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Abstract. The interaction of two slow atoms adsorbed on a surface or thread is considered. It is shown 
that, for any sign of the scattering length, this system has a bound state. In particular, such a state exists 
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1. INTRODUCTION

One of the unexpected results of quantum 
mechanics is the Efimov effect — the presence of 
bound states in a system of three repulsive particles 
[1] (see also works [2–5]). In this article, which 
is a further development of work [6], a similar 
phenomenon is indicated: the possibility of the 
existence of a bound state (van der Waals molecule) 
of repulsive atoms adsorbed on a surface or filament, 
acting as a third body.

In work [6], a pair of such atoms with mass m, 
interacting with the surface through an oscillator 
potential

	 2 2( ) = / 2u z m zw 	

was considered (z-axis is directed perpendicular to 
the surface).

It is known [7] that the scattering length a is the 
only parameter that determines the interaction of 
two atoms at low energy. Based on this, to describe 
the motion of atoms, the authors applied in [6] the 
method of zero radius potentials [8], i.e., imposed a 

boundary condition on the wave function (WF) of 
the atom pair  

	
®

¶jæ ö = gç ÷j ¶è ø0

1 .lim
r r 	 (1)

 Here 

	 = , = 1 / ,r aj y g - 	

	 =| |, = = ( , ),r z r-1 2r r r r 	

1 2 1 2 1 2= , = ( , )z z z x x y yr- - -  i s  a  t wo -
dimensional vector characterizing the relative 
motion of atoms along the surface. According to [6], 
the dissociation energy of the adsorbed molecule 
equals 

	 2= ,D k 	

where k  is determined from the equation

	 ( ) = .f k g 	 (2)
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The graph of function ( )f k  is shown in Fig. 1 
(here and further we use units ħ = m = ω = 1).

From formula (2) and Fig. 1, it is evident that 
the bound state exists for any sign of  g, despite the 
fact that for > 0g  (in paper [6] this case is called 
repulsion) such states do not exist for a pair of 
atoms in free space. Paper [9] considers attractive 
interaction between atoms in the form of a spherical 
well

	 0 0( ) = ( ),V r u r rq- - 	

where  0 > 0u , q   – is the Heaviside function. It is 
indicated that depending on the parameter values 0u  
and   0r , both cases  > 0g , and   < 0g . are possible. 
Hence, it is clear that the case  > 0g  does not always 
correspond to repulsion. It is clear, however, that 

> 0g  can also correspond to explicit repulsion of 
atoms. Let's demonstrate this using an example of a 
definitely repulsive interaction

	 0 0( ) = ( ).V r u r rq+ - 	 (3)

2. HARD SPHERE APPROXIMATION  
FOR ADSORPTION ON A PLANE

 For a pair of free slow atoms, it is sufficient to 
consider s-wave. In their center of mass system 

	 0( ) = Ash( ), < ,r qr r rj 	

	 0 0( ) = sin[ ( ) ], > .r k r r r rj h- + 	

Here  2k  is the kinetic energy of relative motion of 
atoms, 2

0=q u k- . Wave function matching at the 
boundary gives

	 0= cth( ).q qr
k

h 	 (4)

At  0>r r  we get 

	 0= [ ( ) ].k k r rj h
j
¢

- + 	

Condition  0r ®  in (1) should now be understood as 
r ≪ 1/k. From (1) and (4) we obtain 

	 0
0

= ( ).lim
r

k krj h
j®

¢
×- + 	 (5)

Statements [6] are valid if 
	 ( ) = const.g k 	 (6)

 This is satisfied at

	 kr0 ≪ 1, k ≪ q0,	 (7)

where  0 0=q u . In this case 

	 0 0 0= cth( ).q q rg 	 (8)

Thus, if (6) is satisfied, which is true under 
conditions (7), then according to the conclusions of 
paper [6], even in case (3) there exists a bound state 
of the adsorbed quasi-molecule.

The value k  corresponds to distances between  
atoms r ~ 1/k. For motion along the axis x 
r ~ 1, therefore from (7) we obtain the conditions for 
validity of this work's conclusions: 
	 r0 ≪ 1, q0 ≫ 1,	 (9)

 or, in conventional units,

	 r0 ≪ ,
mω

 u0 ≫ ћω	 (10)

From (8) and (9) we conclude

	 0> 1.qg ?≫ 1.	 (11)

According to [6], in this limiting case 

	 k ~ 
æ öpk - gç ÷è ø

exp ,
2

n 	 (12) 

therefore, considering (11), we come to the 
conclusion that the quasi-molecule size, determining 
the characteristic distance for longitudinal motion, 
is large and equals 

Fig. 1. Graph of function ( )f k  from (2)
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	 r ~
1
k ~ exp

2
æ öpgç ÷è ø

≫1.	  

Thus, for longitudinal motion, the conditions for 
satisfying (7) are less stringent compared to (10):

	 r0 ≪ ,
mω

 exp ,
2
π⋅ γ  
ћ 	

	 u0 ≫ ћω exp ,
2
π⋅ γ  
ћ 	

The second condition (10) is typically satisfied 
under typical conditions, and the first one is the most 
stringent. Based on the known stability of bound 
states in two-dimensional and one-dimensional 
systems, it can be stated that such states can exist 
in case (3). 

3. ADSORPTION ON A FILAMENT

Now let's direct the axis z along the filament, and 
for the adsorption potential, we'll again adopt the 
oscillator approximation 

	 2 2 2 2( ) = / 2, = .u x yr r r + 	

According to formula (8) from work [6], the WF 
of relative motion of atoms is given by the expression

	 ( ) ( ),Gy µr r 	

where  ( )G r  is found from the equation

	 æ ö- D + r - + k = d dç ÷è ø
2 21 1 ( ) ( ) ( ).

4r G r x y 	

Now we need to perform a Fourier transform over   
z, after which, similar to [6], we obtain, omitting 
constant factors

	
¥

- t

æ öty = - k t - r t -ç ÷tt - è øò
2

2 2
2

0

1exp .
4 4(1 )

d z
cth

e

When substituting into (1) here we can set  = 0r , 
so that =| |r z , and also apply the identity

	 - t - t
æ ö= + -ç ÷t tè ø- -2 2

1 1 1 1 .
2 21 1e e

	

The integral of the first term is solved analytically 
and equals

	 -p æ ö» p - kç ÷è ø
1 .kre

r r 	

The second term is non-singular, and we can set 
= 0z . in it. This gives for the filament equation (2), 

in which

	
¥

- t
- t

t æ ök = - k + -ç ÷tè øp t -ò
2

2
0

1 1 1( ) .
21

kd
f e

e
	

The graph of this function is similar to that shown 
in Fig. 1, i.e., again the solution (2) exists for any sign 
of  g. For large g instead of exponential smallness 
(12), characteristic for the two-dimensional case, 
we obtain power-law smallness of binding energy 

1 /k g» .

4. CONCLUSIONS

From the above, we conclude that restricting the 
motion of atoms in one or two directions can lead to 
the appearance of a bound state absent in a pair of 
free atoms or to an increase in the binding energy of 
the quasi-molecule they already form.

Let's apply our model to describe experiments  
[10–12] with a two-dimensional gas of spin- 
polarized hydrogen atoms adsorbed on the surface 
of liquid helium.

For the applicabil ity of the zero-radius 
potential approximation (1), it is required that the 
characteristic size of  0r  pair interaction ( )u r  between 
hydrogen atoms in the triplet state should be small 
compared to both the amplitude of adsz  atomic 
oscillations in the adsorption potential ( 0 / 1adsr z = ),  
and  the  characteristic de Broglie wave length  of 
hydrogen atoms under experimental conditions  
[10–12], that is kr0 ≪ 1, where k ~ 2 /k mT: h  ħ is 
the characteristic wave vector of hydrogen atoms 
with mass m. The experiments were conducted at 
temperature T ~ 0.15 K, therefore k ~ 6 · 106 cm−1. 
According to [13], at

	 0 0= 7.85 ,r a 	 (13)
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where 0a  is the Bohr radius, the potential energy ( )u r  
has a minimum u(r0) = −u0, where u0 = 6.2 K.  In 
this adsorption potential, hydrogen atoms have only 
one bound state with binding energy = 1.14KqE  
[14]. From this, we conclude that
	 zads ~ zin + zout ~ 20a0,	

where zin ~ 10a0 is the characteristic oscillation 
amplitude in the classically accessible region of 
hydrogen atoms motion in the adsorption state and   
zout ~ ħ / 0/ 2 10out az mE a: h :~ 10a0 is the characteristic depth of 
their penetration under the potential barrier in the 
classically inaccessible region of motion. Thus,

	 0 / 0.3.adsr z :~ 0.3	 (14)

Taking (13) as the characteristic size of pair 
interaction between hydrogen atoms in the triplet 
state, we obtain

	 0 0.2.kr :~ 0.2	 (15) 

We should add that condition (15) also allows us 
to neglect the correction terms ~ kr0 to formula (1) 
(see [15], as well as formulas 133.9, 133.10, and 133.14 
from work [16]).

Within our adopted oscillator approximation 
for the adsorption potential, the distance from the 
adsorption level to the bottom of the well should be 
equal to ħω/2. According to the data provided above, 
it amounts to u0 − Ea ≈ 5 K, which corresponds to 
ω ≈ 1.3 · 1012 s−1. From this, we find the unit of 
length used in calculations: 

	 0= 4 .L a
mw

»h 	  

The scattering length of hydrogen atoms in the 
state with total spin = 1S  equals 01.2a a»  [17]. In 
our units, this equals 0.3a » , which corresponds 
to 

	 g = - » -1 3.3.
a 	

From Fig. 1, we conclude that k ≈ 2.5, therefore 
the binding energy of the adsorbed quasi- molecule 
equals 

D = ħω ∙ k2 ≈ 60K

As noted in work [6], this conclusion may indicate 
the instability of Bogoliubov two-dimensional 
Bose-condensates obtained in experiments [10–12], 
formed by hydrogen atoms adsorbed on the surface 
of liquid helium 
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