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Abstract. A comparative analysis of electromagnetic emission by an electron in Gaussian fields of linear 
and circular polarization was carried out. For a short laser pulse, local (power in solid angle and power) and 
integral (energy emitted from the trajectory) characteristics of emission are determined. It is shown that the 
previously discovered law of growth of the emitted peak angular power in a linearly polarized field also extends 
to the case of a circularly polarized field with a decrease in the numerical coefficient by a factor of 2 due to a 
decrease in the field amplitude by a factor of √2. During backscattering in both considered cases of linear and 
circular polarization, the emission characteristics have a power-law increase with indices 6 (peak power per 
solid angle) and 4 (power, radiated energy) in terms of the initial electron energy and significantly exceed the 
values of the radiation characteristics from symmetric trajectories.

An estimate of the radiated angular power in the direction of the motion speed is obtained.
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1. INTRODUCTION

A charged particle experiences maximum impact 
from the electromagnetic field in the vicinity of the 
laser pulse focus. As a result, the electron radiation 
spectrum can reach X-ray and gamma ranges [1]. 
The study of radiation generation has both applied 
and fundamental significance. Radiation sources 
with prediction of peak intensity values and radiation 
power distribution are of interest in biomedicine 
and atomic physics [2,3]. Applied task formulations 
are based on the initial position of a "stationary" 
electron directly in the laser pulse focus, which 
leads to radiation in the form of classical Thomson 
scattering with "forward-backward" symmetry. The 
radiation of an electron that acquires kinetic energy 
due to interaction with the field is interpreted 
as nonlinear Thomson scattering. In the case of 
electron counter-propagation relative to the laser 
pulse, electron radiation also fits into the scheme of 
nonlinear Thomson scattering.

From a fundamental perspective, obtaining 
maximum radiation characteristics is of interest, as 
well as establishing radiation features in connection 
with the possibility of radiation-dominant regime 
emergence [4–5]. A notable contribution of radiation 
friction is noted in works [6–8].

Various aspects of nonlinear Thomson scattering 
are considered in works [9–11]. The development of 
methods for calculating radiation power, alternative 
to the relativistic Larmor formula [12], is relevant. 
Thus, in work [13], a methodology for constructing 
electron radiation diagrams is proposed, which also 
allows determining the directionally integrated 
radiation power. A power-law growth with an 
exponent of 6 for the angular power of backscattering 
in a linearly polarized laser field with respect to the 
initial electron kinetic energy was discovered [14].

The aim of this work is a comparative analysis of 
electron radiation in laser fields of linear and circular 
polarization.
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2. MODELS OF FOCUSED LASER FIELD

When choosing a focused laser field model, one 
is usually guided by the criterion of accuracy in 
correspondence with Maxwell's equations. The 
second important criterion is the consistency of 
theory with experiment. The complexity of model 
implementation should also be considered. Let's 
evaluate the models according to these criteria.

The model of transverse fields with a flat phase 
front and inhomogeneous transverse distribution 
does not satisfy Maxwell's equations [15]. It was used, 
for example, in works [6–8]. In general, it does not 
describe the axially symmetric ejection of ionization 
electrons from the interaction region with a linearly 
polarized laser field observed in experiments. It 
describes ejection along the polarization direction, 
which according to existing understanding is not 
important for the problems solved in works [6–8].

The model of Gaussian beams with transverse-
longitudinal field components, due to accounting 
for the phase front tilt, is a solution to the parabolic 
equation — an approximation of the wave 
equation  — a direct consequence of Maxwell's 
equations in vacuum, i.e., it is an approximate 
solution to Maxwell's equations [18]. There are many 
solutions in the form of Gauss–Laguerre fields. 
The fundamental Gauss–Laguerre mode has an 
exponentially decreasing transverse inhomogeneity 
from the axis. This field distribution satisfies the 
criterion of axial symmetry for electron ejection from 
the interaction region. The applicability conditions 
for this approximation are as follows:

= =
0

1 1, ,d
kp kL

e  ε2 ≪ 1, δ ≪ 1.

Here ρ0 is the transverse waist size of the laser pulse 
at half-height in the focal plane, L is the longitudinal 
size of the laser pulse, k is the wave number of laser 
radiation. The coefficient ε2 appears in the wave 
equation for the complex amplitude of the vector 
potential. Note that both conditions are obtained 
when applying the method of variable separation 
to the wave equation and are less burdensome than 
in other works. The first condition limits the focal 
spot size from below. The second condition limits 
the envelope application since =L ct , t  is the pulse 
duration, c  is the speed of light.

2.1. Field Models Based on Exact Solution  
of Maxwell's Equations

Maxwell's equations in vacuum reduce to the 
wave equation for vector potential, which should be 
solved with boundary conditions on the focusing 
lens surface. The solution of the linear wave 
equation with boundary conditions can be obtained 
through variable separation methods, reduction 
to Kirchhoff 's integral, and Fourier–Laplace 
transformation. The paper [19] presents some exact 
solutions of Maxwell's equations describing time-
stationary focused laser pulses. In particular, the 
electric-type laser pulse with transverse electric 
field and transverse-longitudinal magnetic field 
differs from the fundamental Gauss–Laguerre 
mode. As it approaches the diffraction limit, the 
solution transitions into a Gaussian beam-type field 
distribution, representing a complex combination 
of Gauss–Laguerre modes. The model was applied 
[20] to interpret experiments with asymmetric 
electron acceleration [21]. We should also note the 
construction of sharply focused fields using the 
generalized Kirchhoff integral [18].

Thus, when considering laser fields with focusing 
not reaching the diffraction limit, the most 
suitable are the fields of the fundamental Gauss–
Laguerre mode — Gaussian beam. In this article 

0 = 26.7, = 10k kLr . Therefore, the Gaussian beam 
approximation is adequate. In terms of model 
implementation complexity, the computation 
volume in this work exceeds that of [14] by an order 
of magnitude. Increasing the pulse duration would 
lead to an inefficient increase in computation volume 
at distances far from the focus.

The vector potential of a Gaussian beam laser 
field propagating along the axis in the vicinity of the 
focus can be represented as 

	 æ ö= s - r s ´ç ÷è ø
2 2

0
1cos exp cos2

A A 	

	
æ ö+ a - a´ j + jç ÷è ø

1 1cos sin ,
2 2x ph y phe e 	 (1)

 
where 0A  and   phj  — are amplitude and phase,

 	 j = w - + s - r s21 sin 2 ,
4ph t kz 	
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2
2
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1 ( / )Rz z

	 (2)

	 = r r = r2
0 0, / ,Rz k r 	

r  is the transverse coordinate, ,x ye e  are unit vectors. 
Linear polarization along x and  y corresponds to 
values = 1a  and = 1a - , circular   — = 0a , for 
other values in the interval (−1,1) the polarization 
is elliptical. The peak intensity (time-averaged 
Poynting vector magnitude) is identical and is 
defined through the relativistic intensity 

	 = = m
p

2
0 0( ) ,

8 R
c

I A k I 	

	
p=

l

2 5

2 2 ,
2R
m c

I
e

	

where m and  e   are the electron rest mass and 
charge. If m, is given, then 0A  is determined. 
Fields in the general  case of  el l iptical 
polarization are determined by components 
( , , , , ,x y z x y zE E E H H Hd d ) ,  l o n g i t u d i n a l 
components 0, = 1 /z zE H kd d e r» , (paper [22] 
considers expressions for fields with higher orders e, 
but the advantage of such expansion is not discussed). 
As follows from expression (1), the amplitude of 
the main (transverse) field in the case of circular 
polarization ( = 0a ) is  2 times smaller than the 
amplitude of linear polarization ( = 1a ±  ), and the 
maximum amplitude of elliptical polarization has an 
intermediate value, so that for the numerical factors 
of these amplitudes, the inequalities 

	
a£ + £1 1 | | 1.

2 22
	

hold. When transitioning from a Gaussian beam to 
a pulse also with a Gaussian time distribution, the 
field description should include a temporal envelope 
as a multiplier 

	
æ ö- -æ ö-ç ÷ç ÷tç ÷è øè ø

2( ) /
exp ,

2
dt z z c

	

where t  is the pulse duration at half intensity, dz  is 
the initial distance from the temporal envelope 
maximum to the focal plane.

3. ELECTRON MOTION TRAJECTORIES 
IN GAUSSIAN FIELDS OF DIFFERENT 

POLARIZATION

Solutions of the Lorentz equation with initial 
conditions and the complete set of field components  
( , , , , ,x y z x y zE E E H H Hd d ),

	

æ ö
ç ÷
ç ÷ = - - ´ç ÷

æ öç ÷- ç ÷ç ÷è øè ø

2
,

1

dr
d e drdtm eE H
dt c dtv

c

	 (3)

 

	 0 0(0) = , (0) = ,r r v v 	

allow determining the electron motion trajectory, as 
well as instantaneous values of velocity components 
v and acceleration 'v .

The standard problem (3) of three nonlinear 
second-order differential equations is numerically 
solved using Wolfram Mathematica package, but 
requires decomposition of relativistic nonlinearity 
(it is necessary to expand all derivatives component-
wise and reduce to normal form with isolation of 
higher derivatives, which explains the notation (3)). 
Testing is performed by constructing symmetric 
trajectories: the electron initially rests on the pulse 
axis before the focus and after interaction with the 
pulse stops at the same distance beyond the focus. 
Selection of initial conditions ensures compensation 
of the dynamic impact when the field is turned on. 
Calculation of the motion of an initially resting 
electron, displaced from the axis, in the field of a 
Gaussian pulse of the fundamental mode leads to 
symmetric ejection from the interaction region.

A short pulse / = 1.5ct l , corresponding to a 
duration of 3.5 fs is considered. Figure 1 shows 
symmetric trajectories of electron motion in fields 
with parameter s  0 = 26.7, / = 1.5, = 5cr t l m  
(waist size, temporal envelope length in oscillation 
periods, and peak intensity m relative to relativistic) 
of different polarization = 0( ),1( ), 1( )a b ca - . Initial 
data for problem (3): 

	 0 0 0/ = 0, / = 0, / = 1.2,x y zl l l - 	

	 18 10 18
0 0 0/ = 10 , / = 5 10 , / = 10 .x y zv c v c v c- - -×
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Trajectories = 1a  (Fig. 1b), = 1a -  (Fig. 1c) do not 
coincide when rotated around axis z by angle / 2p  , 
as the acting fields (1) are phase-shifted. For an 
electron moving towards the laser pulse, the initial 
velocity is related to the initial kinetic energy 

	 = - =
-

0
2 2

0

1 1 .
1 ( / )

k

z

W
p

mc v c
	

Since symmetric trajectories, besides the test 
value, describe the maximum radiation energy 
compared to all trajectories of an initially resting 
electron (not only on the axis) at fixed laser pulse 
parameters, we will further assume that motion 
along symmetric trajectories corresponds to the 
case = 0p . For > 0p  we assume that the electron 
passes near the focus at the moment of the temporal 
envelope maximum. This corresponds to a change in 
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Fig. 1. Symmetric electron trajectories at µ = 5, τc / λ = 1.5,  
α = 0 (a), 1 (b), −1 (c)

Fig. 2. Trajectories of electron motion with initial kinetic energy  
p = 20 towards the laser pulse with parameters kρ0 = 26.7,  
τc / λ = 1.5, µ = 5 of different polarization α = 0 (a), 1 (b), −1 (c)

a a

b b

c c
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initial conditions 0 0 0 0= ( ) / , = ( )z d z zz v p z c v v p  — 
the magnitude of the counter velocity determined  
by  p. Fig. 2 shows electron motion trajectories in 
fields with parameters 0 = 26.7, / = 1.5, = 5k cr t l m  
of different polarization = 0,1, 1a -  and with 
initial kinetic energy = 20p  (electron moves in 
the direction of decreasing coordinate z). Since 
zd = 6λ, and  0 (20) / = 0.998866zv c ,  in itia l 
conditions 0 0/ = 6, / = 0.998866zz v cl - , others 
as for symmetric trajectories.

4. ELECTRON RADIATION  
IN GAUSSIAN FIELDS

Electron motion occurs under the action 
of the Lorentz force, while the electron emits 
electromagnetic pulses. In the radiation model based 
on Lienard-Wiechert potentials, the electron emits 
field 

	
- æ ö= - +ç ÷è ø- ×

2 2

3
1 /

( / )rad
v c

e R
cR c
vE R

R v
	

	
é ùæ ö+ ´ - ´ê úç ÷è ø- × ë û2 3 [ ' ],
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e

R
cc R c
vR R v
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r
R t

t t
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For R = Rn, R ~ 104 λ we have 

Fig. 3. Level lines 
-é ùW j që û

1
1lg / ( , )I dI d  of electron radiation 

with initial kinetic energy p = 10 towards the laser pulse with 
parameters kρ0 = 26.7, τc / λ = 1.5, µ = 5 of different polarization  
α = 0 (a), 1 (b) 

a

b

Fig. 4. Radiation pattern of the electron, built according to the 
distribution in Fig Figure 3a (p = 10, α = 0)
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The distribution of radiation power over the solid 
angle W in the direction n (hereinafter briefly referred 
to as intensity), 

	 = q j q j j(sin cos ,sin sin ,cos ),n 	

focus has coordinates (0,0,0), q — azimuthal angle 
from the focus relative to the axis z, j  — polar angle 
in the focal plane xy, is determined by the second 
(radiative) term in (4): 

é ùæ ö= ´ - ´ê úç ÷W p è ø- × ë û

2

3 6 | ' | .
4 (1 / )

dI e
d ñc c

21 vn n v
n v

	 (6)

 To construct the radiation directivity pattern 
in the Lienard–Wiechert model, it is necessary 
to calculate the distribution / ( , )dI dW j q  and 
construct the surface /ndI dW. Integration of 
expression (6) over the solid angle gives the power 
radiated by the electron at a given moment of time. 
Normalization of radiation patterns W/dI dn  in the 
Lienard–Wiechert model is performed by the value 

	 l l

2

1 = .
3 /

e
I

c
2 1

	

Determination of the maximum value of radiated 
power into the solid angle, /dI dW, consists in 
conducting optimization calculations. A methodology 
has been developed [23]; the task is non-standard; the 
program is implemented in Fortran. Fig. 3 shows the 
level lines of distributions -é ùW j që û

1
1lg / ( , )I dI d  of 

maximum-in-time radiation of the counter electron  
( = 10p ) in the field of a laser pulse with parameters

0 = 26.7, / = 1.5, = 5k cr t l m  for circular ( = 0a  ) 
and linear ( = 1a ) polarizations. As follows from Fig. 
3, in the case of linearly polarized field, backscattering 
occurs into a narrow cone in the vicinity of =q p 
and is well described by expression 

	 q=p @
W1

|dI
I d
1

	
é ù

@ pm + + -ê ú
+ê úë û

4
6

26 ( 1) 1 1 .
( 1)

p
p

1
	 (7)

In the case of circular polarization, the radiation 
solid angle is inclined due to electron motion in a 
circle in the focal plane and is concentrated in the 
vicinity of = 0.95q p . The electron radiation 
directivity pattern for this case 8

110 / I-  ( W/dI dn ) 

is shown in Fig. 4. Maximum angular power is the 
maximum longitudinal size of the pattern; main 
radiation goes into a cone; the cone is inclined.

To estimate the maximum radiation intensity 
without optimization, the following approach is 
proposed. The denominators of expression (4) are 
maximum at ||n v, i.e., we can set = / vn v , then 
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To characterize the velocity of motion, we use kinetic 
energy 2/kW mc . The time course of kinetic energy 
and acceleration modulus over time is shown in  
Fig. 5.
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5. CALCULATION OF ELECTRON 
RADIATION CHARACTERISTICS  

IN GAUSSIAN FIELDS

The following characteristics are of interest. 
1. Maximum power per solid angle, max[dI/dΩ] 

normalized to I1.
2. Radiation power

	 = W
WòdI

I d
d 	

also normalized to I1.
3. Radiated energy from the trajectory of motion

	 = òE Idt 	

normalized to 

	 l

2

1 = ,
3

e
E

2
	

where for λ = 800 nm 

	 -= » ×
l

2
9

1 2 2 2.35 10 .
3

e
E

mc mc
1 2 1

	

 Figure 6a shows the temporal progression of 
electron radiation power during motion along 
symmetric trajectories in Fig. 1 for α = 0, 1, −1. 
Radiation bursts with linear polarization sometimes 
exceed radiation power values with circular 
polarization, which is associated with higher 
acceleration values. The energy radiated from 
trajectories (integral of power over time) at p = 0, 
equals E/E1 = 1.83 · 103 (α = 0); 1.01 · 103 (α = 1); 
1.02 · 103 (α = −1).

In Fig. 6b shows the temporal progression of 
electron radiation power with initial kinetic energy 
p = 20 during motion along trajectories in Fig. 2 for 
(α = 0, 1, −1). The energy radiated from trajectories 
at p = 20 increases by orders of magnitude and 
equalizes across polarizations: E/E1 = 1.03 · 108 
(α = 0); 1.08 · 108 (α = 1); 1.10 · 108 (α = −1).

Summary information on the dependence of 
radiation characteristics on initial kinetic energy 
is presented in Fig. 7. Calculated values are shown 
as points in black (α = 0), blue (α = 1) and red 
(α = −1) colors. The upper curve 1 (a straight line in 
logarithmic scale) is the dependence (7); according 
to work [14], this curve contains the values of 
maximum angular radiation power in a linear 
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Fig. 5. Time course of kinetic energy Wk / mc2 (solid curve) and acceleration modulus |v′|λ/c2 (dashed curve) of the electron moving along 
trajectories: α = 0, p = 0 (a); α = 1, p = 0 (b); α = 0, p = 10 (c); α = 1, p = 10 (d)
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polarization field, α = ±1. Curve 2 is a dependence 
of type (7) with half the coefficient; this curve 
contains the values of maximum angular radiation 
power in a circular polarization field, α = 0. On the 
approximation curve 3 

	 @ pm + 4max

1
64 ( 1)

I
p

I 	

lie the values of maximum radiation power in a linear 
polarization field, α = ±1. On the approximation 
curve 4

	 @ pm + 4max

1
32 ( 1)

I
p

I 	

lie the values of maximum radiation power in a 
circular polarization field, α = 0.

The energy dependencies E/E1, radiated from 
trajectories both in linear and circular polarization,  
α = 0, ±1, in the considered logarithmic scale and 
with the used non- dimensionalization, coincide 
with high accuracy with the dependence Imax/I1 for 
α = 0 and lie on the approximating curve 4.

6. DISCUSSION OF RESULTS

According to estimation (8), the intensity 
maximum can be achieved at the maximum of velocity 
and acceleration moduli, while 

�
»2( , ) 1sin v v'  . The 

time coincidence of maxima occurs for α = 0, p > 0  
(Fig. 4c), in this case, approximation (8) works well. 
In the case of α = ±1, p = 0 (Fig. 4b), there is a 
time separation of velocity and acceleration moduli 
maxima [14]. In the case of α = ±1, p > 0 (Fig. 4d), 
backscattering occurs in the direction opposite to the 
z (θ = π), axis, at the moment when the maximum of 
the modulus yv ¢ and vz = v0z; is reached; under these 
assumptions, estimation (7) was obtained [14]. The 
agreement of calculations for circular polarization  
α = 0, p > 0 with the approximating curve (with 
a coefficient reduced by 2 due to field amplitude 
reduction by √2 times) extends the limits of analytical 
applicability. At the direction of maximum intensity 
radiation has an inclination due to electron motion 
in a circle in the focal plane (see Fig. 3a and Fig. 4). 
Also, the dependencies of radiation power maxima 
differ by a factor of two for linear and circular 
polarization (dependencies 3, 4 in Fig. 7).

Overall, the scattering process responds to 
instantaneous values of field intensity (Poynting 
vector modulus) without averaging over the wave 
period, therefore, the generalization of expression (7) 
for elliptically polarized field consists in adding the 
factor 1/2 + |α|/2. Thus, for an elliptically polarized 
field, an intermediate position should be expected 
between dependencies 1, 2 for maximum power into 
solid angle and 3, 4 for maximum radiation power 
with a change relative to characteristics at linear 
polarization by 1/2 + |α|/2 times.

In the f ield of linear polarization, α = ±1,  
p  = 0,  r ad iat ion w ith  shar p piecew i se-
l i near  sy m metr ic  trajector y (Fig.  1b,  c) 
transforms into a smoothed temporal prof ile 
of radiation power (Fig. 3a) and, conversely, 
radiation from a smoothed trajectory α = ±1,  
p > 0 at high values p (Fig, 2b, c) transforms 
into a sharp temporal profile of radiation power  
(Fig. 3b). On symmetric trajectories at α = 0,  
p  = 0 longitudinal and transverse velocity 
c o m p o n e n t s  a r e  c o m p a r a b l e ,  a n d  a t 
the  moment  of  reach i n g  the  m a x i mum 
velocity modulus lead to higher values of 
radiation power and energy emitted from 
the trajectory compared to the case α = 1,  
p = 0, where there is temporal separation of velocity 
and acceleration moduli maxima. At large values, 
the difference in f ield amplitudes for α = ±1,  
p > 0 and α = 0, p > 0 leads to a twofold 
difference in maximum power values. Due to 
quasi-linear change in radiation power for α = 
±1, p > 0 during the wave period, the radiation 
energy from trajectories coincides with the 
emitted energy in the circular polarization field, 
α = 0, p >  0, and normalization to E1 leads 
to the coincidence of dependencies 4 in Fig. 7. 
This coincidence is accidental, since only the 
energy emitted from the trajectory increases 
with the laser pulse duration. The energy 
emitted from the trajectory increases as a power 
law, as (p + 1)4, with increasing initial electron 
kinetic energy, reaching values of 0.132 MeV for 
λ = 800 nm in the considered range p and for the 
given pulse duration. Significantly higher values 
of emitted energy from the symmetric trajectory  
(p = 0) in the circular polarization field compared 
to radiation in the linear polarization field and the 
equalization of emitted energy by polarization at  
p = 20 can be explained by the decrease in electron 
orbit radius with increasing p. The question of 
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studying the dependence of electron orbit radius 
in the focal plane on gaussian pulse parameters 
of circular polarization and on electron energy is 
interesting for separate consideration.

7. CONCLUSIONS

A comparative analysis of electron radiation in 
Gaussian fields of linear and circular polarizations 
has been conducted. An estimate of the radiated 
power into the solid angle in the direction of motion 
velocity was obtained. Local (power into solid angle 
and power) and integral (energy radiated from 
trajectory) radiation characteristics were determined. 
During backscattering in a circularly polarized field, 
the direction of maximum intensity radiation is 
inclined due to electron motion in a circle in the 
focal plane, but due to the small radius, this does 
not lead to a difference in energy radiated from the 
trajectory compared to the case of linearly polarized 
field, as for symmetric trajectories. It is shown that 
the peak intensity growth law discovered in work [14] 

for linear polarization field extends to the case of 
circular polarization field. The numerical coefficient 
decreases by 2 times due to the decrease in field 
amplitude by √2 times. During backscattering in both 
considered cases of linear and circular polarizations, 
the radiation power and radiated energy grow as  
(p + 1)4 with respect to the initial electron energy 
and significantly exceed the values of radiation 
characteristics from symmetric trajectories.

ACKNOWLEDGMENTS

The authors thank M. V. Fedorov for pointing out 
the possibility of interpreting the results for elliptical 
polarization.

REFERENCES

1.	 A.L. Galkin, V.V. Korobkin, M. Yu.Romanovsky et al., 
Proc. of SPIE , 799319-1( 2011).

2.	 A.Baltuška, Th.Udem, M.Uiberacker et al., Nature 
421, 611 (2003).

3.	 K.Lee, Y.H.Cha, M.S.Shinet al.,Phys. Rev. E 6, 7 
026502 (2003). 

4.	 S.V.Bulanov, T. Zh.Esirkepov, J.Koga et al., Plasma 
Physics Reports 30, 3, 196 (2004).

5.	 A.V. Bashinov, A.A. Gonoskov, A.V. Kim et al., 
Quantum Electronics. 43, No. 4, 291 (2013). 

6.	 A. Di Piazza, K. Z. Hatsagortsyan, C.H. Keitel, Phys. 
Rev. Lett.102, 254802 (2009).

7.	 A.L. Galkin JETP. 115, 2 ,201 (2012).
8.	 C.N. Harvey, Phys.Rev.Accel.Beams 21, 114001 (2018).

Fig. 6. Time evolution of electron radiation power during motion: a 
– along symmetric trajectories Fig. 1; b – with initial kinetic energy 
p = 20 along trajectories Fig. 2; α = 0 (solid curves), α = 1 (dashed 
curves), α = −1 (dotted curves)

a

3 4 5 6 7 8 9

ct�Λ

200

400

600

800

I

I1

b

4.5 5.0 5.5 6.0 6.5 7.0 7.5

ct�Λ0

5.�10
7

1.�10
8

1.5�10
8

2.�10
8

2.5�10
8

I

I1

4
3

1 2

10.05.02.0 20.03.01.5 15.07.0

p

100

10
4

10
6

10
8

10
10

Fig. 7. Dependencies of radiation characteristics on initial kinetic 
energy p: maximum angular radiation power in linear polarization 
field α = ±1 (curve 1); maximum angular radiation power in 
circular polarization field α = 0 (curve 2); radiation power in linear 
polarization field α = ±1 (curve 3); radiation power in circular 
polarization field α = 0 and energy radiated from trajectories under 
linear and circular polarizations α = 0, ±1 (curve 4)



JETP, Vol. 165, No. 6, 2024

784	 BOROVSKIY, GALKIN

9.	 Ju Gao, Phys. Rev. Lett. 93, 243001 (2004).
10.	 P.A. Golovinskii, E.A. Mikhin, JETP 113,545 (2011). 
11.	 Yifan Chang, Zishuai Cai, Yuting Shen et al., Laser 

Physics 32, 035302(2022).
12.	 V.V. Lidskii, Bull. Lebedev Phys. Inst. 36,2, 31 (2009).
13.	 A.V. Borovskiy, A.L.Galkin, Laser Phys. 32, 084008 

(2022).
14.	 A.V. Borovskiy, A.L. Galkin, Laser Phys. Lett. 20, 

036002 (2023).
15.	 B. Quesnel, P. Mora, Phys. Rev. E 58, 3719 (1998).
16.	 S. Banerjee, S. Sepke, R. Shah et al., Phys. Rev. Lett. 

95, 035004 (2005).
17.	 А.V. Borovskiy, A.L. Galkin, M.P. Kalashnikov. Phys. 

of Plasmas. 22, 043107 (2015).

18.	 А.V. Borovskiy, A.L. Galkin, Selected Problems of Laser 
Physics. Vacuum Electron Acceleration. Focusing by a 
Parabolic Mirror. Diffraction on an Edge as a Problem 
of Subwavelength Physics. Palmarium Academic 
Publishing, Saarbrucken, Deutschland (2016) 267p  
(in Russian).

19.	 V.S. Popov, V.D. Moore, N. B. Narozhny et al., JETP 
122, 3, 539 (2016). 

20.	 N.B. Narozhny, M.S. Fofanov, Phys. Letters A 295, 87 
(2002).

21.	 G. Malka, E. Lefebvre, J.L. Miquel, Phys. Rev. Lett. 
78, 3314 (1997).

22.	 Qingyu Yang, Yubo Wang, Yifei Cao et al., Laser 
Physics Lett.,20, No. 4, 045301(2023).

23.	A.V.Borovskiy, A.L. Galkin, System Analysis & 
Mathematical Modeling 6, in print (2024).


