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Abstract. The electrodynamic properties of a plasma solenoid with cold collisional magnetoactive 
plasma and the dynamics of wave excitation by azimuthal current on its surface have been studied 
at arbitrary ratiosarbitrary ratios between the external current source frequency, electron cyclotron 
frequency, and plasma frequency. Cases of unbounded and longitudinally bounded plasma solenoids 
have been considered. Their complex impedances and effective resistances as quantities characterizing 
the power absorbed in the plasma source have been calculated. It is shown that despite the limitation of 
the complex impedance concept to the quasi-stationary case, its real part coincides with the effective 
resistance even beyond the quasistationarity condition. The resonant dependencies of the calculated 
complex impedances and effective plasma resistances indicate that in the presence of an external 
magnetic field, resonant excitation of electromagnetic waves by azimuthal current with a significant 
longitudinal component of the electric field strength is possible in the plasma solenoid at frequencies 
lower than cyclotron and plasma frequencies.
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1. INTRODUCTION

For several decades, inductive radio-frequency 
discharges and plasma sources based on them 
have been actively discussed in scientific literature 
(see reviews [1-4]). Unlike traditional capacitive 
and inductive radio-frequency discharges without 
an external magnetic field, its presence leads to a 
significant change in the electromagnetic properties 
of plasma in the discharge. In particular, it becomes 
possible to excite waves penetrating into the 
plasma in the low-frequency part of the spectrum 
with frequencies lower than the electron cyclotron 
frequency. Plasma sources based on inductive 
radio-frequency discharge in an external magnetic 
field have significantly fewer limitations on plasma 
density associated with reaching its critical value for 
a given generator frequency, that is, they are sources 
of dense plasma. Real electron concentrations reach 
values up to  1310  сm 3-  [1].

Unique characteristics predetermine the wide 
practical applications of radio-frequency inductive 
plasma sources in an external magnetic field. One 
of their most important applications is their use 
as ion engines for spacecraft. In such sources, 
plasma is created by inputting radio-frequency 
power followed by electrostatic acceleration of 
ions. Plasma sources of various sizes (diameters 
0.5–74 cm) [5] are considered as ion engines, 
including small ones (vacuum chamber diameter 
of several centimeters) [6, 7] and ultra-small ones 
(diameters 0.2–2 cm) [8]. The external magnetic 
field is created both using a traditional solenoid 
and using a system of permanent magnets. In 
particular, in [6, 7] to simplify and miniaturize the 
design, the magnetic field is created by a permanent 
r ing magnet. Another application of radio-
frequency inductive plasma sources is their use in 
microelectronics for plasma coating deposition and 
material etching [9]. Additionally, the absorption 
of electromagnetic waves with frequencies up to 



	 JETP, Vol. 165, No. 5  2024

734	 KARTASHOV, KUZELEV	

the electron cyclotron frequency is of significant 
importance as one of the plasma heating methods 
in controlled thermonuclear fusion facilities, 
particularly in ITER and DEMO projects [10,11]. 
Wave absorption in hot thermonuclear plasma 
occurs mainly due to collisionless Landau 
damping. The plasma parameters and external 
confining magnetic field differ significantly from 
those of traditional radio-frequency discharge. At 
electron concentrations of the order of 1410  сm 3-   
and magnetic field induction in the tokamak of 5 T, 
the electron Langmuir and cyclotron frequencies 
are of the same order and constitute 11(5 10) 10´  
rad/s, corresponding to the microwave region. This 
circumstance makes it relevant to advance existing 
theories of inductive radio-frequency discharges 
into the shorter wavelength region – up to the 
microwave range.

In the case of a generator frequency significantly 
lower than the electron cyclotron frequency, when 
power is deposited into dense plasma, these are 
referred to as helicon discharges. The study of 
helicon discharges and plasma sources based on 
them began with Boswell's works [12, 13]. The 
first of these works showed that in a tube placed 
in an external magnetic field of up to 1.5 kG, a 
discharge was ignited at a frequency of 8 MHz, 
and the power deposition source into the plasma 
was an excited standing wave of helicon type. In 
the theoretical description of the helicon discharge, 
the possibility of two radial propagating modes 
was indicated, one of which is associated with the 
helicon, while the other is currently commonly 
called the Trivelpiece-Gould mode or oblique 
Langmuir wave [14-17]. The work [18] examined the 
mechanisms of radio-frequency power deposition 
into unbounded magnetoactive plasma during the 
realization, depending on discharge parameters, 
of limiting cases of excited wave with dispersion 
laws corresponding to helicon wave and oblique 
Langmuir wave (Trivelpiece-Gould mode). In this 
work, we investigate the electromagnetic properties 
of a finite-length inductive discharge in an external 
magnetic field at various ratios between the exciting 
generator frequency, electron cyclotron frequency, 
and plasma frequency, which allows describing the 
electrodynamics of the plasma solenoid not only in 
the traditional radio-frequency range, but also for 
systems using microwave fields [19-23].

Typical plasma sources represent a vacuum 
chamber with gas pressure of units and tens of 
millitorr, having a diameter from several millimeters 
to tens of centimeters and length up to values 
exceeding a meter. The discharge is maintained by 
a system of currents flowing through an antenna, 
which can have various configurations. In this work, 
we will focus on the discharge parameters from 
works [24-26].

2. PROBLEM STATEMENT.  
BASIC EQUATIONS  

AND RESEARCH METHODS

Let's consider a solenoid S , completely filled 
with a homogeneous plasma (Fig. 1). The solenoid 
(inductor) represents a section of a cylinder with 
radius SR , length SL  with a thin wire winding 
containing SN  turns. The solenoid winding is 
connected through resistance 0R  to a frequency 
source ω. There is also a uniform external 
magnetic field 0B , directed along the solenoid 
axis (axis z). The solenoid ends can be closed 
with conducting plugs "1" and "2". The described 
system represents a simplified scheme of inductive  
gas discharge [27].

Let's introduce cylindrical coordinates r,φ,z and 
consider only azimuthally symmetric distributions of 
the electromagnetic field in the solenoid (¶ ¶/ = 0ϕ ).  
Let's assume that the plasma dielectric permittivity 
tensor in the cylindrical coordinate system has the 
form ( , = , ,i j r zϕ ) 
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Fig. 1. Plasma solenoid
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In the simplest model of cold electron 
magnetoactive plasma with collisions, the 
components of tensor (1) are determined by 
formulas [28] 
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Here Leω  — is the electron Langmuir frequency, 
eν  — is the effective electron collision frequency, 
eΩ  — is the electron cyclotron frequency.
For plasma with a dielectric permittivity 

tensor (1) in the case of azimuthally symmetric 
monochromatic perturbations of frequency ω 
after transition to complex amplitudes, Maxwell's 
equations system is written as 
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Here 0 0 0 0( , ) = { , , }r zz r j j jj ϕ  and  0 ( , )z rρ  — are 
complex amplitudes of current density and charge 
density of external field sources in plasma. In our 
case, the external source is a solenoid winding 
through which current flows from the source, and 

the charge density 0 ( , )z rρ  equals zero. However, if 
plugs "1" and "2" were connected to some source, the 
charge density 0 ( , )z rρ  would be caused by surface 
charges on these plugs, as on capacitor plates. 
This would involve a combined gas discharge  – 
inductive-capacitive. We will limit ourselves to 
the case 0 ( , ) = 0z rρ . The resonant properties 
of capacitive discharge in a transverse magnetic 
field are considered in [29]. Since the current in 
the solenoid is predominantly azimuthal, we will 
assume that 0 0= 0r zj j º .

Excluding quantities , ,z rB B Bϕ  and considering 
formulas (2), we obtain from (3) the following 
equations for complex amplitudes of electric field 
intensity vector components , ,z rE E Eϕ : 

π
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Let us now discuss the boundary conditions for 
equations (4). Suppose that the solenoid winding is 
localized on the cylindrical surface = Sr R , i.e., the 
solenoid current is a surface current. In this case, 
the external source current density can be defined 
using the delta function 

-0 ( , ) = ( ) ( ), 0 < < ,S Sj z r J z r R z Lϕ δ    (5)

where ( )J z   — is some function of only the 
longitudinal coordinate z. Let's take the second 
equation of system (4), substitute function (5) into 
it and integrate the equation over within the limits 
from  SR h-  to  SR h+  ( 0h ® + ). As a result, we get 
the relation 

π¶ ¶
+ - - -

¶ ¶
4( 0) ( 0) = ( ) .S S

E E
R R i J z

r r c c
ϕ ϕ ω  (6)

As seen from the third and fifth equations of 
system (3), relation (6) is caused by the jump of the 
tangential component of magnetic field induction 

( )zB r  on the current surface (5). In addition to 
(6), we will also need conditions for continuity of 
tangential components of electric field intensity
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Relations (6) and (7) constitute the main 
boundary conditions for homogeneous equations 
(4)1. Boundary conditions for variable z  will be 
discussed further in the course of presentation.

One of the complex aspects is determining the 
function ( )J z . There is no complexity only in the 
quasi-stationary approximation, within which it is 
assumed that the instantaneous values of current 
in each point of the electrical circuit, including in 
each turn of the solenoid winding, are identical. 
Assuming this is true, we can write 

ϕ

+

-
ò ò 0
0

( , ) =  .
L R hsS

S
R hs

dz drj z r N I              (8)

Here I  — is the current in the circuit, and 2h — is 
the thickness of the solenoid winding, i.e., the 
integration in (8) is performed over the longitudinal 
cross-section of the solenoid winding. In the solenoid 
model with surface current (5), it is assumed that 

0h ® + . Substituting (5) into (8), we have 

0

1= ( )  .
LS

S
I J z dz

N ò                       (9)

If the density of the number of solenoid winding 
turns is constant and the number of turns is 
sufficiently large, then the function ( )J z  can be 
represented as 

( ) = = const .S

S

N I
J z

L                 (10)

In practice, a situation where the density of 
solenoid turns is not constant2 is common. In this 
case, the function ( )J z  is considered known, for 
example, from experimental conditions. In any 
case, such a function must satisfy the normalization 
condition (9).

The applicability conditions of formula (8) 

, 1S SR L
c c
ω ω                        

(11)

1   Inside the solenoid at < Sr R  and outside the solenoid at 
> Sr R   the right side of the second equation of system (4) according 

to (5) equals zero.
2   In real experiments on inductive gas discharge, solenoids of 

very complex shapes are often used. Therefore, they are not even 
called solenoids, but antennas[1, 3].

mean that the electromagnetic wavelength of 
frequency ω is large compared to the dimensions of the 
solenoid3. Under these conditions, the plasma solenoid, 
regardless of how complex the electromagnetic 
processes occurring in the plasma might be, acts as a 
lumped element for the electrical circuit, like ordinary 
inductance coils or capacitors. Therefore, in the 
quasi-stationary approximation for the electrical 
circuit, the plasma solenoid is characterized by a 
single parameter – the complex impedance SZ .

To calculate the impedance SZ  let's consider that 
in a circuit with a solenoid, an induced EMF S , acts, 
being "connected" in series with the external source. 
Therefore, Ohm's law for the complete circuit, 
shown in Fig. 1, for complex amplitudes takes the 
form 0 0=SU IR+  . The induced EMF itself, by 
definition, equals the integral along the solenoid 
winding of the electric field strength component 

( , )E z rϕ . Considering that the length of the 
solenoid winding equals 2 S SR Nπ , and introducing 
the average value of the azimuthal component of the 
electric field strength along the solenoid length 

á ñ ò
0

1( , ) = ( , ) ,
LS

S S
S

E z R E z R dz
Lϕ ϕ          (12)

we can represent the induced EMF as

π á ñ= 2 ( , )  .S S S SR N E z R ϕ               (13)

Substituting expression (13) into Ohm's law, we 
write the following relation: 

π- á ñ0 0= 2 ( , ) ,S S SU IR R N E z Rϕ       (14)

which can be used when necessary as an additional 
condition for equations (4). Relations of type 
(14) are known in literature as external circuit  
equations [30].

To obtain the formula for the plasma solenoid 
impedance, we consider that the external source 
voltage is distributed between the voltage drop 
across the resistance 0R  and the voltage drop 
across the plasma solenoid, i.e. 0 0= SU IR IZ+ . 
Comparing the latter relation with expression (14), 
for impedance we have 

π- á ñ= 2 ( , ) /  .S S S SZ R N E z R Iϕ         (15)

3   The quasi-stationarity condition of the electrical circuit has 
the form (11) with the replacement of solenoid dimensions by the 
size of the entire circuit as a whole.
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Due to boundary condition (6) and formula (9), the 
electric field strength in the solenoid is proportional 
to the current in the circuit. Consequently, value 
(15) does not depend on current but is determined 
only by the solenoid – its geometry and plasma 
parameters. Using the general relation Λ-=S SZ iω  
we can also calculate the complex inductance of the 
plasma solenoid SΛ .

Using impedance, the resonant properties of 
a plasma solenoid can be investigated, and the 
question of power dissipation from an external 
source in the plasma solenoid can be examined, 
which is of paramount importance for gas discharge 
physics. For the simplest series circuit (voltage 
source 0U  connected through active resistance 0R  
to the plasma solenoid winding, Fig. 1), the power 
of the external source dissipated in the plasma is 
determined by the formula [31] 

2
0 2 2

0

1= | | ,
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S S

Z
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R Z Z
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¢ ¢¢+ +
      (16)

where =S S SZ Z iZ¢ ¢¢+ 4. As a function of complex 
variable ω, complex impedance ( )SZ ω  poles in the 
vicinity of which

¥ -- ( ) 1= ( ) ,SZ iA ω ω                  (17)

and zeros near which 

- (0)= ( ),SZ iB ω ω                      (18)

where A  and  B   — are constants, and  ¥( )ω  and 
ω(0) — are certain complex frequencies [31]. In the 
case of high circuit resistance, 0 | |SR Z , the power 
dissipated in the plasma is given by the formula

2
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2 S
U

W Z
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As a function of frequency ω value (19) is maximum 
at the maxima of the real part of impedance, i.e., at 
points ¥( )= Reω ω . It is known that at ¥( )=ω ω  
current resonance occurs in the circuit: impedance 
is maximum, and current in the circuit is minimum. 
With low resistance 0R  for power (16) we have 

2
0 2 2

1= | |  .
2 ( ) ( )

S

S S

Z
W U

Z Z

¢

¢ ¢¢+           
(20)

4   The elementary information from electrical engineering 
presented here applies not only to the plasma solenoid but also to 
any other element of the electrical circuit.

Power (20) is maximum at zeros of the imaginary 
part of impedance (0)= Reω ω , which occurs 
during voltage resonance – impedance is minimum, 
and current in the circuit is maximum5. Note that 
experimental observation of current and voltage 
resonances in gas discharges is based, among other 
things, on formulas (19) and (20).

The applicability range of formulas (16)-(20), 
like the applicability range of the impedance 
concept itself, is limited by the quasi-stationary 
condition of the electrical circuit [32]. When 
increasing the external source frequency ω, 
when the quasi-stationary condition is violated, 
electrodynamic methods should be used to 
calculate the power dissipated in the solenoid 
plasma. We start from the power density formula 

=W á × ñj E , where E   — is the electric f ield 
strength vector, j — is the current density vector 
induced in the plasma, and angle brackets denote 
averaging over period π2 / ω . Expressing current 
density through f ield strength and dielectric  
permittivity [33] 

π
-= ( ) ,

4i ij ij jj E
i

ω ε δ                  (21)

after simple calculations for power density we have 
	

π
¢̂¢ + +2 2( , ) = [ (| ( , ) | | ( , ) | )

8 rW z r E z r E z rϕ
ω ε

¢ ¢ ¢ ¢+ -2 *
| | | ( , ) | 2 Im( ( , ) ( , ))],z rE z r g E z r E z rϕε   (22)

where the index "double prime" denotes the 
imaginary part. Performing integration in (22) 
over z from zero to  SL  and over r  with weight 2 rπ  
from zero to  SR , one can calculate the total power 
of the external source dissipated in the solenoid 
plasma W(ω). In general case, this can only be done 
numerically.

The electric field strength components included 
in (22) are calculated from the homogeneous 
system of equations (4) with boundary conditions 
(6) and (7). In this regard, the question of 
determining the function ( )J z , arises again, but 
now beyond the applicability of the quasistationary  
 

5   Historically, the terms current and voltage resonances 
emerged in connection with the study of parallel and series 
oscillatory circuits consisting of active resistance, capacitance, and 
inductance.
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approximation, when the analysis of the system  
shown in Fig. 1 by electrical engineering methods 
is inadmissible. In this case, one should solve 
the complete electrodynamic problem for the 
solenoid, supply wires, voltage source, and even 
part of the surrounding space, which is hardly 
feasible. Our goal is to obtain compact, physically 
clear results useful for experimental research. 
Regardless of the frequency of the signal steadily 
supplied to the solenoid antenna, some current 
distribution ( )J z  is established in it. By setting 
it from some reasonable physical considerations 
and determining the components of the electric 
field strength vector from system (4), one can 
calculate the energy dissipated in the solenoid 
plasma using formula (22) and, most importantly, 
investigate the resonant properties of the plasma-
filled solenoid, which will be done further. Within 
the applicability limits of formula (9), the power 
dissipated in the plasma W(ω), can be represented 
as 2( ) = / 2effW R Iω , where effR  — is the effective 
plasma resistance. In the quasi-stationary 
frequency range, the effective resistance should, 
of course, coincide with the real part of the 
impedance.

3. LONG PLASMA SOLENOID  
WITH CONSTANT DENSITY  

OF WINDING TURNS

Let us assume that the inequality is satisfied 

,S SR L                           (23)

i.e., the length of the solenoid significantly exceeds 
its radius. In this case, it is reasonable to assume 
that the processes near the longitudinal boundaries 
of the solenoid = 0, Sz L  (edge effects) have little 
effect on what occurs in its volume. Therefore, we 
can consider that the longitudinal distribution 
of the electromagnetic field in the solenoid is 
determined not by conditions at the longitudinal 
boundaries, but by other factors. Due to the 
linearity of equations (4) and boundary conditions 
(6) and (7), the only such factor is the density of 
the solenoid winding turns, i.e., the function ( )J z .  

Let's start with the simplest case of constant current 
density (10).

Considering the electromagnetic field in the 
solenoid independent of coordinate , in equations 
(4) we assume / = 0z¶ ¶ . In this case, the third 
equation of system (4) becomes independent 
of the first two equations. As a result, the field 
component zE , which is also not included in the 
boundary condition (6), becomes independent of 
components rE  and  Eφ, and therefore we can set 

= 0zE . Then from the first two equations of system 
(4), after eliminating rE , the following equation  
is obtained:
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valid both inside the solenoid ( < Sr R ), and outside 
it ( > Sr R ); outside the solenoid ^ = 1ε . The 
boundary conditions for equation (24), taking into 
account (6), (7) and (10), have the form 
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Additionally, the function ( )E rϕ  must be 
bounded at zero and at infinity.

For < Sr R  the limited solution of equation (24) 
has the form ^

é ù
ê úë û

1 1( ) = ( / )E r A J c rϕ ω ε , where 

1( )J x   — is the first-order Bessel function. In the 
region > Sr R  the solution should be taken as 
follows: [ ](1)

2 1( ) = ( / )E r A H c rϕ ω , where (1)
1 ( )H x  — 

is the Hankel function of the first kind. By writing 
the solution through the Hankel function of the 
first kind, we used the causality principle (radiation 
condition [34]), according to which at += iω ω δ  
when ® +0δ , the field should exponentially decay 
at r ® ¥ ( - exp( / )r cδ ). Substituting the found 
solutions into the boundary conditions (25) and 
determining the constants 1,2A , we find the electric 
field in the solenoid volume ( Sr R£ )  
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In the quasi-stationar y approx imation, 
considering the f irst inequality (11) and the 
asymptotics of cylindrical functions at small 
argument values, solution (26) transforms to 

π ^
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ê úë û
é ù
ê úë û
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( / )

S
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c L J c R
ϕ

ω ε

ε ω ε
  (27)

Solution (27) can also be obtained directly from 
equation (24). Indeed, in the quasi-stationary 
approximation in equation (24) in the region 

> Sr R  the second term in the left part should be 
discarded. The solution bounded at infinity of the 
resulting equation has the form 2( ) = /  .E r A rϕ   
Its substitution into the boundary conditions (25) 
again leads to formula (27). Note that even in the 
quasi-stationary approximation in the left part of 
equation (24) we do not discard the second term 
proportional to ^

2 2 2( / ) Sc Rε ω . For example, at 
Ω» eω  this term is significant even in the quasi-

stationary approximation. And in general, if this 
term is discarded, nothing would remain of the 
plasma.

There is an important difference between 
solutions (26) and (27). Solution (26) takes into 
account the electromagnetic radiation output from 
the solenoid through its lateral surface = Sr R .  
The quasi-stationary solution (27) naturally 
does not account for such radiation. But in the 

radio-frequency region > / Sc Rω  radiation 
from the solenoid may play a significant role 
in the overall energy balance, as an additional 
channel for external source energy consumption. 
To exclude radiation through the lateral surface 
of the solenoid, we can assume that the solenoid 
is enclosed in a conducting cylindrical shell of 
radius = > Sr R . Then, supplementing the 
boundary value problem (24), (25) with the 
condition ( ) = 0E ϕ  and finding its solution, it 
is not difficult to obtain for ( )E rϕ  an expression 
that differs from (26) only by replacing the 
Hankel functions (1)

0,1 [( / ) ]SH c Rω  with functions 
-0,1 0,1 1[( / ) ] = [( / ) ] [( / ) ]S SX c R J c R N c ω ω ω  

0,1 1[( / ) ] [( / ) ]SN c R J c ω ω .
Now let's calculate the impedance of the 

solenoid under consideration. For this, we will use 
the result of the quasi-stationary approximation 
(27), which when substituted into formula (15), 
gives 

¢ ¢ ¢+( ) = ( ) ( ) =S S SZ Z iZω ω ω

Λ
^

^ ^

é ù
ê úë û-

é ù
ê úë û



 

1
0

0

2 ( / )
= ,

( / ) ( / )

S

S S

J c R
i

c R J c R

ω ε
ω

ω ε ω ε
   (28)

where 2 2 2 2 1
0 = 4 S S SR N c LΛ π - -  — is the inductance 

of the solenoid without plasma filling. Let's also 
provide the formula for the impedance of a plasma 
solenoid enclosed in a conductive shield 

[ ] [ ]

[ ] [ ]
Λ

-
^

^ ^ ^

é ù
ê úë û-

é ù é ù-ê ú ê úë û ë û
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1 1

0
0 1 1 0

2 ( / ) ( / ) ( / )
( ) =  .

( / ) ( / ) ( / ) ( / )

S S S
S

S S S S

c R J c R X c R
Z i

J c R X c R J c R X c R

ω ω ε ω
ω ω

ε ω ε ω ω ε ω
      (28a)     

The inductance of the plasma solenoid can be 
determined by formula Λ ¢ ¢-( ) = ( ) /  ,S SZω ω ω  
and its active resistance equals the real part of the 
impedance ¢ ( )SZ ω .

Let's analyze expression (28) for plasma with 
dielectric permittivity (1), (2). If there are no 
collisions, then the active resistance of the plasma 
solenoid equals zero, and the expression for its 
inductance becomes: 

Ω
Λ Λ

Ω

- -

-

2 2 2 2 2 2
21

0 2 2 20

( )2 ( )
( ) = , = ,

( )
Le e S

S
g

RJ a
a

aJ a c

ω ω ω
ω

ω
(29)

where Ω Ω+2 2=g Le eω   — is the upper hybrid 
frequency. Let's consider the limiting cases. In 
the absence of plasma, i.e., when = 0Leω , 
considering the quasi-stationary condition (11) for 
inductance (29), we have, as expected, Λ Λ0( ) =S ω .  
In the absence of external magnetic field ( = 0eΩ ) 
formula (29) transforms to 

( )
( )

( ) ( )
Λ Λ

-

- -

2 2
1

0
2 2 2 2

0

2 /
=  .

/ /

Le S

S

Le S Le S

J R c

R c J R c

ω ω
ω

ω ω ω ω

(30)
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In the quasi-stationary frequency range, the 
inductance (30) has neither zeros nor poles. At 

® Leω ω  inductance (30) approaches the 
inductance of the solenoid without plasma filling 

0Λ . In the case of < Leω ω  it is convenient to write 
formula (30) as follows: 

( )
( )

( ) ( )
Λ Λ

-

- -

2 2
1

0
2 2 2 2

0

2 /
=  .

/ /

Le S

S

Le S Le S

I R c

R c I R c

ω ω
ω

ω ω ω ω

(31)

Inductance (31) is less than 0Λ , which is related 
to the screening of the low-frequency transverse 
f ield in plasma. W hen / 1Le SR cω  and 

 Leω ω  (dense plasma case) from (31) we have 
Λ Λ Λ0 0( ) = 2 / ( )S Le Sc Rω ω . In the limit of 
strong external magnetic field ( eΩ ® ¥) from (29) 
we have Λ Λ0( ) =S ω . The latter is understandable: 
in a strong magnetic field, transverse electron 
motions are prohibited, which for the azimuthal 
electric field is equivalent to the absence of plasma. 
Thus, in the limiting cases of zero and very strong 
external magnetic field in the quasi-stationary 
frequency range, the inductance of the plasma 
solenoid does not have any resonant features.

At intermediate values of cyclotron and Langmuir 
frequencies, zeros and poles of inductance (29) and 
impedance (28) can fall into the low-frequency 
(quasi-stationary) region. From formula (28), it 
follows that in the absence of collisions, zeros and 
poles of the plasma solenoid impedance coincide 
with the roots of the equation 

Ω

Ω

ì- - ïïíï- ïî

2 2 2 2 2 2
12

2 2 2
0

,( )
= , =

 .
nLe e

n n
ng S

c

R

µω ω ω
µ µ

µω
 (32)

At 1=n nµ µ  ( = 1,2,n ) from (32), zeros are 
determined (0)= nω ω , and at 0=n nµ µ  equation 
(32) gives poles ¥( )= nω ω  of impedance (28). Here 

1nµ  — are roots of equation 1( ) = 0J x , and  0nµ  — 
are roots of equation 0( ) = 0J x . It is easy to see 
that the roots of equation (32) fall into our region 
of interest, the quasi-stationary frequency region, 
only at / < 1e SR cΩ  and  / < 1Le SR cω . Otherwise, 
there are no resonant points for impedance (28) in 
the quasistationary frequency region.

Using the first inequality (11), it is easy to show 
that in our region of interest for frequencies and 

plasma parameters, the roots of equation (32) are 
determined by the following approximate formula:: 

Ω Ω Ω
Ω Ω

Ω

-
¥

æ öæ ö÷ç ÷ç÷ç ÷ç÷» + + £÷ç ç÷ ÷ç ÷ç ÷çç ÷ç è øè ø

12 2 2 2 2
(0, )

2 2 2 2 2
1 1  .e e S e S

n g g
g n n

R R

c c
ω

µ µ
(33)

In obtaining (33), the fact was used that 2
nµ  are 

sufficiently large values (not less than »2
01 5 .8µ ).  

At 0eΩ ®  all roots (33) become equal to Leω .
Points determined by formulas (33) are located 

quite close to each other. Therefore, even with small 
dissipation, adjacent zeros (0)

nω  and poles ¥( )
nω  

become indistinguishable. Resonant absorption of 
external source energy in plasma still exists (despite 
the merging of resonances), occurring at frequency 
ω, close to the upper hybrid frequency gΩ . The fact 
that resonant absorption should occur precisely near 

gΩ  is already evident from formula (33), since for all 
large n we have Ω¥ »(0, )

n gω .
Fig. 2 shows the real (solid line) and imaginary 

(dashed line) parts of the impedance of a 
homogeneous plasma solenoid without a shell 
as a function of external source frequency at 

/ = 0 .5Le SR cω , / = 0 .7e SR cΩ  and = 0 .03e Leν ω .  
Significant absorption and perturbation of the 
imaginary part of the impedance are observed near 
frequencies (33), i.e., around gΩ , which is associated 
with resonant excitation of electromagnetic 
oscillations of B -type in plasma. The dashed 
curve effectively represents the inductance of the 
plasma solenoid and, except for a narrow region 
near frequencies (33), the inductance of the plasma 
solenoid is close to the vacuum value 0Λ . Note that 

Fig. 2. Complex impedance of a homogeneous plasma solenoid 
without a shell: solid line – real part, dashed line – imaginary part
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the parameter /SR cω  takes rather large values 
in Fig. 2, and therefore Fig. 2 is at the limit of 
applicability of the quasi-stationary approximation. 
We have presented such a "not entirely reliable" figure 
here only to make the characteristic features of the 
impedance and inductance of the plasma solenoid 
more noticeable. When the parameter /g SR cΩ  
decreases, the structure of the dependencies 
shown in Figure 2 remains, but the features of the 
curves become less pronounced. Furthermore, as 
calculations show, the real part of the impedance 
coincides with good accuracy with the effective 
resistance calculated based on the expression for 
the volumetric energy density (22), even beyond 
the quasi-stationary approximation. Therefore, in 
what follows, we will use the notation SZ ¢ , for the 
effective resistance, the same as for the real part of 
the impedance.

According to the "canonical" formulas (17) and 
(18) at point ¥( )=ω ω  (at current resonance), the 
imaginary part of the impedance becomes zero, and 
the real part reaches its maximum, while at point 

(0)=ω ω  (at voltage resonance), the imaginary part 
of the impedance becomes zero. As seen from Fig. 2, 
the imaginary part of the impedance never actually 
becomes zero. This somewhat unusual behavior 
of impedance at the resonance point is due to the 
merging of closely located poles ¥( )

nω  and zeros  
(0)
nω . Since the real part of the impedance in Fig. 2 

has a rather sharp maximum, the corresponding 
resonance should be unambiguously classified as 
current resonance. Note that the difference between 
current and voltage resonances in the plasma 
solenoid is determined by the magnitude of the 

field component ( )E rϕ  on the solenoid winding (see 
formula (27)): when ( )SE Rϕ  reaches its maximum 
value, current resonance occurs, and when 

»( ) 0SE Rϕ  the voltage drop across the solenoid 
is small and voltage resonance occurs. Calculations 
show (see Fig. 2 and further) that voltage resonance 
is an atypical phenomenon for a plasma solenoid.

Fig. 3 shows the real parts of impedance (28) 
as a function of the dimensionless cyclotron 
frequency /e SR cΩ  calculated at different plasma 
frequencies / = 0 .1Le SR cω ; 0 .2; 0 .25; 0 .285; 0 .3,  
constant source frequency / = 0 .3SR cω  and 

= 0 .03e Leν ω . Resonant cyclotron frequencies 
are determined from equations ¥( )= ,nω ω   
solving which with good accuracy we have 
Ω » -2 2

e Leω ω , which fully agrees with Fig. 3. 
As Leω  increases, the resonances shift to the region 
of lower cyclotron frequencies, and at >Leω ω  they 
disappear completely. According to formula (19), the 
curves shown in Fig. 3 determine, in relative units, 

Fig. 3. Real part of impedance of a homogeneous plasma solenoid. 
Numbers near curves correspond to the value /Le SR cω

Fig. 4. Effective resistance of a uniform plasma solenoid 
considering radiation transfer (a) and in the presence of a limiting 

shell (b)
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the source powers dissipated in the plasma solenoid 
when the circuit resistance is high.

W hen frequencies eΩ  and  Leω  increase, 
the resonant frequency extends beyond the 
quasistationary frequency range. In this case, to 
study resonance in the plasma solenoid, formula 
(22) should be used, which in the present case is 
written as 

( )
π

^ ^ ^¢¢ ¢¢+ -

2

2 2

( ) = | ( ) | ,
8

= 1 | | / | | 2 Re( / ) .

W r q E r

q g g g

ϕ
ω

ε ε ε
  (34)

Here, the first equation of system (4) was taken into 
account at / = 0z¶ ¶ . Substituting field (26) into (34) 
and performing integration over the solenoid volume, 
one can obtain an expression for the total power of 
the external source dissipated in the plasma, which 
we do not present here due to its cumbersomeness, 
and the calculation result for a plasma solenoid 
with parameters / = 5Le SR cω , / = 7e SR cΩ ,  

= 0 .03e Leν ω  is shown in Fig. 4a. As can be seen, 
the peaks of effective resistance appear broad and 
diffused. All this indicates that the source power is 
not spent on exciting natural waves in the plasma 
but goes into radiation from the solenoid. This 
circumstance should be taken into account when 
interpreting experiments on inductive charges in 
the frequency range comparable to values / Sc R  
and  / Sc L .

It was mentioned earlier that radiation from 
the solenoid can be avoided using a shielding 
shell surrounding the solenoid. Fig. 4b shows the 
calculation result of the source power for a solenoid 
with a shell at / = 1 .6SR . The calculation was 
performed using formula (34) with field (26), where 
Hankel functions were replaced by functions 

0,1[( / ) ]SX c Rω . As we can see, the result is 
fundamentally different from that shown in Fig. 4a.

4. BOUNDED PLASMA SOLENOID 
WITHOUT EXTERNAL  

MAGNETIC FIELD

The theory of plasma solenoid becomes 
significantly more complex when the electromagnetic 
field in the solenoid depends on the longitudinal 
coordinate z . Such dependence naturally arises 
in a solenoid with variable density of the number 
of winding turns if the number of turns is not 
large or in a bounded solenoid where conducting 

planes are located at boundaries = 0z  and = Sz L  
Let's consider the case of a bounded solenoid. On 
conducting planes, the tangential components of the 
electric field intensity are equal to zero. Therefore, 
the following boundary conditions apply: 

ϕ ϕ=0 = =0 =
= = 0, = = 0 .r rz z L z z LS S

E E E E  (35)

Taking into account boundary conditions (35), we 
will seek the solution of equations (4) in the form 

=1

=1

=1

( , ) = ( )sin( ),

( , ) = ( )sin( ),

( , ) = ( )cos( ),

r rn zn
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n zn
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z zn zn
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ϕ ϕ
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å

          (36)

where = /zn Sk n Lπ   — are longitudinal wave 
numbers of electromagnetic oscillations excited 
in the solenoid. Substituting expansions (36) into 
equations (4) leads to the following equations for 
functions ( )rnE r , ( )nE rϕ  and  ( )znE r : 
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   (37)

Here the components of the dielectric permittivity 
tensor are functions of coordinate r , therefore 
equations (37) are valid both in plasma and outside 
plasma. Substituting the second expression (36) into 
(14) and considering (12), we transform the external 
circuit equation to the form 

π- å0 0
=1

= ( ),S S n n S
n

U IR R N P E Rϕ       (38)

where
π π

π
π

-ò ò 2

0 0

1 cos= sin /  .= 2sinn
nP nxdx nxdx

n  
(39)
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Finally, substituting the second expression (36) 
into the boundary condition (6), we obtain 

+ - -( 0) ( 0) =n n
S S

dE dE
R R

dr dr
ϕ ϕ

π
- ò

0

4 2= ( )sin( )  .
LS

zn
S

i J z k z dz
c c L
ω    (40)

If the solenoid winding density is constant along 
the solenoid length and the number of turns is 
sufficiently large, then boundary condition (40) 
simplifies. Then, taking into account the continuity 
of tangential components of electric field (7), 
we have the following boundary conditions for 
equations (37): 

	

π

+ - -

+ - -

+ - -

-
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ϕ ϕ

ϕ ϕ

ω

      (41)

Note that coefficients nP  depend on the design 
of the coil enclosing the plasma and on conditions 
at the longitudinal boundaries of plasma, i.e., in 
principle nP  can be determined by some other 
formulas. We will use formulas (39).

Excluding functions rnE , we write the field 
equations (37) in the form 
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    (42)

where 

χ ^-
2

2 2
2

=  .n znk
c

ω ε                      (43)

Equations (42) are valid both in the plasma 
volume (at < Sr R ), and in the external space  
(at > Sr R ).

Analysis of system (42) will begin with the case 
of absence of external magnetic field, when = 0g ,  
^ | |=ε ε . In this case, the second equation of 

system (42) is decoupled from the first equation, 
and component zE , since it is not excited by the 
azimuthal current, can be set to zero. The first 
equation then simplifies to: 

χ- 21 = 0 .n n n
d d rE E
dr r dr ϕ ϕ              (44)

If we assume that the inequality 

π< / ,Sc Lω                          (45)

which is consistent with the general quasi-
stationarity condition, is satisfied, then the solution 
of equation (44) bounded at zero and infinity has 
the form 

χ
χ

ìïïíïïî

1

1 0

( ), < ,
( ) =

( ), > ,
n n S

n
n n S

A I r r R
E r

B K r r Rϕ         (46)

where nA  and  nB  — are constants, and  2
0nχ  — are 

quantities (43) taken at ^ = 1ε .
For a long solenoid, or in the radio-frequency 

region, inequality (45) is too strict. If inequality 
(45) is not used, then there is difficulty in writing 
the bounded at infinity solution of equation (44). 
In this case, the solution can be expressed through 
the Hankel function -(1) 2 2 2

1 ( / )znH c k rω  (see 
derivation of formula (26)), or we can assume 
that the solenoid is enclosed in a conductive 
cylindrical shell of radius = > Sr R . In the 
presence of the shell, instead of (46), we have the  
following solution:

χ
χ χ χ χ χ

ìïïíï - ºïî

1

1 0 1 0 1 0 1 0 1 0

( ), < ,
( ) =

[ ( ) ( ) ( ) ( )] ( ), < <  .
n n S

n
n n n n n n n S

A I r r R
E r

B K r I I r K B X r R r  ϕ
            

(47)

To determine the constants nA  and  nB  solution (46) is matched at point = Sr R  using the first and third 
conditions (41). As a result, for the azimuthal component of the electric field intensity of the solenoid without 
a conductive shell, we obtain the following expression (at Sr R£ ):
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χ χπ
χ χ χ χ χ χ+

1 1 0

0 1 0 0 1 0 0
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N I r K R
E r i P I

c c L I R K R I R K Rϕ
ω                     (48)

Substituting (48) into the circuit equation (38) and taking into account formula (15), we obtain the 
following expression for the impedance of a bounded plasma solenoid without a shell in the absence of an 
external magnetic field

χ χ
Λ

χ χ χ χ χ χ
-

+å 2 1 1 0
0

0 1 0 0 1 0 0=1
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( ) ( ) ( ) ( )
n S n S
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I R K R
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R I R K R R I R K R
ω ω                    (49)

In the case of a plasma solenoid with a conductive shell (in this case, instead of (46), solution (47) is taken), 
the complex impedance has the form

χ χ
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χ χ χ χ χ χ
-

+å 2 1 1 0
0

0 1 0 0 1 0 0=1

( ) ( )
( ) = ,

( ) ( ) ( ) ( )
n S n S

S n
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I R X R
Z i P

R I R X R R I R X R
ω ω               (49a)

where 0 0 0 0 1 0 0 0 1 0( ) = ( ) ( ) ( ) ( )n n n n nX r K r I I r Kχ χ χ χ χ+  .  
Formula (49) can only be used in the frequency 
range (45). In the case of formula (49a), there is no 
such limitation.

The denominators in expression (49) 

0 1 0( ) ( ) ( )Bn n S n n S n SD R I R K Rχ χ χ χº +

	 0 1 0 0( ) ( )n n S n SI R K Rχ χ χ+    (50)

are dispersion functions for waves B  of plasma 
cylinder type with a free surface. Such waves do 
not exist in a plasma cylinder without an external 
magnetic field, since the dispersion equations

= 0BnD  at = 0eν  real solutions regarding 
frequency ω do not have6. Thus, the impedance 
(49) has no resonant features – zeros and poles. 
Consequently, there is no resonant power absorption 
from the external source in a bounded plasma 
solenoid without a casing and external magnetic 
field. Previously, the same result was obtained for a 
homogeneous solenoid, in the calculation of which it 
was assumed / = 0z¶ ¶  (see formulas (30) and (31)). 
The impedance determined by formula (49a) has 
resonant features, but only in the radio-frequency 
region, where the quasi-stationary approximation, 
and hence the very concept of impedance, are 
inapplicable.

6   Complex solutions correspond to damping field perturbations. 
The damping is caused by free radiation into the space surrounding 
the plasma cylinder. The plasma cylinder with a free surface for  
B-type fields is not a waveguide.

Fig. 5 shows the complex impedance (49) of a 
bounded plasma solenoid with uniform winding 
density in the absence of an external magnetic field 
at / = 0 .5Le SR cω , = 0 .03e Leν ω , / = 2S SL R .  
The monotonic nature of the presented dependencies 
indicates the absence of resonances associated with 
the excitation of natural waves B-type in a plasma 
cylinder with a free surface. The imaginary part of 
the impedance shown in Fig. 5 indicates the absence 
of frequency dependence of inductance. The 
impedance of the solenoid calculated using formula 
(49a) has approximately the same form.

The impedance and inductance of the bounded 
solenoid depend on its length SL . The inductance 
of a vacuum solenoid also depends on length 0Λ , 
but in the case of a bounded plasma solenoid, this 
dependence is significantly stronger. Fig. 6 shows 
the relative inductance of the plasma solenoid SL  
calculated 0/SΛ Λ , as a function of length using 
impedance (49a). At large values of SL  it approaches 
the relative inductance of a long plasma solenoid, 
calculated using impedance (28a). It is intuitively 
clear that the longer the solenoid, the less influence 
its boundaries have = 0, Sz L . Fig. 6 confirms that 
this is indeed the case.

When the quasi-stationary condition is violated, 
formulas (49) and (49a) are unsuitable, and formula 
(48) for the harmonics of the azimuthal component 
of the electric field strength is also unsuitable, as it 
does not account for radiation through the lateral 
surface of the solenoid. Instead of accounting for 
radiation, let's assume the presence of a conductive 
shell with radius , enclosing the solenoid. The field 
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in the plasma in this case is given by formula (48), 
in which functions 0,1 0( )n SK Rχ  are replaced with 

0,1 0( )n SX Rχ . Substituting ( )nE rϕ  into the second 
formula (36), and then into formula (22), after 

integration over the solenoid volume, we obtain the 
following expression for the source power dissipated 
in the plasma solenoid with shell in the absence of 
an external magnetic field:

 
Λ χ

χ χ
χ χ χ χ χ χ
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22 2
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n S n

n n
n n S n S n n S n Sn S

I c X R P
W I r I r rdr

I R X R I R X R R

ω
ω ω ε    (51)

For a plasma solenoid with parameters
/ = 5Le SR cω , = 0 .03e Leν ω , / = 2S SL R  and 

/ = 1 .6SR   the power (51) is shown in Fig. 7. It can 
be seen that beyond the quasi-stationary frequency 
range, power maxima have appeared. They are 
caused by resonant excitation by the source of 
natural waves of B-type in a waveguide of radius   
with a plasma cylinder of radius SR . It can be shown 
that the dispersion function of these waves is in the 
denominator of the expression under the modulus 
in (51) (the same function is in the denominator of 
expression (49a)). 

5. BOUNDED PLASMA SOLENOID WITH 
MAGNETOACTIVE PLASMA

Let's now turn to the general case of magnetoactive 
plasma. In the region < Sr R  we seek the solution of 
equations in the form

κ

κ
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zn n n

E A J r

E B J r
ϕ                      (52)

where ,n nA B  — are constants, and  nκ  — are unknown 
eigenvalues. Substitution of (52) into equations (42) 
leads to a homogeneous system of two equations  
for ,n nA B  

κ
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ε
κ
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  (53)

From which we obtain the equation for 
determining eigenvalues nκ  

Fig. 5. Complex impedance of a limited plasma solenoid without 
shell in the absence of external magnetic field
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and the relationship between constants in solution (52) 
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B i A i A

κ
β κ

ε ε
       (55)

The roots of the biquadratic equation (54) can be 
written as 1nκ , - 1nκ , 2nκ , - 2nκ , where 

( )χ^
^
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2
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Since 1 1( ) = ( )J z J z- - , 0 0( ) = ( )J z J z- , - -( ) = ( )z zβ β ,  
then considering (52) the general solution of the first 
two equations of system (42) is as follows: 
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Fig. 6. Inductance of a bounded plasma solenoid depending on 
its length

Fig. 7. Effective resistance of a bounded plasma solenoid with shell 
in the absence of external magnetic field
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where 1,2nA  — are constants.
In the vacuum region > Sr R  the bounded solutions 

of the first two equations (42) have the form

χ

χ
1 0

0 0

= ( ),
= ( ),

n n n

zn n n

E C K r

E D K r
ϕ                    (58)

where nC  and  nD   — are constants. If the plasma 
solenoid has a conducting cylindrical shell, then at 

> > Sr R  the following solution is written: 

χ
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ϕ
       (59)

where function 1 0( )nX rχ  is given in (47).

To determine the constants 1,2nA , nC  and  nD  of 
solutions (57) and (58), they should be matched at 
point = Sr R . However, three matching conditions – 
boundary conditions (41) – are insufficient to 
determine four constants in solutions (57) and 
(58). The missing fourth condition is obtained by 
integrating the second equation of system (42) in the 
vicinity of point = Sr R , which gives 

χ χ
^
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2 2

=

= 0 .zn
zn n

n n r RS

dE gik E
dr ϕ

ε
       (60)

Using system (3), it can be shown that (60) is 
equivalent to the continuity condition at the plasma 
boundary of the tangential component of magnetic 
field induction Bϕ , or the normal component of 
electric field induction ^ +=r rD E igEϕε .

Matching solutions (57) and (58) using the 
obtained conditions, we express the constants 1,2nA , 

nC , nD  and find the following expression: 
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(61)
where 

-2 1= ( ) ( )n En n S Bn n SD D R D Rκ κ
- 1 2( ) ( ),En n S Bn n SD R D Rκ κ    (62)
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   (63)

Expressions nD  are dispersion functions of mixed, 
i.e., B - and  E -type, electromagnetic waves of a 
magnetoactive plasma cylinder with a free surface. 
Keeping in mind the limit transition to zero external 
magnetic field, we can conditionally call functions 

1,2( )Bn n SD Rκ  dispersion functions of B-type waves, 
and  1,2( )En n SD Rκ  — dispersion functions of E-type 
waves (see formula (50)).

Substituting (61) into the external circuit equation 
(38), we obtain in a standard way the following 
expression for the complex impedance of a solenoid 
filled with homogeneous magnetoactive plasma:  
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In zero magnetic field, formula (64) reduces to formula (49).
When deriving formula (64), we assumed that the solenoid had no conducting shell. If there is a conducting 

shell, then solution (59) should be used. Then, almost completely repeating the derivation of formula (64), 
we obtain the following expression for the impedance of a bounded plasma solenoid with a conducting shell 
in an external magnetic field: 
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and the dispersion functions are determined by formulas 
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where 1 0 1 0 0 0 1 0 0 0( ) = ( ) ( ) ( ) ( )n n n n nZ r K r I I r Kχ χ χ χ χ+  .
Solution (59) makes sense for any sign of values 2

0nχ  (unlike solution (58), obtained at 2
0 > 0nχ ), and the 

applicability of formula (64a) is not limited by condition (45). Therefore, in (64a), it becomes possible to 
take the limit transition to a solenoid of infinite length SL ® ¥, or 0znk ® . In this limit, from formulas 
(56) and (55), we have ®2 2 2

1 | |( / ) ,n cκ ω ε , ^® º

2 2 2 2
2 2( / )n cκ ω ε κ  ( ^ε  see in (24)), ® ¹1( ) const 0nβ κ ,  

®2( ) 0nβ κ . Then, considering (65), formula (64a) transforms to
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Taking into account the relation 

2
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2
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we see that formula (66) exactly transitions into 
formula (28a) of the inductance of a uniform 
solenoid. Thus, a solenoid of very large length can 
be considered uniform. But this is understandable, 
since with a large solenoid length, the conditions at 
its ends do not play a significant role.

Equation 

º -2 1( , ) = ( ) ( )n zn En n S Bn n SD D k D R D Rω κ κ
- 1 2( ) ( ) = 0En n S Bn n SD R D Rκ κ     (68)

determines the frequencies ( )s znkω  of the natural 
waves of a plasma cylinder with radius SR  (with a 
free surface, or in a waveguide of radius ) in an 

external magnetic field. Here, the index s denotes 
the number of the plasma wave branch, and  n 
coincides with the summation index in (64) and 
(64a). These same frequencies determine the poles 

¥( ) = ( )sn s znkω ω  of impedances (64) and (64a). The 
rather complex equation (68) has been studied in 
various limiting cases in plasma waveguide theory 
[35]. The exact equation for the impedance zeros, 
due to the presence of an infinite sum in (64) and 
(64a), cannot be written in explicit form at all. 
Therefore, it is impossible to determine in general 
form whether impedances (64) and (64a) have 
zeros. In calculations performed for specific cases, 
impedance zeros were not found. Let us recall 
that current resonance occurs at impedance poles, 
while voltage resonance occurs at zeros. Thus, in a 
bounded plasma solenoid in an external magnetic 
field, current resonances are possible, while voltage 
resonances most likely do not exist. The same can 
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be said about a uniform plasma solenoid, based on 
previous results.

Let us consider the mechanisms of energy 
transfer from an external source to magnetoactive 
plasma located in a solenoid. All these mechanisms 
are taken into account in formulas (64) and (64a). 
The radio-frequency electromagnetic field of the 
solenoid has a B-type structure. Forced oscillations 
of this type will be excited in the plasma. However, 
in the presence of a finite external magnetic 
field in the plasma, oscillations of B -type and  
E -type become coupled with each other. Thus, 
in a solenoid with magnetoactive plasma, mixed 
forced electromagnetic oscillations of both types 
are excited at the frequency of the external source 
ω. The most intense excitation of oscillations in 
the plasma occurs when the source frequency 
coincides with the frequencies of the natural waves 
of the plasma system, i.e., at ¥» ( ) = ( )sn s znkω ω ω ,  
where ( )s znkω  are determined from equations (68). 
Naturally, the strongest absorption of external source 
energy in the plasma occurs at the same frequencies. 
It is precisely the coupling of electromagnetic waves 
of B-type and E -type that distinguishes the case 
of magnetoactive plasma in a solenoid from the 
case of a plasma solenoid without a magnetic field 
(only B -type oscillations are excited) and from 
the case of plasma in a capacitor (only E -type 
oscillations are excited) [18]. Consequently, the use 
of magnetoactive plasma allows engaging plasma 
waves of all types as inductive channels for resonant 
energy transfer from the source to the plasma. Of 
particular interest are waves of E-type due to their 
low frequency. Moreover, in a plasma cylinder, there 
are no natural electromagnetic waves of B-type in 
the low-frequency region at all (except for waves (33) 
with frequencies close to the upper hybrid frequency).

It is known [35] that in a plasma waveguide with 
a weak external magnetic field, when Ω < ,e Leω   
there are three groups of E -type waves. In the 
low-frequency region Ω< eω  the frequencies of 
bulk oblique cyclotron waves are located. In the 
intermediate frequency range Ω < <e Leω ω  the 
frequency of the surface Langmuir wave lies. In 
the radio-frequency region Ω< <Le gω ω  the 
frequencies of oblique Langmuir waves are located. 
In the case of a strong external magnetic field, when 
Ω >e Leω , there is no surface wave, the frequencies 
of oblique Langmuir waves are located in the region

< Leω ω , and the frequencies of oblique cyclotron 
waves belong to the range Ω Ω< <e gω .

Figure 8 shows the calculation results of the real 
part of the impedance of a bounded plasma solenoid, 
performed using formula (64) for / = 0 .5Le SR cω , 

= 0 .03e Leν ω , / = 2S SL R  and various values of 
/ = 0 .02,0 .1,1,5e SR cΩ . At a small magnetic field 

value, the curve is similar to the curve in Fig. 5, 
constructed for the case of zero magnetic field. In the 
absence of an external magnetic field, there are only 
E-type waves, which are not excited by azimuthal 
current and there is no resonant energy absorption 
in the plasma. With a non-zero magnetic field value, 
waves of E-type and B-type become coupled, and 
excitation of such a wave by azimuthal current 
becomes possible. This manifests in the appearance 
of resonant absorption peaks in Fig. 8 for the curve 
corresponding to / = 0 .02e SR cΩ . The right peak 
corresponds to the excitation of a bulk Langmuir 
wave with a frequency close to the Langmuir 
frequency, and the left one corresponds to a surface 

Fig. 8. The real part of the impedance of a bounded plasma 
solenoid without a shield in an external magnetic field for 

/ = 0 .5Le SR cω , = 0 .03e Leν ω , / = 2S SL R . The numbers 
near the curves correspond to the value of /e SR cΩ
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wave with a frequency of order / 2Leω . When the 
magnetic field increases to values / = 0 .1e SR cΩ  the 
coupling between waves strengthens and absorption 
peaks increase, including the formation of a low-
frequency cyclotron absorption peak. In a strong 
magnetic field ( >e LeΩ ω ), at / = 1e SR cΩ , Fig. 8  
shows only peaks of low-frequency Langmuir 
waves in the quasi-stationary frequency region. 
These peaks persist in the case of / = 5e SR cΩ ,  
but their magnitude decreases noticeably, 
corresponding to the fact that in a strong magnetic 
field, the waves transform into E -type waves, 
which are not excited by azimuthal current. In 
all considered cases, the imaginary part of the 
impedance practically does not depend on the 
external magnetic field magnitude and coincides 
with the dependence shown in Fig. 5.

6. CONCLUSION

Based on Maxwell's equations in cold collisional 
magnetoactive plasma, the electrodynamic 
properties of a plasma column and the dynamics of 
electromagnetic field excitation by azimuthal current 
on its surface are examined for arbitrary ratios 
between the exciting generator frequency, electron 
cyclotron frequency, and plasma frequency. Cases 
of unbounded and longitudinally bounded plasma 
solenoid are considered. The complex impedance 
of the system and effective resistance as a quantity 
characterizing the power absorbed in the plasma 
were calculated. Despite the limitation of the 
complex impedance concept to the quasistationary 
case, nevertheless, the real part of the impedance 
coincides with the effective resistance, whose 
concept has a broader range of applicability not 
limited by quasi-stationarity conditions. The 
resonant properties of the complex impedance 
and effective plasma resistance are associated with 
the possibility of exciting natural electromagnetic 
waves in the system with their subsequent collisional 
dissipation. The broadening of resonance lines is 
determined by both the electron collision frequency 
and the possibility of radial energy transfer in 
an open system. In a system without a casing in 
either sufficiently weak or, conversely, sufficiently 
strong external magnetic field, only E-type waves 
become dominant, which are not excited by 
azimuthal current, and the resonant nature of 
energy absorption in plasma does not manifest. 
At intermediate magnetic field values E-type and  

B-type waves become coupled, and the excitation of 
such a wave by azimuthal current becomes possible. 
This manifests in the appearance of resonant 
absorption peaks associated with the excitation of 
bulk or surface Langmuir waves, as well as cyclotron 
waves.
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