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Abstract. The thermodynamic functions and electrical resistivity of dense lead plasma were assessed at 
specific volumes ranging from 5 to 20 times greater than the standard value, under pressures between 
0.4 and 4.0 hPa, and with specific internal energies 3 to 18 times higher than the energy required for 
sublimation. The recorded dependencies were later evaluated against those estimated through a classical 
plasma chemical model. This research aimed to uncover the effects of non-ideality on the thermodynamic 
characteristics and resistivity behavior of plasma. A significant finding was that the Grüneisen coefficient 
for this plasma varied between 0.2 and 0.4 across the entire range of states examined. Findings from the 
research showed that the chemical model did not accurately reflect the energy expenditure for plasma 
ionization and atom excitation, underestimating it by close to a factor of two, while also overestimating 
the temperature by a similar proportion. The inquiry additionally disclosed that in the whole spectrum 
of plasma states being analyzed, “pressure ionization” was a key element, and that resistivity lessened 
with a decrease in specific volume along isotherms.
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1. INTRODUCTION

The study of dense plasma with an ionization 
degree of order unity encounters serious difficulties 
from both theoretical and experimental perspectives. 
Theoretical problems are associated with the fact that 
for such a system, the interaction parameter, i.e., the 
ratio of Coulomb interaction energy between plasma 
particles to their kinetic energy, takes values of order 
unity. In this case, the application of perturbation 
theory using ideal gas as an unperturbed system is 
fairly difficult.

Experimental difficulties in studying dense plasma 
with developed ionization are associated with high 
temperatures and pressures at which such plasma 
can exist and which are unattainable in static 
experiments for the vast majority of elements in 
the periodic system. Various dynamic experimental 
methods are used to study such plasma [1–4]. 
However, for these experiments, questions remain 
open about the homogeneity of the obtained 

plasma and the reliable estimation of measurement 
uncertainties [5]. Comparison of the specific 
resistance values of aluminum plasma measured in 
experiments [4] with the results of a more accurate 
technique [6] showed that measurement errors [4] 
are 20–30% (see Fig. 7 of work [6]). The error of 
experiment [2] is of the same order of magnitude, as 
follows from the comparison presented in Fig. 5 of 
work [7]. Such large measurement uncertainties did 
not allow identifying the characteristic properties of 
non-ideal plasma associated with strong interaction 
between particles.

To study the properties of metals in liquid 
state and supercritical fluid state, a dynamic 
experimental method was developed [8], which 
allows measurements with accuracy not worse than 
3–5 % (depending on the measured value). Using 
this method, measurements of thermodynamic 
functions and specific electrical resistance of lead 
[9], as well as lead-bismuth eutectic [10] were 
conducted for a wide range of states on the VP 
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(V — specific volume, P — pressure). Based on the 
obtained data, caloric equations of state (EOS) of 
these fluids were constructed and critical points of 
liquid-gas transition and metal-nonmetal transition 
were estimated [10]. A significant feature of such 
EOS is that its accuracy depends only on the error of 
experimental data, based on which two characteristic 
functions are determined: the dependence of the 
Grüneisen coefficient and the cold component of 
internal energy on specific volume. Since in each 
individual experiment [9, 10] the dependence of 
specific internal energy of the sample on specific 
volume and pressure is measured along some line on 
the VP-plane (which extends from the normal state), 
rather than at a single point on the shock adiabat 
or unloading isentrope, as is the case in shock-wave 
experiments [11], this allows for sufficiently accurate 
analysis of isochore behavior in the PE -plane 
(E – specific internal energy). Based on such 
analysis, a general pattern was established: within 
measurement error, these isochores are straight 
lines. This fact made it possible to establish the form 
of function P(V, E), i.e., the caloric EOS, based on 
general thermodynamic relations [12], and also to 
measure with necessary accuracy the dependencies 
of the Grüneisen coefficient and cold component 
of internal energy on relative volume [9,10]. This 
eliminates the need to make assumptions about the 
form of these dependencies [11].

Measurement errors [9, 10] for the range of 
specific volumes close to the normal value, for 
which accurate literature data is available, were 
reliably estimated and proved to be no worse than 
3 %. However, for the region of states P > 0.3 hPa, 
V > 4V0 (V0 – normal value of specific volume of 
the studied metal) there is no literature data. To 
estimate the systematic error of experiments in this 
region of states, a method was developed for direct 
measurement of shock wave velocities excited in the 
sample during the dynamic experiment. Since the 
shock adiabat of the studied metal can be determined 
using a pre-constructed caloric EOS, and the 
accuracy of the latter, as noted above, depends 
only on the accuracy of experimental data, then 
by comparing the measured shock wave velocities 
with values calculated using EOS, it is possible to 
estimate the systematic measurement error at large 
values of sample specific volume and pressure. 
Such work was performed in experiments with 
lead [13], and measurement errors were estimated 
for the volume range V /V0 = 2 − 7 and pressure 

range P = 0.4 − 3.4 hPa. In this work, experimental 
data on the properties of dense lead plasma for the 
region of states V /V0 = 6 − 20, P = 0.4 − 4 hPa are 
presented.

To interpret the results of these experiments, a 
chemical plasma model (CPM) [14,15] was used. In 
this model, plasma is considered as an equilibrium 
mixture of neutral atoms, positive ions with charges 
ze = 1–4 (e — elementary charge, z — ionization 
degree) and electrons. The free energy of plasma is 
represented as the sum of the free energy of an ideal 
gas of such particles and three terms that describe 
three types of interactions between them: interaction 
between charged particles, between charged particles 
and atoms, and interaction between atoms. Note 
that ions in this model are considered as point-
like classical particles, and the contribution to free 
energy from interactions between ions, as well as 
between ions and free electrons, is described using 
an analytical dependence [16]. Charge-atom and 
atom-atom interactions are described considering 
only pair interactions, i.e., up to the second term of 
the virial expansion. Minimization of free energy 
with respect to the numbers of particles of all types 
allows determining the plasma composition (at given 
values of temperature, volume, and total number of 
atoms). After calculating the plasma composition, 
its thermodynamic functions can be determined, 
which are obtained by differentiating free energy 
as a function of specific volume and temperature. 
The resistivity of plasma was calculated within 
the relaxation time approximation [14]. Since the 
CPM used here has already been described in detail 
[14,15], we will not discuss it here. We only note 
that, strictly speaking, this model can be applied 
to describe relatively low-density plasma, when it 
is possible to determine with sufficient accuracy 
such composite particles as molecules, isolated 
atoms, or ions. However, despite the limited range 
of applicability, chemical plasma models allow 
obtaining qualitatively correct results even for the 
region of states where the interaction parameter is 
not small [17, 18].

In this work, measurements of thermodynamic 
functions and specific resistance of lead were carried 
out for the region of states where specific volume, 
temperature, and pressure exceed    the values at the 
critical point of the liquid-gas phase transition. As 
known, the states of matter where temperature and 
pressure exceed critical values is called a supercritical 



	 STUDY OF DENSE LEAD PLASMA	 889

JETP, Vol. 165, No. 6, 2024

fluid. In this work, consequently, we will deal with 
gaseous supercritical fluid. Such fluid, as   will be 
shown below, has relatively low resistivity: its values 
are only 2–6 times higher than the specific resistivity 
of liquid lead in metallic state near the Mott-Ioffe-
Regel limit [9]. Thus, there is good reason to call 
such supercritical fluid a dense plasma. The main 
goal of this work was to discover characteristic 
features of dense plasma (in thermodynamic 
functions and specific resistance behavior) related to 
strong interaction between particles.

In case of classical plasma, where electron 
degeneracy and quantum scattering effects are 
insignificant, the interaction parameter is usually 
taken as the ratio of potential energy of electrostatic 
repulsion between neighboring ions located 
at average distance from each other (without 
considering correlations) to their average kinetic 
energy. If we denote the average number of ions per 
unit volume as nj, then the average distance between 
them will be of order - 1/3

in , and their average kinetic 
energy,  according to equipartition law, will be of 
order of temperature. For the coupling parameter, 
which we will denote by Γ, we get the expression 

	 G =
2 2

1/3,i
z e

n
kT 	 (1)

where T   is temperature, k   is Boltzmann 
constant. For lead plasma studied in this 
work, nj = (1 − 8) ∙ 1021 cm−3, T = 10 − 40 kK, 
z = 1 − 2, Γ = 0.5 − 5. In this case, the ionic 
component of plasma is not degenerate, and the 
degeneracy parameter of the electronic component  

= / FkTJ e  takes  values = 1 10J - , where Fe   is 
Fermi energy, which is determined according to 
formula 

	 ( )e = p
2 2/323 ,

2F e
n

n
m 	 (2)

where m  is electron mass, en   is average number of 
electrons per unit volume.

2. DESCRIPTION OF THE 
EXPERIMENTAL TECHNIQUE

For measurements, the experimental technique 
developed in works  [9,10] was used. Let us note 
only some changes that were introduced during the 
execution of this work. After the systematic error of 
such measurements was evaluated at large values of 
specific volume of the sample [13], it became possible 
to study the properties of metals in gaseous state. 
Lead was chosen as the sample material for studying 
dense plasma because samples of required thickness 
and quality for our experiments (foil strips) could 
be manufactured in the laboratory. In this case, the 
foils had to be made sufficiently thin (9–15 μm). 
This is necessary to maintain uniform heating of the 
sample and its one-dimensional thermal expansion 
even at large volume values. This requires meeting 
two conditions: the sample thickness should be 
small compared to its width and length (which 
were about 10 mm for these experiments), and the 
substance velocity should be small compared to the 
speed of sound. Since the measurement time for such 
experiments is about 1 μs and is actually determined 
by the geometric dimensions of the window plates, 
obtaining large thickness increments of the sample 
during this time, at relatively low velocities, imposes 
an upper limit on its initial thickness. Lead was 
also chosen because experimental data on the 
properties in the liquid state had been previously 
obtained [9, 13], and this allowed for a more accurate 
assessment of the errors in the present measurements.

To control the one-dimensionality of the 
sample's thermal expansion at high volume values, 
two interferometers were used simultaneously 

Fig. 1. Cross-sectional diagram of the experimental assembly by 
a plane perpendicular to the electric current direction: window 
material plates (1);  sample  (2);  side  plates of technical glass 
(4). The direction of the two laser interferometer beams (IntC, 
IntS) is shown, as well as the dielectric mirror (3) from which the 
interferometer beams are reflected (mirror  is  applied  to  the  plate  
surface) 
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in the present experiments. The cross-sectional 
diagram of the sample and the interferometer 
arrangement are shown in Fig. 1. The beam of one 
interferometer (IntC) was reflected from the central 
part of the sample surface, while the spot of the 
second interferometer (IntS) was shifted sideways 
by  2–3 In these experiments, two window   plates  
with  dimensions  of  5 10 10´ ´  mm3 were used. 
The glued experimental assembly, consisting of two 
window plates, sample, and side plates of technical 
glass, represented a rectangular parallelepiped 
with two edges  having  a  length  of  about 10 mm, 
and the third one (which is parallel to the axis in  
Fig. 1) − 16 mm. In all  experiments, the width and 
length of the sample were equal to the width and 
length of the 10 mm, window plates, respectively. 
Such assembly allowed maintaining practically 
one-dimensional deformation of the window 
material plates during time 2 / lt D c£ , where D — 
is the plate thickness, and  lc  — is the longitudinal 
sound velocity in the window material. The present 
experiments showed that the relative difference 
between the sample surface displacements easured 
by the two interferometers did not exceed 2% up to 
the maximum sample volume values.

The region of states on the VP-plane, for which 
measurements of thermodynamic functions and 
resistivity of supercritical lead fluid were performed, 
is shown in Fig. 2. Previously, it was discovered 
that when liquid lead is heated under pressure 
of 0.5-4 hPa, it undergoes a metal-nonmetal  
transition  near  the  relative  volume  value  
V/V0 ≈ 4, which practically coincides with the critical 
volume value of the liquid-gas transition [10, 13]. This 
critical point is marked in Fig. 2. As shown in the 
figure, for supercritical volume values, measurements 
were conducted at supercritical pressures and, 
consequently, at supercritical temperatures. It 
is also evident that the state region studied in 
this work is significantly expanded compared to  
work [9], which obtained data for the volume 
interval V/V0 ≤ 5. To characterize in more detail the 
quasi-static processes under which measurements 
were conducted in present experiments, Fig. 2 
shows three isentropes, obtained using EOS from  
work [13]. For this EOS, characteristic functions were 
determined based on the entire set of experimental 
data for lead, including data from this work.  
Fig. 2 also shows three isotherms of the interpolation 
EOS [11]. As shown in the figure, in the region of 
supercritical volumes for experiments with pressure 

Fig. 2. State region on the VP-plane, for which measurements 
of thermodynamic functions and specific resistance of lead fluid 
were performed. The family of lines emerging from the normal 
state represents quasistatic processes under which measurements 
were conducted. The critical point (K) and isentropes (three thick 
solid gray lines) were obtained using EOS from work [13]. Dashed 
gray lines are isotherms T = 20, 30, 50 kK, EOS from work [11]. 
Crosses show measurement uncertainties

Fig. 3. Grüneisen coefficient of lead fluid as a function of relative 
volume. The experimental data obtained in this work (green 
circles) are compared with  measurement results from works [9] 
(red squares) and [19] (blue line), as well as with calculations using 
SHM (gray triangles and the straight line approximating these 
values). For  experiments, crosses indicate measurement errors, 
and for the model - the range of Grüneisen coefficient  variation 
for a specific relative volume value

Kondratyev et al. (2018)

Hixon et al. (1986)

G
ru

ne
is

en
 c

oe
�

ci
en

t Experiment
Chemical model



	 STUDY OF DENSE LEAD PLASMA	 891

JETP, Vol. 165, No. 6, 2024

P < 1 hPa, these processes are close to isothermal, 
and for experiments with pressure P > 1 hPa  — to 
isobaric.

3. MEASUREMENT RESULTS

Figure 3 shows the measurement results obtained 
in this work for the dependence of the Grüneisen 
coefficient on relative volume. These re sults are 
compared with experimental data from works [9] and 
[19], as well as with results obtained by the CPM. 
The Grüneisen coefficient, which we denote as ϒ, is 
defined by the formula

	
¶æ ög = ç ÷¶è ø

.
V

PV
E 	 (3)

The value of the Grüneisen coefficient for a certain 
specific volume was determined by the method of 
least squares of the data points PV, E, obtained for 
this volume in all experiments of the present work. 
It was verified that specifically linear approximation 
(rather than a higher-degree polynomial) is the most 
accurate.

From  Figure 3, it follows that in the volume 
range V/V0 = 6 – 14 our model predicts an almost 
constant value of the Grüneisen coefficient, being  
close to the value 2/3, which this coefficient takes 
for a monatomic ideal gas of constant composition. 
However, the values calculated using chemical 
model (which were determined for the same ranges 
of energy and pressure values as in the experiment) 
in the interval V/V0 = 10 – 14 are almost twice the 
measured values. As seen in Figure 3, the difference 
between calculated and measured values is minimal  
at volumes V/V0 = 5 – 6, for which our chemical 
model is, strictly speaking, not applicable.

The decrease in the Grüneisen coefficient to values 
less than 2/3 can be explained by the presence of 
strong interaction between charged plasma particles 
and ionization (composition change). Let us show 
that for plasma with strong Coulomb interaction, the 
inequality γ < 2/3 must be satisfied. For simplicity, 
we will assume that the plasma is fully ionized. 
Using the expression for the free energy of weakly 
non-ideal classical plasma [20], we find

	
pg = - G3/22 2 ,

3 9 	 (4)

from which it follows that in this case, the inequality 
γ < 2/3 is indeed satisfied. This formula is derived 
for weakly non-ideal  plasma (Γ ≤ 1), but if we use 
it to estimate the Grüneisen coefficient at values 
Γ ≈ 1,  we obtain values γ ≈ 0.3	. Therefore, we can 
expect that strong electrostatic interaction between 
plasma particles leads to a decrease in the Grüneisen 
coefficient to the observed values. 

Let us now show that for plasma in which 
ionization occurs, the Grüneisen coefficient also 
becomes less than 2/3. For simplicity, let's consider 
ideal plasma at temperatures where only single 
ionization of atoms occurs. In this case, the formulas 
for pressure and specific internal energy of plasma 
will take a relatively simple form:

	 ( )é ù= + aë û1 ,R
PV T T

A 	 (5)

	 ( )= + a1
3 ,
2

AN
E PV I T

A 	 (6)

where R is the gas constant, A  is the molar mass of 
gas, NA is Avogadro's number, I1 is the first ionization 
potential, α  — the degree of gas ionization. The 
degree of ionization is determined according to the 
relation α = ne/nn, where nn  is the total number of 
atoms per  unit volume (i.e., the sum of ionized and 
neutral atoms). Substituting expressions (5), (6) into 
formula (3), for the Grüneisen coefficient we obtain 

	

-é ù¶aæ ö
ç ÷ê ú¶è øê úg = +

¶aê úæ ö + a +ç ÷ê ú¶è øë û

1
1

3 .
2

1

V

V

I
k T

T

	 (7)

Since the degree of ionization increases with 
temperature at constant volume, the second term      
in brackets is always positive, and consequently, 
ϒ < 2/3. It should be noted that in deriving formula 
(7), we neglected the energy contribution from 
atomic excitations, assuming that ionization occurs 
from the ground state of the atom. However, if such 
contribution is considered, it is obvious in advance 
that it will also lead to a decrease in the Grüneisen 
coefficient.

Thus, the fact that our measured values of the 
Grüneisen coefficient are significantly lower than   
may indicate both strong interaction between lead 
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plasma particles and the process of developed 
ionization. Since accurate calculation of the 
ionization degree of such plasma requires correct 
description of the particle interaction influence 
on ionization potential reduction, shifts in atomic 
electron levels, and electron transition probabilities 
between atoms, this problem cannot be solved within 
the CPM framework. The interpretation of the dense 
plasma Grüneisen coefficient behavior observed 
here, which follows from very general considerations, 
will be given in the next section. 

Let us consider another thermodynamic quantity 
that is directly determined from the results   of present 
experiments and characterizes mechanical properties 
of plasma. This refers to the partial derivative of 
density with respect to pressure at constant enthalpy: 
(∂ρ/∂P)W, where ρ = V −1 is density,  and the letter 
W will denote specific enthalpy.  This derivative, 
which we  will call isenthalpic compressibility, is 
conveniently expressed through the isenthalpic 
sound velocity cw, which we define according to the 
formula 

	
¶æ ö= ç ÷¶rè ø

2 .w
W

P
c 	 (8)

The usual sound velocity cs (isentropic) is related to 
cw by the relation 

	 ( )= g + 1/21 .s wc c 	 (9)

Figure 4 shows the dependence of isenthalpic 
compressibility of supercritical lead fluid on specific 
enthalpy. As seen in Fig. 4, within measurement 
uncertainty, this quantity is a function of a single 
variable – enthalpy and, consequently, practically 
does not depend on pressure. The values calculated 
using CPM also fall well on a single line. However, 
the compressibility values obtained using the model 
differ significantly from measurement results: at low 
enthalpy values, these values are almost twice higher 
than measured values, and at enthalpy values of 
16–18 kJ/g, they are almost twice lower. Note that in 
the range W > 14 kJ/g, the calculated compressibility 
values are close to those for ideal gas (where gas 
enthalpy is measured from the normal state of solid 
body).

The fact that CPM predicts significantly higher 
compressibility at low enthalpy values, which 
correspond to low specific volumes for these 
experiments, can be explained by the fact  that 
in this model, ions are point-like and repulsion 
associated with their finite size is absent.  Note that 
the enthalpy value of 5 kJ/g was achieved in these 
experiments at volumes V/V0 = 4–8. The relatively 
low values of isenthalpic compressibility predicted 
by CPM at  high enthalpy values are explained by 

Fig. 5. Measured dependencies of PV on E (thin solid lines starting 
from the   origin) are compared with dependencies calculated using 
CPM for two  isochores (thick black    and red dashed lines), red 
circles indicate calculated  temperature  values  (in  kK)  on  the  
isochore V/V0 = 14.  Thin  dashed  lines  show  dependencies  for 
singly (α = 1) and doubly (α= 2) ionized ideal lead gas of constant 
composition

Fig. 4. Isenthalpic compressibility of supercritical lead fluid 
as a function of specific enthalpy. Green circles – experiment, 
solid gray line with markers – CPM, dash-dotted black line – 
dependence calculated for ideal gas. For experiments, crosses 
indicate measurement errors, and for the model – the range of 
isenthalpic compressibility variation at a  certain enthalpy value

km
/s

Enthalpy (kJ/g)
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Table 1. Measured values in this work of pressure P (hPa), specific 
internal energy E (kJ/g) and specific resistance σ−1 (μΩ•m) of 
supercritical lead fluid on isochores V/V0 = 5, 6, 8, 10, 12, 14, 18

V/V0 P E σ−1 V/V0 P E σ−1 

 5  4.16  5.44  15.43  10  3.05  11.55  15.01

5 4.16  5.42  15.38  10  3.07  11.37  15.07

5 3.00  3.84  20.56  10  2.44  7.23  19.06

5 2.32  3.33  23.50  10  1.98  6.13  21.61

5 2.45  3.18  24.28  10  1.98  6.00  22.29

5 2.39  3.34  23.47  10  1.98  6.01  22.31

5 2.37  3.20  23.92  10  1.93  5.88  21.82

5 1.49  2.48  32.15  10  1.93  5.69  23.19

5 1.38  2.54  31.04  10  1.22  3.98  37.67

5 2.36  3.28  23.78  10  1.21  3.96  37.06

 5  1.16  2.06  33.78  10  1.03  3.40  50.37

5 1.08  2.08  37.22  10  0.91  3.04  58.98

5 1.21  2.16  36.17  10  0.96  3.26  52.91

5 1.25  2.15  35.95  10  1.00  3.24  50.47

5 0.79  1.84  44.66  10  0.60  2.33  97.96

5 0.84  1.90  41.71  12  2.97  14.22 15.02

5 0.82  1.70  42.32  12  2.92  13.95 15.06

6 3.94  6.65  15.40  12  2.23  8.48 18.63

6 3.98  6.59  15.36  12  1.83  7.12 20.79

6 2.91  4.61  20.43  12  1.85  6.98 21.49

6 2.34  4.00  23.72  12  1.85  6.93 21.25

6 2.36  3.83  24.79  12  1.79  6.81 21.10

6 2.34  3.96  23.85  12  1.79  6.45 22.34

6 2.32  3.85  23.89  12  1.12  4.42 35.55

6 2.28  3.87  24.18  12  1.14  4.38 36.34

6 1.49  2.86  35.40  12  0.92  3.69 51.47

6 1.40  2.90  34.35  12  0.80  3.18 62.81

6 1.19  2.40  41.20  12  0.94  3.38 57.21

6 1.09  2.38  44.45  12  0.79  3.51 51.29

6 1.22  2.51  42.25  12  0.39  2.41 114.37

6 1.21  2.49  41.59  14  2.17  9.91 18.55

6 0.68  2.02  56.85  14  2.13  9.75 18.47

6 0.76  2.07  53.91  14  1.78  8.08 20.21

0.75  1.86  56.64  14  1.75  7.95 20.81

Table 1. (Contd.)

V/V0 P E σ−1 V/V0 P E σ−1

 8  3.54 8.99 15.18 14 1.74  7.84 21.03

8 3.50 8.88 15.22 14 1.72  7.73 20.54

8 2.65  5.97  19.65 14  1.73  7.15 21.95

8 2.15  5.12  22.77 14  1.11  4.81 34.51

8 2.13  4.97  23.53 14  1.13  4.73 35.60

8 2.13  5.04  23.39 14  0.74  3.99 50.57

8 2.17  4.90  22.83 14  0.67  3.27 65.90

8 2.10  4.86  23.31 14  0.79  3.48 59.63

8 1.33  3.47  37.17 14  0.40  2.48 129.89

8 1.32  3.49  36.78 18  2.14  12.16 18.45

8 1.11  2.97  48.15 18  1.67  10.02 19.56

8 0.98  2.78  53.68 18  1.60  9.90 20.12

8 1.07  2.96  49.35 18  1.64  9.67 20.00

8 1.16  2.99  46.80 18  1.67  9.39 20.28

8 0.63  2.21  78.17 18  1.02  5.49 32.82

8 0.63  2.29  75.48 18  1.06  5.29 34.74

8 0.70  2.06  82.64 18  0.55  4.36 50.63

the fact that, as will be shown below, this model 
overestimates plasma temperature by almost a factor 
of two.

For a more detailed comparison of measurement 
results with CPM predictions, Fig. 5 shows the 
dependencies of PV on specific internal energy E. 
To avoid cluttering the figure, results are shown for 
a small group of experiments in which maximum 
values of specific volume and internal energy were 
achieved. In Fig. 5, it can be seen that significant 
deviation of calculated dependencies from measured 
ones begins at energy values of 6–7 kJ/g. At higher 
energy values,  the  calculated  dependencies  become 
close to the dependency for singly ionized ideal gas. 
For reference, the specific ionization energy values 
for single, double, and triple ionization of ideal lead 
gas atoms are: Q1 = 3.44 kJ/g, Q2 = 6.97 kJ/g and 
Q3 = 14.8 kJ/g [21]. Using the sublimation energy 
value  for  lead Esub = 0.942 kJ/g [22], for internal 
energy of singly ionized ideal lead gas at temperature 
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T = 10 − 30 kK,  we  obtain  energy  values  of 
E = 6 − 8 kJ/g. This estimate shows that calculated 
dependencies begin to deviate from measured ones 
when double ionization of atoms begins, and it 
might seem that the ionization degree predicted by 
the model does not exceed one. However, this is not 
the case.

The degree of ionization as a function of plasma 
specific internal energy,  calculated using CPM  
for  isochores V/V0 = 6, V/V0 = 14, is shown in Fig. 
6. It can be seen that it increases monotonically 
and   reaches a value of 1.9. The figure also shows 
the dependence of the value E–(3/2)PV on plasma 
internal energy values. For classical plasma, this 
value equals the energy that goes into ionization, 
since the value (3/2)PV is the average kinetic energy 
of a classical particle system. As follows from Fig. 6, 
in the energy range E–(3/2)PV kJ/g, the calculated 
values of are about 5 kJ/g, which is two times less 
than the measured values. Thus, CPM predicts  
almost two times lower energy expenditure for 
plasma ionization compared to the values obtained 
in the experiment. This implies that the plasma 
temperature values predicted by this model may be 
significantly overestimated. 

For detecting plasma non-ideality effects, 
studying the behavior of electrical conductivity is 
very important [17,18]. Fig. 7 shows the measured 
dependence of lead fluid's resistivity on specific 
internal energy in this work. Also presented are 
the resistivity dependencies on isochores obtained 
from these experimental data. The figure clearly 
shows the characteristic behavior of isochores 
near the metal-nonmetal transition [10]. This 
transition manifests in that near the volume value  
V/V0 = 2.7 the temperature coefficient of resistance 
changes sign from positive to negative and the metal 
transitions into a strongly correlated metallic state. 
When specific volume becomes larger than value 
V/V0 ≈ 4, this coefficient, being negative, begins 
to rapidly increase in absolute magnitude with 
volume increase. The critical density estimation for 
metal-nonmetal transition in supercritical lead fluid 
was made based on analysis of the “cold curve”, 
i.e., temperature-independent part of internal 
energy [10]. As follows from Fig. 7, in plasma state  
(V/V0 > 4) the resistivity on isochores monotonically 
decreases with energy increase. It is noteworthy 
that the dependencies calculated using CPM in the 
energy interval E < 5 kJ/g practically merge into 

one line, which is not observed experimentally. Also 
note that at energy values E > 10 kJ/g, the slopes 
of measured isochores are significantly less than 
those demonstrated by the model. Experimental 
isochores of resistivity in this energy interval become 
almost horizontal. With increasing relative volume, 
agreement between measured dependencies and 
calculated ones improves. Note that calculation of 
lead plasma  resistivity for volumes V/V0 = 10 − 20 on  
isotherm T = 20 kK [23] gives resistivityvalues in 
the interval 50–100 μOhm, which agree with our 
calculation results.

The results of our measurements of pressure, 
specific internal energy, and resistivity of 
supercritical lead fluid for a family of seven isochores 
are presented in Table 1.

4. DISCUSSION OF THE OBTAINED 
RESULTS

As follows from Fig. 5, our chemical model 
predicts rather high plasma temperature values. 
Due to such high temperatures, a question arises 
about the estimation of measurement errors in 
the present study related to energy losses through 
thermal radiation. For lead plasma with density of 
0.5–2.0 g/cm3  at temperature of 1-5 eV, the mean free 
path of photons (Rosseland averaged) is ~ 10−6 cm 
[24, 25], which is much smaller than the plasma 
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nkJ
/g

kJ/g
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Fig. 6. The measured dependencies of the value E–(3 / 2)PV on 
specific internal energy (thin lines originating from the origin) 
are compared with dependencies calculated using CPM for two 
isochores (two thick dashed lines). The plasma ionization degree 
dependencies calculated using CPM for two isochores are shown 
by gray solid and gray dotted lines
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sample thickness in our experiments. This implies 
that this plasma is opaque and thermal radiation 
emerges from a thin layer near the sample surface. 
If we estimate the radiation losses from above, 
assuming that the sample temperature increases 
as predicted by the model, and its surface radiates 
as a black body, and all radiation energy is lost by 
the sample, it turns out that even for experiments 
with maximum pressure values, these losses do not 
exceed 10 % of the sample energy up to the energy 
value of 10 kJ/g. However, as seen in Fig. 6, at this 
energy value, the difference between measured 
and calculated values of PV reaches 50% and, 
consequently, this difference cannot be explained by 
energy losses through thermal radiation.

It should also be noted that the present 
experiments were conducted with samples whose 
initial thickness varied by almost 3 times in different 
experiments, and sapphire and silica glass were used 
as window materials, whose optical properties differ 
significantly from each other, and therefore energy 
losses due to radiation in different experiments, 
if they were noticeable, would have been different. 
However, the data obtained in various experiments 
are in good agreement with each other. Furthermore, 
measurements of sample volume and pressure, 

whose accuracy is not affected by thermal radiation, 
demonstrate rather smooth and monotonic pressure-
volume dependencies, which approach practically 
constant pressure values at large sample volumes. If 
thermal radiation losses were significant, then due to 
the sharp dependence of thermal radiation intensity 
on temperature, one could expect a more or less 
sharp decrease in pressure in the sample.

Thus, our CPM predicts significantly lower 
energy expenditure for ionization and excitation of 
atoms than the values obtained in the experiment. 
This suggests that the model overestimates plasma 
temperature (for given values of V and E). As shown 
in Fig. 5, at an energy value of 12 kJ/g, the calculated 
values of PV are approximately 1.7 times higher than 
the measured ones. If we assume that the kinetic 
energy of plasma particles, which is proportional to 
(1 + α) T, is overestimated by the same factor, and 
considering that the ionization degree in our model 
is practically independent of density and increases 
almost linearly with temperature (see Fig. 6), then 
instead of the temperature value of 60 kK predicted 
by the model, we get 40 kK. If we reduce the plasma 
temperature values by 1.7 times (relative to the values 
given by the model), then the maximum energy 
losses due to radiation will not exceed up to the 5% 
maximum measured energy values. Certainly, this 
temperature estimate cannot claim high accuracy, 

Fig. 8. Change in the average kinetic energy of lead fluid relative to 
the normal state as a function of internal energy. Thin solid lines 
originating from the origin are dependencies measured in present 
experiments, two thick dashed lines are dependencies calculated 
using CPM for two isochores

Fig. 7. Specific resistance of lead as a function of specific 
internal energy. Thin solid lines emerging from the normal 
state are dependencies measured in experiments of this 
work (marked with the same colors as these experiment 
lines in Fig. 2), symbols are specific resistance values on 
isochores obtained in these experiments, thin dotted lines are 
approximations of these isochores, thick solid lines are isochores 
V/V0 = 5, 6, 8, 10, 14, calculated using CPM (marked with the 
same colors as corresponding experimental isochores)
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but it agrees with the results of present experiments, 
which showed no significant energy losses.

There is another experimental confirmation of 
the correctness  of  this  conclusion. As follows from 
Fig. 4, in the enthalpy range of W > 8 kJ/g (which 
corresponds to the energy range of E > 6 kJ/g), 
the dependence of isenthalpic compressibility on 
specific enthalpy becomes very flat. On the other 
hand, radiation energy losses cannot affect this 
dependence since they do  not influence density 
and pressure measurements, and compressibility 
is practically independent of enthalpy. Since the 
calculated compressibility values for this enthalpy 
range become almost twice lower than the measured 
ones, this definitely indicates that the model gives 
overestimated temperature values by approximately 
two times. Note that  the temperature values 
obtained using the interpolation EOS [11] also turn 
out to be overestimated.

Due to such a significant difference between 
experimental results and XMP predictions, let's 
try to interpret these results based on general 
considerations that are not  tied  to  any  particular 
model. For this, we will use the virial theorem, which 
establishes the relationship between the average 
kinetic energy of a system of particles interacting 
according to Coulomb's law, with internal energy 
and pressure [20]: 

	 = -3 ,K PV E 	 (10)

where K is the average kinetic energy of the system. 
Note that this theorem is valid for both classical and 
quantum particle systems. For a classical particle 
system K = (3/2)NkT (N is the number of particles 
in the system). Substituting this expression into 
(10) and  differentiating it with respect to E at fixed 
volume and number of particles N, we obtain 

	 g = +1 ,
3 2 v

k
c 	 (11)

where vc   is the heat capacity per particle. From 
this, it  follows  that  for  classical  plasma  of 
constant composition, the following inequalities 
hold 1/3 < γ ≤ 2/3. We emphasize that this result 
is no longer restricted by  the assumption of weak 
coupling  that was used in deriving formula (4).

Let's consider the case when the number of 
particles in the system changes due to ionization. 

We will examine plasma consisting of atoms, ions, 
and free electrons at temperatures where only single 
ionization of atoms occurs. The kinetic energy of 
such a particle system consists not only of the kinetic 
energy of "classical particles" listed above but also of 
“quantum” particles of bound electrons in atoms. 
Differentiating relation (10) with respect to energy 
at fixed volume, we obtain 

	 ( )¶ ¶ = g -/ 3 1.VK E 	 (12)

Consider that the increment of kinetic energy is 
related not only to the increase in kinetic energy of 
“classical” particles but also to the change in kinetic 
energy of electrons transitioning from bound states 
to free motion states. For the subsystem of bound 
electrons, since they do not contribute to pressure, 
the virial theorem takes the form 

	 = - ,b bK E 	 (13)

where index “b” indicates that the value refers to 
bound electrons. Consequently, when an electron 
leaves an atom and becomes free, its kinetic energy 
decreases by the binding energy value (ionization 
potential). Obviously, the excitation of bound 
electrons also leads to a decrease in the system's 
kinetic energy. Therefore, the total kinetic energy 
increment equals 

	 æ ö= - -ç ÷è ø 1
3 ,
2 e excdK d NkT I dN dE 	 (14)

where the last term is the contribution from excited 
states. Using the relation N = Nn + Ne, where 
Nn is the total number of atoms, after simple 
transformations we obtain

	 ( )¶æ ö é ù= + a -ç ÷ ê ú¶è ø ë û
3 1
2

n

VV

NK
k

E C

	
¶¶a æ öæ öæ ö- - -ç ÷ç ÷ ç ÷¶ ¶è øè ø è ø1

3 1 ,
2

n exc

V VV V

N E
I kT

C T C T 	 (15)

where CV = (∂E / ∂T)V — the plasma heat capacity, 
and the degree of ionization is α = Ne / Nn. From 
relation (15), it follows that the derivative (∂E / ∂T)V 
can become zero and even negative, if the second 
and third terms combined are greater than the first 
term.

According to relation (12), the sign of the 
derivative (∂E / ∂T)V is determined only by the value 
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of the Grüneisen coefficient. Consequently, the fact 
that the Grüneisen coefficient values become less 
than     indicates a significant influence of ionization 
processes and excitation of bound electrons on the 
thermodynamic properties of plasma. The study 
of this issue for dense plasma is complicated by 
difficulties in separating electrons into free and 
bound ones, as well as accounting for the influence 
of interactions between plasma particles on their 
energy spectrum [26].

In this regard, it is interesting to compare the 
measured dependencies of plasma kinetic energy 
on the internal energy value with the predictions of 
CPM. In formula (10), energy is measured from the 
state where all particles of the system are removed 
to infinity (and are at rest there). In the experiment, 
energy is measured from the normal state of a solid. 
To express kinetic energy through measurable 
quantities, note that relation (10) should also hold 
for the state T = 0, P = 0, for which it takes the form

	 = -0 0,K E 	 (16)

where the index “0” denotes the state at T = 0, P = 0. 
Subtracting equation (16) from (10), we get 

	 ( )- = - -0 03 .K K PV E E 	 (17)

If we neglect the difference between the energy 
in the normal state and in the state T = 0, P = 0, 
then the value E – E0 in the right part of (17) will 
represent the energy measured in the experiment; 
below we will continue to denote it with the letter E.

Fig. 8 shows a comparison of measured and 
calculated using CPM dependencies of K–K0 on 
energy  E, counted from the normal state. The 
fact that the kinetic energy of the system remains 
practically unchanged in  the interval E ≤ 6	 kJ/g 
means that the increase in kinetic energy of atoms 
and free electrons is compensated by the decrease in 
kinetic energy of bound electrons, which transition 
to excited bound states or free motion states. The 
decrease in kinetic energy with increasing internal 
energy in the interval E > 6 kJ/g indicates that here 
the contribution from ionization and excitation of 
bound electrons dominates. The large difference 
between calculated and measured values of plasma 
kinetic energy indicates that the energy costs for 
plasma ionization and bound electron excitation in 
our CPM are greatly underestimated. Therefore, 

it can be stated that the reason for the discrepancy 
between model and experimental results lies in 
insufficiently accurate description of bound states. 
This fact partly confirms the conclusion about 
the inadequacy of classical description of non-
degenerate dense plasma [27].

Note that the values of the Grüneisen coefficient 
for metals and silicates at pressures of 10-100 hPa 
and temperatures T ≤ 50 kK were estimated in shock 
compression experiments of porous samples  [28].  
For  metals,  values  of γ = 0.6–0.7 were obtained, 
while for silicates, the Grüneisen coefficient turned 
to zero and even became negative. This anomaly 
was interpreted by the authors as a consequence 
of the transition of matter to an amorphous state 
and partial dissociation of molecules SiO2. Such 
behavior may also be related to diffuse structural 
transformations in the liquid state [29]. 

In conclusion, let's consider the behavior of the 
resistivity of lead plasma. As is known, one of the 
theoretically predicted effects of plasma non-ideality 
is the reduction of ionization potentials. Generally, 
this effect leads to an increase in the degree of 
ionization, and with it, the electrical conductivity 
of plasma, and such an increase in the degree of 
ionization with increasing density is sometimes 
called pressure ionization. This effect manifests in 
the fact that on isotherms, the resistivity decreases 
with decreasing specific volume. Theoretical models 
predict the presence of maxima on isotherms of 
resistivity [14, 23, 30], which separate the region of 
strongly non-ideal plasma from weakly non-ideal. 
According to work [23], for lead, the maxima on 
isotherms of  resistivity T = 10 kK, T = 20 kK are 
in the volume interval V/V0 = 10–20. The results 
of our experiments show that in the entire studied  
region  of  states  for  lead  plasma,  the  inequality 
(∂σ−1 / ∂V)T > 0 holds, where σ−1 – resistivity (σ – 
electrical conductivity). Let's briefly explain where 
this statement  comes from.

First of all, note that as seen in Fig. 2, in the 
volume interval V/V0 = 4–6 for all presented 
experiments, the pressure reached its maximum, i.e., 
in this interval, the heating was close to isobaric and, 
consequently, the temperature increased with volume 
increase. In Fig. 7, it can be seen that in this volume 
interval, the resistivity either increases or remains 
constant with increasing energy. But since the total 
derivative of resistivity with respect to volume for 
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some quasi-static process on the VT-plane can be 
represented as 

	
- - -æ ö æ ös ¶s ¶s= +ç ÷ ç ÷¶ ¶è ø è ø

1 1 1
,

V T

d dT
dV T dV V 	

and the derivative (∂σ−1/∂V )T < 0 (as seen in Fig. 
7), it follows that (∂σ−1/∂V )T > 0. For experiments 
with pressure of 1–2 hPa (see Fig. 2), for which 
the sample heating process in the volume  interval  
V/V0 = 8–16 was close to isobaric, and the resistivity 
practically did not change (see Fig. 7), we come to 
the same conclusion. It can be shown that this is 
valid for the entire studied region of plasma states, 
but we won't dwell on this here. Thus, for dense lead 
plasma studied in this work, “pressure ionization“ 
plays a significant role.

5. CONCLUSION

Experimental data on thermodynamic properties 
and resistivity of dense lead plasma were obtained 
for a wide range of states on the VP-plane. The 
measurement results were compared with predictions 
of the chemical model of classical plasma. It was 
shown that the chemical model underestimates 
the energy costs for plasma ionization and atom 
excitation by almost two times. Considerations are 
provided explaining that the reason for this lies in 
insufficiently accurate description of bound states. It 
was shown that measurements of caloric properties 
of dense plasma together with the use of the virial 
theorem allows to determine how correctly the 
theory describes the system's energy division into 
kinetic and potential. It was also shown that for 
the dense lead plasma studied here, the "pressure 
ionization" effect plays a significant role – along 
isotherms, the resistivity decreases with decreasing 
specific volume.
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