= 2 /  .j jI cπE

Further, we will use the optical thinness 
approximation of the medium, neglecting the 
coordinate dependencies of these amplitudes. 
We will also neglect the possibility of incoherent 
scattering associated with radiation reabsorption in 
the medium [38-41].

The quantum state of the atomic ensemble will be 
described through the single-particle Wigner density 
matrix ν tˆ(r, , )ρ . Here we neglect collective effects 
[42-44], i.e. by dipole-dipole interaction between 
active atoms, considering the medium sufficiently 
rarefied. The equation for the density matrix in the 
Wigner representation for the translational degrees 
of freedom of atoms can be written as

	 ν Γ+ Ñ - + +



i H Ŝˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ= [ , ] ( ) ( ),ρ ρ ρ ρ ρ 	 (3)

where ˆ̂Γ, ˆ̂S  — are superoperators phenomenologically 
accounting for spontaneous decay of excited 
states of active atoms and their collisions with 
buffer gas atoms respectively, υ is the translational 
velocity vector of atoms , is the reduced Planck  
constant.
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Fig. 1. Pumping scheme of the 1D -line of the atom 87Rb

The system Hamiltonian can be represented as 

0
ˆ ˆ ˆ= ,H H V-                           (4)

where 

å0
ˆ = at

n
n

H n nω

— is the free atom Hamiltonian, at
nω   — are the 

atomic energy level frequencies n ( = 1, . . .,16n ).
The interaction Hamiltonian V̂  is written in the 

dipole approximation: 

×
× - - +

 

V E i t k z1 1 1 1
ˆ 1ˆ ˆ= = [( ) exp ( )d E

d e ω

	 2 2 2 2
ˆ( ) exp ( ) H .c .] .E i t k zω+ × - - +d e   (5)

Here d̂ — is the dipole moment vector operator. We 
express it through contravariant cyclic unit vectors: 

	 0ˆ ˆ ˆˆ =  .zd d d+ -+ -+ +d e e e             (6)

The matrix elements values of cyclic components 
of the dipole moment operator for optical transitions 
can be found using the Wigner-Eckart theorem [45] 
and spontaneous decay theory [46]: 

+ + -
- + + ´

1
, = ( 1) (2 1)(2 1)

F J Igq j
ge g jj j

d J F

ì üï ïï ï´ í ýï ïï ïî þ

, ,
0, ,  1,  

 ,  
 ,

 1
j j

j j
g
e e

g

F m e j
F m q

j

F JI
C V

FgJ   (7)

where 
γ

D

c
V

3

0 3

1

3= ;
4ω

γ  — is the spontaneous decay rate of the excited 
state; D1

ω   — is the frequency of the unsplit 
transition of the 1D -line; c — is the speed of light 
in vacuum; ( ) = 1,2g ej j

F , = 1 / 2J , = 3 / 2I  — are 

the absolute values of the total atomic momentum 
at level | (| )j jg eñ ñ , electron shell momentum at level 
n  and nuclear momentum respectively; nm  — is the 

projection value of the total momentum at level n ; 
,
, ,1,

F me e
F m qg g

C  — are Clebsch-Gordan coefficients; curly 

brackets denote 6 j-symbols; 1 = 1, . . .,3g ; 2 = 4, . . .,8g ; 
1 = 9, . . .,11e ; 2 = 12, . . .,16e ; = 1q ± ; 

-


i t k zj j
g e eg g ej j j

e
( )*= = ,
ω

ρ ρ ρ              (8)

- - -


i t k k z
g g g g g ge

[( ) ( ) ]* 1 2 1 2
1 2 2 1 1 2

= =  .ω ωρ ρ ρ    (9)

The detunings of fields from corresponding 
unsplit transitions are defined, assuming tuning to 
levels with  = 1eF , as follows: 

	 ∆ ∆ ∆
æ ö÷ç- + - ÷ç ÷÷çè ø

hfs hfs
j j D e g j1 1

= ,ω ω          (10)

where hfs
n∆  — are the hyperfine splitting frequencies 

of levels n .
Taking into account substitutions (8), (9), 

let's write out element by element equation 
(3), excluding terms oscillating with double 

frequency 
2 ( )i t k zj je

ω -æ ö÷ç ÷µç ÷ç ÷çè ø
, within the rotating wave 

approximation: 

+Ñgg gg( ) ( ) =ρ ρυ υ

( )- +å  

 eg eg ge eg
e

i V V
16

*

=9
= ( ) ( )ρ ρυ υ

γ+ - +å eg ee gg
e

16

=9
( ) ( )ρ νρυ υ

¢ ¢ ¢
¢

+ +å òg g g g
g

M d
8

3

=1
( ) ( ') 'ν ρυ υ

+å òeg ee
e

M d
16

3

=9
( ) ( ') ',ν ρυ υ

    (11)
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ρ+ Ñee ee( ) ( ) =ρ υ υ υ

( )- -å  

 eg ge eg eg
g

i V V
8

*

=1
= ( ) ( )ρ ρυ υ

γ- + +ee( ) ( )ν ρ υ

¢ ¢ ¢
¢

+å òe e e e
e

M d
16

3

=9
( ) ( ') ',ν ρυ υ     (12)

 + Ñ

 g e g ej j
( ) ( ) =ρ ρυ υ υ

	 ∆ ∆- + - × +j g e j g ej j
i= ( ) ( )k ρυ υ

γ
¢ ¢

¢

æ ö÷ç+ - + ÷ç ÷÷çè øå 

g eg g eg jj j jg j

i V *( ) ( ),
2

ρ ν ρυ υ   (13)

 + Ñ

 g g g g1 2 1 2
( ) ( ) =ρ ρυ υ υ

	 ( )- -å  

 eg eg g e eg
e

i V V
16

*
1 2 1 2=9

= ( ) ( )ρ ρυ υ

	 ∆ ∆ ∆- - + - × -g g g gi 1 2 1 2 1 2
( ) ( )q ρυ υ

	 - + ò 

rf
g g g gS M d 3
1 2 1 21/ 2

( ) ( ) ( ') ',νρ ν ρυ υ υ υ     (14)

 ¢ ¢+ Ñg g g gj j j j
( ) ( ) =ρ ρυ υ υ

	 ¢ ¢
æ ö÷ç - +÷ç ÷çè øå  

 eg g eeg egj jj je
i V V

16
*

=9
= ( ) ( )ρ ρυ υ

	 ¢ ¢ ¢+ - +g g g g g gj j j j j j
i ( ) ( )ω ρ νρυ υ

	 ¢ ¢+ ¹òzee
j jg gS j j

M d g g3

1/ 2
( ) ( ') ',  .ν ρυ υ υ    (15)

Here, the following notations are introduced 

1
= ( ),hfs mag hfs mag

g e e g e ej i j i i
∆ ∆ ∆ ∆ ∆+ - +

1 2 1 2
= ,mag mag

g g g g∆ ∆ ∆-

mag
n∆  — frequencies of magnetic level splitting n  

(estimated using the Breit-Rabi formula [47] with 
accuracy up to the quadratic term in magnetic field); 

( ) ( )π
-

-T TM
3 2 2( ) = exp /υ υ υ υ

  — Maxwell distribution, υT   — most probable 
thermal velocity; γ  — decay rates of excited states; 

e gγ  — decay rates of excited levels e  to levels g ; 

= ( ) /eg eg j jj j
V d e E



— generalized Rabi frequencies of corresponding 
transitions; nmν  — collision frequencies leading to 
transitions ®n m ; ν — total collision frequency; 

rf
S1/ 2

ν , zee
S1/ 2

ν   — collision frequencies that do not 
lead to destruction of radio-frequency and Zeeman 
coherences between sublevels 1/2S -states respectively 
(the latter is assumed equal to in calculations ν); 

-nm m n=ω ω ω ; = 1, . . .,8g , = 9, . . .,16e . Here, the 
collision integrals are written in the strong collision 
model [48], and equations for coherences between 
excited state sublevels ¢eeρ  are discarded within the 
adiabatic approximation ( 

egV ν ). The values of 
constants for the atom 87Rb are taken from work [47].

Using a model where atomic populations after 
collisions become uniformly mixed across ground 
and excited multiplets [48], we relate frequencies 

nmν  to the total collision frequency ν as follows: 

	 ( )

¢

¢

ìï ¢-ïïïïïï ¢ ¹íï -ïïïïïïî
ìï ¢ ¢- -ïïïïï ¢ï ¢- ¹íï -ïïïïïïî

1/ 2

1/ 2

(1 ), = ,

= , ,
1

1  , = ,

= , ), ,
1

rf

rf

g g
S

rf opt

rf
opt

e e
P

g g

g g
N

e e

e e
N

ν η

η νν

ν η η

η νν η

	 (16)

wher e  
1/2 1/2

= = 8S PN N   —  nu mb er s  of 

sublevels 1/2S - and  1/2P -states, respectively; ,rfη   
¢rfη  — fractions of collisions leading to population 

mixing between ground and excited state sublevels 
respectively; optη  — fraction of collisions leading 
to excitation quenching. The value ν can be estimated 
from the gas-kinetic formula +a bufn n u= ( )ν σ , where 

an  — concentration of active atoms, bufn  — buffer gas 
concentration, σ — cross-section of the corresponding 
process, πu kT= 8 / µ   — mean thermal velocity,  
� — reduced mass of active atom and buffer gas atom. 
Note that the buffer gas atom concentration bufn  in 
the ensemble is much higher than the concentration 
of active atoms an . Due to this, the temperature 
dependence of frequency ν can be neglected, as only 
concentration an  depends on the latter.

We will limit ourselves to the approximations 
of a plane wave front, small diffraction of the 
field at the medium edges, and uniformity of its 
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optical properties. Furthermore, we will neglect 
diffusion effects, assuming that the diffusion length 
during excitation time eτ  is much smaller than 
the characteristic dimensions of the medium L: 

eD Lτ  , where D — is the diffusion coefficient. 
All this allows us to neglect the dependence of 
the density matrix on coordinates in directions 
transverse to the laser beam z tˆ ˆ= (, , )ρ ρ .

We will transition to the reduced density matrix 

ònm nmz t z t d 3( , ) = ( , , )ρ ρ υ υ

the symbol <<>> above the letter for cases n m¹  is 
omitted) by integrating the equations over velocities. 
Using the weak field approximation, the velocity 
dependencies of ground state populations gg ( )ρ υ  
and coherences between magnetic ¢g gj j

( )ρ υ  and 
hyperfine g g1 2

( )ρ υ  sublevels of the ground state can 
be approximately considered Maxwellian [29]: 

¢ ¢gg ggz t M z t( , , ) = ( ) ( , ) .ρ ρυ υ              (17)

This approximation is due to the assumed narrow 
laser line compared to the Doppler width, small 
Rabi frequencies compared to γ  and long coherence 
lifetime between ground state sublevels. As a result of 
integration for equations (11), (12), (14), (15), we obtain 

æ ö÷ç - +÷ç ÷çè øå  

g g eg eg g e egj j j j j j
e

i V V
16

*

=9
=ρ ρ ρ

γ ¢
+ - +rf

exc g gj jSN
1/ 2

ρ η νρ

¢ ¢
¢
¢¹

+
- å

=11/ 2

8
,

1

rf

g g
S g

g g

N
η ν ρ       (18)

 
( ) γ ¢- -åå  

16 8
*

=9 =1
=  ,exc eg ge eg eg exc

e g
i V Vρ ρ ρ ρ     (19)

 

( )- -å  

g g eg eg g e eg
e

i V V
16

*
1 2 1 2 1 2=9

=ρ ρ ρ

∆ ∆ ∆ γ- - + +g g g gi 1 2 121 2 1 2
( ( ) ) ,ρ      (20)

¢ ¢ ¢ ¢ ¢
æ ö÷ç - +÷ç ÷çè øå  

eg g eg g eg eg g g g gj jj j j j j j j je
i V V i

16
*

=9
= ,ρ ρ ρ ω ρ

  (21)

where 
å=  exc ee

e
ρ ρ

  — is the total population of excited states; 
γ γ¢ + opt= νη  — is the collision-modified decay rate 
of excited states; γ - rf

S12
1/ 2

= ν ν  — is the collision 
decay rate of radio-frequency coherences between 
hyperfine sublevels of the ground state. When obtaining 
these equations, terms with gradients in the left parts 
of equations (11), (12), (14), (15), as well as the term in 
(14) accounting for residual Doppler shift qυ, vanish 
due to approximation (17). Here, when obtaining 
equation (18), we limited ourselves to considering 
the case of complete collisional depolarization 
of the excited state, assuming γ¢ ¢



rfη ν , which 
occurs at relatively high buffer gas pressures [37, 49, 
50]. Note that for such pressures, the collisional line 
broadening becomes comparable to the frequency of 
hyperfine splitting of the excited state.

In equation (13), the transition to reduced density 
matrix elements through velocity integration is 
analytically impossible due to the presence of 
Doppler terms proportional to ×jk υ . Therefore, we 
first express optical coherences through quadratures 
and then integrate over velocities:

¢ ¢
¢

¢ ¢ ¢ ´åò 

t

g e g g e gj i j j i jg j

t i dt t V t*

0

( ) = ( ) ( )ρ ρ

υ´ ´ò d M3 ( )υ

∆ ∆ Γ ¢ ¢´ - + - × + -j g e jj i
i t texp[ ( ( ) )( )],k υ   (22)

where 
Γ ¢ += / 2  .γ v

Performing velocity integration in (22), we obtain 

¢ ´ò
t

g ej i
t i dt

0

( ) =ρ

	
∆ ∆ Γ

é ù
ê ú¢ ¢ ¢´ - - - + + - ´ê ú
ê úë û

T j
j g ej i

t t i i t t
2 2

2exp ( ) ( )( )
4
kυ

*( ) ( ) .g g e gj j i jg j

t V tρ ¢ ¢
¢

¢ ¢´å      (23)

By substituting (23) into (18)-(21), we obtain a 
system of Volterra integro-differential equations of the 
second kind, which allows further numerical solution.

3. RESULTS

This work investigates CPT resonances detected 
by two rectangular pulses separated in time by a dark 
pause (Fig. 2). The duration of the first pumping 
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pulse is assumed to be much longer than the time 
required to establish a steady-state CPT, which 
allows using the stationary solution of system (18)-
(21) at the end of the pumping pulse. The duration 
of the dark pause is assumed to be much longer than 
the decay times of all optical coherences and excited 
state populations.

By calculating the dependence of the total excited 
state population on the two-photon detuning 

exc ( )ρ δ  at the end of the readout pulse, we obtain 
the spectrum of CPT resonances detected by the 
Ramsey method. For convenience of analysis, we 
will consider the resonance contrast, which we 
define as follows: 

- exc

exc off
C

( )
( ) = 1 ,

( )
ρ δ

δ
ρ δ

where offδ  — is the value of two-photon detuning 
outside the CPT resonance.

Let's analyze the influence of the magnetic field 
on the CPT-Ramsey resonance spectrum and do 
this for two known polarization field configurations
lin lin^  [51] and lin lin  [52]. Fig. 3 shows that the 
amplitude of Ramsey resonances is lower than the 
amplitude of resonances detected by continuous 
radiation. This is explained by the decay of low-
frequency coherences between the sublevels of the 
ground state during the dark pause. Thus, increasing 
the duration of the dark pause leads, on the one 
hand, to narrowing of resonances, but on the other 
hand, to a decrease in their amplitude. Increasing 
the magnetic field allows to distinguish individual 
maxima of the envelope in the Ramsey comb, 

corresponding to CPT resonances at radiofrequency 
transitions «1 7 , «2 6  and  «3 5 , whose 
positions are given by the differences in magnetic 
shifts of the corresponding transitions: 71∆ , 62∆  
and  53∆ . At the same time, the resonance at the 
radio-frequency transition «2 6 , (bold lines in 
Fig.1) is absent for the lin || lin configuration, due to 
destructive interference of two lambda schemes at 
this transition, as shown in [53].

Let's analyze the change in the shape of Ramsey 
resonances with increasing magnetic field in more 

Fig. 2. Sequence of pumping pulses

Fig. 3. Magnetic field dependencies of contrast CPT resonance 
spectra detected using the Ramsey method (solid curves) 
and continuous radiation (dashed curves), for configurations 
lin lin^  (а) and  lin lin  (b). Calculation parameters: 
I I 2

1 2= = 0 .2mW /cm , T = 40 C, = 5dT  ms, γ -1
12 = 250 s ,  

opt = 0 .2η , γrf
12= 2 /η ν , -×bufn 18 1= 4 10 cm , buffer gas  —  

nitrogen
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detail. Figure 4 demonstrates a non-monotonic 
dependence of Ramsey resonance amplitude on 
magnetic field. In particular, at certain magnetic 
field values, the resonance amplitude reaches a 
local minimum. This result is consistent with 
experimental data [54] and is explained by 
destructive interference of different excitation 

channels of Ramsey CPT resonances. During the 
dark pause, low-frequency coherences g g1 2

ρ  change 
phase by ∆+ g g dT

1 2
( )δ . If by the end of the dark 

pause different coherences of two working sublevels 
1 2g g  and  1 2g g¢ ¢  are in antiphase, i.e., the condition 

1 2 1 2
= (2 1), = 1,2, . . .,g g g g dT p p∆ ∆ π¢ ¢

æ ö÷ç - -÷ç ÷è ø
  (24)

is met, then the corresponding lambda schemes 
will weaken each other. Thus, using expression 
(24), we obtain that at = 1dT  ms, lambda 
schemes at transitions «1 7  and  «3 5  will 
weaken each other for » 0 .09,0 .27,0 .45, . . .G,B   
which is clearly visible in Fig. 4а, since for 
configurations lin lin  resonance at transition 

«2 6  is absent. It is noteworthy that in this 
case, when passing through these magnetic field 
values, the central peak changes its convexity. In 
configuration lin lin^  the main contribution to 
the attenuation of the Ramsey comb amplitude 
is jointly made by interference between lambda 
schemes at radiofrequency transitions «1 7  
and  «2 6 , as well as «2 6  and  «3 5 .  
Thus, from (24) we obtain that at d = 1T ms, the 
minimum amplitude is first reached in the interval 

0 .09B Î –0 .18. However, due to the fact that the 
resonance at transition «2 6  has a significantly 
larger amplitude, the interference contribution 
of adjacent resonances in this case turns out to 
be small, and in Fig. 4b the amplitude changes 
extremely weakly. Thus, the amplitude of Ramsey 
resonances for lin lin^  configuration is less sensitive 
to magnetic field changes. Note that formula (24) 
neglects the influence of light shift.

Fig. 5 shows how the Ramsey comb changes 
during the transition from lin lin^  configuration to 
right circular polarization of both fields. It can be 
seen that in the envelope of the Ramsey comb, with 
increasing ellipticity, only one minimum remains, 
corresponding to the resonance at transition «2 6 .  
The amplitude of resonances decreases due to the 
formation of a "pocket" at the level, which makes 
the use of circular polarization in CPT excitation 
less advantageous. From Fig. 5а,b it can be seen that 
this occurs both for short d = 1T , and long d = 5T  
dark pause.

In Fig.  6a  comparison of Ramsey resonances 
behavior when increasing el l ipticity for 
configurations σ σ+ + and σ σ+ - with initial lin lin

configuration is presented. It can be seen that 

Fig. 4. Magnetic field dependencies of contrast CPT resonance 
spectra detected using the Ramsey method (solid curves) and 
continuous radiation (dashed curves), for configurations lin lin

 
(а) and lin lin^  (b). Calculation parameters: 2

1 2= = 1mW/cm ,I I   
= 40T  C, = 1ms .dT   Other parameters are the same as in the 

caption to Fig. 3
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Fig. 5. Dependencies of CPT resonance spectra detected 
by Ramsey method (solid curves) and continuous radiation 
(dashed curves) on ellipticity parameter χ during transition 
from configuration lin lin^  to right circular polarization of 
both fields for = 5 msdT  (а), 1  ms  (b). Calculation parameters: 

2
1 2= = 0 .2 ìmW/cmI I , = 40T  C, = 0 .8 GB . Other parameters 

are the same as in caption to Fig. 3

during the transition to circular polarizations, a 
peak remains in the resonance envelope, in the case 
of σ σ+ - corresponding to the CPT resonance at the 
transition «2 6 , and in the case of σ σ+ + — at 
the transition «1 7 . Note that the position 
of the latter differs somewhat from the value 71∆ ,  
due to the light shift influence. The amplitude of 
the central resonance envelope extremum changes 
non-monotonically with ellipticity change, having 
a pronounced maximum in the vicinity of / 8π  for 
the configuration case σ σ+ - (Fig. 6b). Thus, for 
configuration σ σ+ - there exists an optimal ellipticity 
where the resonance has the best quality parameter. 

This effect can also be explained by the interference 
influence of different Λ-schemes. As noted above, 
in lin lin  configuration, the resonance at radio 
frequency transition «2 6  absent. During 
transition to circular polarization σ σ+ + only one of 
its legs is observed due to selection rules. However, 
at intermediate ellipticity values between lin lin -  
and σ σ+ +-polarizations, the second leg of the 
double Λ-scheme at transition «2 6  manifests 
itself, making a constructive contribution to the 
spectrum at small values of magnetic field. It should 
be noted that at magnetic field values satisfying the 

Fig. 6. Dependencies of spectra (a) and amplitudes (b) of CPT 
resonances detected by Ramsey method on ellipticity parameter 
of two right-circularly polarized waves (σ σ+ +) (blue curve) and 
one right- and another left-circularly polarized waves (σ σ+ -)  
(black curve) at configuration lin lin

 for = 0χ . Calculation 
parameters: 2

1 2= = 1 mW /cm ,I I  = 40T C, = 1  msdT , = 0 .05 GB .  
Other parameters are the same as in caption to Fig. 3
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destructive interference condition (24), ellipticity 
change will lead to the opposite effect.

Let's analyze the behavior of the light shift of the 
central Ramsey resonance. From Fig. 7а it can be 
seen that the temperature dependence of the shift in 
the specified range is close to linear, which agrees 
with the results of work [29], where such behavior 
was explained by temperature broadening of the 
dispersion contour. The change in the magnetic 
field leads to a change in the slope angle of the 
dependence, due to Zeeman shifts of working 
sublevels. Thus, by choosing the magnetic field 
magnitude, it becomes possible to suppress the 
temperature dependence of the shift. In Fig. b the 

dependencies of the relative shift of the central 
Ramsey resonance on the degree of field ellipticity 
during transition from linear polarizations to 
circular ones are presented. It can be seen that the 
course of these dependencies becomes more gentle 
in the vicinity of / 4π , which is explained by the 
isotropy of the system in the plane transverse to the 
laser beam. Thus, resonances excited by circularly 
polarized fields prove to be less sensitive to ellipticity 
f luctuations compared to resonances excited by 
linearly polarized fields, both in amplitude (Fig. 6b) 
and in shift (Fig. 7b).

4. CONCLUSION

In this work, based on the density matrix method 
in the Wigner representation for translational 
degrees of freedom of atoms, a theory of excitation of 
coherent population trapping resonances detected by 
the Ramsey pulse excitation method in gas cells with 
vapors 87Rb  has been developed. The constructed 
theory takes into account the complete magnetic 
structure of levels of the 1D -line 87Rb  and can be 
used in the analysis of other non-stationary effects 
arising from the interaction of resonant bichromatic 
radiation with atomic vapors 87Rb . The spectra of 
CPT-Ramsey resonances have been calculated, and 
the dependence of their shape and shifts on various 
pumping parameters, such as external magnetic field 
magnitude, ellipticity degree of frequency radiation 
components, and medium temperature, has been 
studied. It was established that there is interference 
between different channels of Ramsey resonance 
excitation, manifesting as a non-monotonic 
change in resonance amplitude depending on 
the magnetic field magnitude. Expressions are 
proposed for estimating parameter regions that 
realize destructive interference, leading to minimal 
resonance amplitudes. The existence of optimal 
resonance amplitude ellipticity of external fields 
was discovered when using the σ σ+ --configuration. 
When analyzing resonance shifts, the possibility 
of suppressing the dependence of these shifts on 
temperature and ellipticity was demonstrated 
through selection of specific magnetic field values 
and polarizations, respectively.
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