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Abstract. A long chain of Bose condensates freely expands and interferes after being released from an 
optical lattice. The interference fringes are well resolved both in the case of equal phases of the condensates 
and in the case of fluctuating phases. In the second case the positions of the fringes also fluctuate. The 
spectrum of the spatial density distribution, however, is reproducible despite the fluctuations. Moreover 
two types of peaks are distinguishable in the spectrum. The first type arises due to the phase fluctuations, 
the second type is associated with the coherence between the condensates. In the framework of the 
Pitaevskii–Gross equation we calculate the interference of the condensates and compare the calculation 
with experiment [Phys. Rev. Lett. 122, 090403 (2019)]. The calculation reproduces the positions of 
the spectrum peaks, including the dependence on the interparticle interaction. The calculated heights 
of the peaks, however, in some cases differ with the experimental ones.

1. INTRODUCTION

In optics, when light passes through a mate-
rial structure, diffraction and interference occur. In
atomic physics, matter and light switch roles, and in-
terference of de Broglie waves emerges with an initial
condition formed by light. The basis for this role re-
versal was laid by Kapitza and Dirac, who predicted
the diffraction of electrons on a standing light wave
[1]. For atoms, a short exposure to a near-resonant
standing light wave has been predicted to produce a
periodic spatial modulation of the wave function [2].
The diffraction of atomic de Broglie waves resulting
from such modulation has been observed [3], is fre-
quently utilized, and is traditionally referred to as the
Kapitza-Dirac diffraction.

The Talbot effect [4] is a typical example of the
resemblance between the interference of light and de
Broglie waves. In optics, the Talbot effect manifests
as the self-imaging of a long chain of coherent sources
at a certain, not very large, distance. Analogues of
the optical Talbot effect were found in various sys-
tems, including acoustic waves [5, 6], plasmons [7],

spin waves [8], polaritons [9], electron de Broglie
waves [10,11], and atoms [12]. In quantum systems, a
necessary condition for the self-imaging is a spatial pe-
riodicity of the wave function, ψ(z + d) = ψ(z), or its
analogue. For atoms and molecules, the Talbot effect
can appear as a particular case of the Kapitza-Dirac
diffraction [13–15]. To apply the initial modulation,
atoms do not have to pass through a standing wave;
it is sufficient to turn on the light for a short time,
leaving the atoms motionless. The self-imaging of the
wave function ψ(z) will occur at the same location af-
ter the Talbot time Td = md2/(πℏ), where m is the
particle mass.

The role reversal between light and matter in in-
terference has enhanced the understanding of the Tal-
bot effect. As an initial condition, consider a chain of
Bose-Einstein condensates prepared in an optical lat-
tice, where the condensates are trapped in the antin-
odes of the standing light wave, as depicted in Fig. 1a.
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Fig. 1. a) Bose-Einstein condensates (BECs) in the op-
tical lattice prior to the release and interference. The
condensates are shown in dark red, the standing-wave
intensity is shown in light purple. b) The initial wave
function of the condensates — its module is periodic,
and the phase differences between neighbors are in the

general case arbitrary.
At time t = 0, the light is turned off, causing the
condensates to expand and interfere in the free space.
If the condensates are coherent, the initial chain of
the condensates is restored at t = Td, demonstrating
the Talbot effect [16, 17]. The coherence between the
condensates can be reduced by increasing the lattice
depth or the temperature [17,18], while the coherence
within each individual condensate is maintained. The
interference fringes are well resolved even if the phases
of the adjacent condensates are completely random.
In the latter case, the positions and intensities of the
fringes, as well as the distance between them, fluctu-
ate from one repetition of the experiment to another.
However, the spectrum of the spatial density distri-
bution is reproducible despite the fluctuations. The
spectrum consists of equidistant peaks, indicating spa-
tial order, although with a period different from the
initial one, d [17]. In classical optics, such spatial
order in the interference of a chain of elements with
fluctuating phases has not been observed. When par-
tial coherence is present among the condensates, the
spectrum exhibits two distinct types of peaks: one
type arises due to the phase fluctuations, while the
other type is associated with the coherence between
the condensates.

In this paper, we model the interference of a long
chain of Bose condensates released from an optical
lattice. We calculate the interference for arbitrary
coherence between the condensates. The model is
based on the Pitaevskii-Gross equation [20, 21]. We
compare the calculations with the experimental re-
sults [17]. The calculation quantitatively reproduces
the positions of the spectrum peaks, including shifts
caused by the interatomic interactions. However, in
some cases, the peak amplitudes differ from the ex-
perimental ones.

The model and the approximations are described
in Section 2. General properties of the interference
fringes and the corresponding spatial spectrum are

discussed in Section 3. The comparison between the
calculation and the experiment [17] is presented in
Section 4. The conclusion is provided in Section 5.

2. MODEL AND INITIAL CONDITIONS

We choose a model and initial conditions in ac-
cordance with the experiment [17]. In this exper-
iment, condensates were produced from a gas of
bosonic molecules 6Li2. Initially, the condensates were
trapped in an optical lattice (Fig. 1a) with the poten-
tial

Vs(r) = sErec

(
1− e

− 2mErecρ2

(ℏλ)2 cos2
(πz

d

))
, (1)

where s is the dimensionless lattice depth, λ = 27.4

is the anisotropy parameter of the disk shaped
traps, m is the boson mass, ρ ≡

√
x2 + y2, and

Erec = ℏ2π2/(2md2) is the lattice photon recoil en-
ergy. The harmonic expansion of the potential (1)
near each minimum gives frequencies of the micro-
traps ωz = 2

√
sErec/ℏ and ω⊥ = ωz/λ.

In the experiment, some of the peaks in the spec-
trum were shifted relative to the calculations for the
non-interacting particles. Therefore, the model should
incorporate interparticle interactions. Considering
only the s-wave interaction between the bosons, the
dynamics is described by the Pitaevskii-Gross equa-
tion [20, 21] for the wave function of the condensate
Ψ(r, t):

iℏ
∂Ψ

∂t
= − ℏ2

2m
∇2Ψ+ g |Ψ|2 Ψ, (2)

The equation is valid because the interactions are
small — n

1/3
maxa ≲ 0.1, where nmax is the density in

the cloud center.
When choosing the initial condition Ψ(r, t = 0),

we take into account that the lattice is sufficiently
deep, and the condensates do not overlap. Under the
typical experimental conditions, µ/(ℏωz) = 0.3, where
µ is the chemical potential of bosons measured from
ℏωz/2. Hence, the gas is nearly kinematically two-
dimensional, with most of the bosons in the lowest
state of the harmonic oscillator along z. Therefore,
Ψ(r, 0) can be represented as a product of the longi-
tudinal and radial parts: Ψ(r) = ψ(z, 0)χ(ρ, 0).

We choose the longitudinal part ψ(z, 0) as a sum
of gaussians with their own phases, as shown in Fig.
1b:

ψ(z, t = 0) =
N

1/2
0

(2π)1/4σ1/2

K∑
j=1

e−
(z−jd)2

4σ2 eiφj , (3)
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where N0 is the number of the bosons in each con-
densate, K is the number of the condensates in the
chain. The gaussian shape follows from the close-
ness to the two-dimensionality, while the individual
phases φj are well-defined due to the localization.
We assume that the phase differences between the
neighbouring condensates φj −φj+1 are normally dis-
tributed random variables. Then the phase corre-
lation decays exponentionally, similar to the ther-
mal fluctuations [22]: ⟨cos(φj − φl)⟩ = α|j−l|, where
α = ⟨cos(φj − φj+1)⟩ ≃ cos(φj − φj+1) is the coher-
ence factor, ⟨...⟩ denotes averaging over experiment
repetitions or calculations with random sets of phases
{φj} with the identical dispersion, and the overline
indicates averaging over the chain elements.

Since µ/(ℏω⊥) ≃ 9 ≫ 1, the radial part χ(ρ, 0) can
be estimated via the Thomas-Fermi approximation:

χ(ρ, t = 0) =
1

RTF

√
2

π

(
1− ρ2

R2
TF

)
(4)

if ρ < RTF, and 0 if ρ > RTF = 2l⊥(2N0a/(
√
πσ))1/4,

where R is the Thomas-Fermi radius, and
l⊥ =

√
ℏ/(2mω⊥) is the radial oscillator length.

The radial and axial sizes of the condensates, RTF

and σ, are interrelated. The axial size, σ, can exceed
the RMS oscillator lenght lz =

√
ℏ/(2mωz) due to

the interactions. Therefore, RTF and σ must be de-
termined self-consistently. To achieve this, we substi-
tute Ψ(r, 0) = ψ(z, 0)χ(ρ, 0) into the Pitaevskii–Gross
energy functional
∫ (

ℏ2

2m
|∇Ψ|2 + m(ω2

zz
2 + ω2

⊥ρ
2)

2
|Ψ|2 + g

2
|Ψ|4

)
d3r

(5)
and minimize it with respect to σ. The condition of
the minimum

(
σ

lz

)4

− (8al3zN0)
1/2

3π1/4l2⊥

(
σ

lz

)3/2

− 1 = 0 (6)

leads to the value σ/lz = 1.3–1.5 under the experi-
mental conditions [17].

Due to the strong anisotropy of the conden-
sates the expansion in the radial direction is much
slower than in the z-direction. Therefore, we
can neglect the radial expansion. Substituting
Ψ(r, t) = ψ(z, t)χ(ρ, t = 0) into the equation (2) and
averaging over the radial coordinate yields the equa-
tion for ψ(z, t):

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂z2
+
4π1/4

3

(
2aσ

N0

)1/2

ℏω⊥|ψ|2ψ. (7)

The equation (7), the initial condition (3), and the
equation for the axial condensate size (6) constitute
the model used in the subsequent calculations. The
purpose of the modelling is to compute the column
density n2(x, z) at time t, as this value is measur-
able in experiments and directly indicates the re-
sult of interference. The column density is derived
from the local density n(r) = |Ψ(r)|2 by integration:
n2(x, z) =

∫
n(r)dy.

3. GENERAL PROPERTIES OF
INTERFERENCE FRINGES AND THEIR

SPATIAL SPECTRUM

We now demonstrate the general properties of the
interference fringes at time t after the abrupt turning
off of the optical lattice at t = 0 and the subsequent
evolution of the condensates in the free space.

If there are no interactions and the phases of
the condensates are equal, the initial density dis-
tribution is exactly restored after the Talbot time
Td: ψ(z, 0) = ψ(z, Td). The presence of the in-
terparticle interactions disrupts this exact time pe-
riodicity; however, at t = Td, the density pro-
file is nonetheless close to the initial one. This
is illustrated in Figs. 2a,b, which show the
calculated column density at t = 0 and Td.
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Fig. 2. Numerically calculated column density of a chain
of condensates n2(x, z): (a) in the optical lattice at
t = 0, (b) at t = Td for the identical initial phases of the
condensates (α = 1), (c) at t = Td for the completely
disordered initial phases of the condensates (α = 0).

The disorder of the initial phases of the conden-
sates significantly alters the positions of the interfer-

3
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ence fringes. Fig. 2c shows an example of the numer-
ically calculated fringe pattern for completely disor-
dered initial phases. Although the sharp fringes are
preserved, their positions now depend on the specific
values of the initial phases. As a result, the positions
of the fringes change with each repetition of the ex-
periment.

The regularity in the interference fringes with dis-
ordered phases can be revealed through the analysis
of their spectrum

ñ1(k, t) =

∫
n1(z, t)e

−ikzdz (8)

with the linear density n1(z, t) =
∫
n2(x, z, t)dx.

Within the model ñ1(k, t) =
∫
|ψ(z, t)|2e−ikzdz.

Figure 3 shows the numerically calculated spectra
⟨|ñ1(k, Td)|⟩ for different degrees of condensate phase
correlation.

The calculations were performed using parameters
typical for the experiment [17]: N0 = 500, a = 1520

bohr, s = 20, K = 50, d = 5.3 µm, which give
σ = 1.36lz. Additionally, the calculation for a = 0 was
provided. To reduce the small-scale noise, the spectra
were averaged over 800 repetitions. In all cases, the
spectra exhibit peaks, indicating the spatial order in
the interference fringes.

When the phases are equal, the spatial spectrum
consist of the narrow peaks at k = 2πl/d, l ∈ Z as
shown in Fig. 3a. For the completely disordered con-
densates (α = 0) and a = 0, it was shown earlier
analytically [17] that the spectrum again consists of
the equidistant peaks, but these peaks are wider and
appear at different momenta k = πlTd/(td). The nu-
merically calculated result, shown in Fig. 3c by the
black curve, closely aligns with this analytical predic-
tion. For the partially disordered phases the spectrum
is depicted in Fig. 3b. This spectrum features two
types of peaks: the narrow peaks, which correspond
to the Talbot effect, and the wide peaks, which arise
due to the phase fluctuations. The relative contri-
butions of these two types of peaks can be used for
measuring the coherence factor α.

The influence of the interparticle interactions on
the two types of peaks is different, as seen by com-
paring the black and orange curves in Fig. 3. The
positions of the narrow peaks are unaffected by the
mean field. In contrast, the wide peaks are shifted to
lower momenta due to the mean field.

4. COMPARISON WITH EXPERIMENT

In the experiment [17], the column density of the
gas was observed via the absorptive imaging. Exam-
ples are shown in Figs. 4a,c, which replicate Figs. 2b
and 3b from [17].

An image can be taken at any time t, resulting in
the destruction of the quantum state. To obtain a new
image, the experiment must be repeated. In images
4a,c, which were taken at t = Td, the interference
fringes are parallel, indicating the absence of phase
fluctuations within the condensates and justifying the
introduction of a single phase φj for the j-th micro-
condensate. From the experimental column densities
the spectra were calculated. These spectra are also
shown in Figs. 4a,c. The decrease in the coherence be-
tween the adjacent condensates and the crossover from
the Talbot effect to the pronounced manifestations of
the incoherence in the spectrum were achieved by in-
creasing the temperature T . In Figs. 4a,c, the temper-
ature is marked in units of the critical temperature of
the two-dimensional Bose gas TBEC2D = ℏω⊥

√
6N/π.

The temperature was determined by fitting the radial
density distribution at t = 0 with a bimodal distri-
bution. The fitting also provided N0/N , where N is
the total number of particles in one disk-shaped trap,
including noncondensed particles.

The simulation of the data from Fig. 4a is shown
in Fig. 4b, the simulation of the data from 4c is shown
in Figs. 4d,e. In the simulations, we used K = 50,
s = 23.3, a = 1520 bohr, d = 5.3 µm, N0 = 463

for Fig. 4c, and N0 = 271 for Figs. 4d,e. The only
adjustable parameter of the model was the coherence
factor α. The phases in each set {φj} were chosen
randomly with the condition cos(φj − φj+1) = α. By
selecting an appropriate α, we achieve the resemblance
between the experimental and calculated spectra. Ex-
act reproduction of the interference fringes is not nec-
essary for achieving the resemblance between the spec-
tra.

Both the experimental and calculated spectra in
Fig. 4 exhibit small-scale noise. In the case of the
disordered phases, the noise makes it difficult to de-
termine whether the sharp peak at kd/(2π) = 1 is
associated with the Talbot effect or is a noise outlier.
This complication is clearly evident when comparing
the spectra in Figs. 4d and 4e, which are calculated
with the same α but the different sets of phases {φj}.
The small-scale noise can be suppressed by averaging
over repetitions of the experiment or the calculation,
as shown in Figs. 3 and 5.

4
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Fig. 3. Average absolute value of interference fringe spectrum ⟨|ñ1(k, Td)|⟩ at t = Td for different degrees of initial
phase disorder: (a) α = 1 — the phases are identical; (b) α = 0.78 — the phases are partially disordered; (c) α = 0 —

the phases are completely disordered. The calculations for the interacting and non-interacting gas are shown.
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Fig. 4. (a), (c) Interference images from the experiment [17] at t = Td and their spectra for a chain of Bose condensates
at temperatures T = 0.45TBEC2D and T = 0.62TBEC2D, respectively. (b) Simulation of the data from fig. (a). (d), (e)

Simulation of the data from fig. (c), using two different sets of phases {φj} with the same coherence factor α.

The crossover from the interference with the dis-
ordered phases to the Talbot effect can be observed
in the data and calculations presented in Fig. 5. The
experimental data are taken from Fig. 6 of the Sup-
plemental Material of the paper [17]. The result of
the interference at t = Td is shown. Both the exper-
imental data and the simulations are averaged over
multiple repetitions. The purple shading indicates the
magnitude of the small-scale noise obtained in the cal-
culations, with the shading’s borders representing ±
one standard deviation. Due to the averaging, the
peak associated with the Talbot interference can be
correctly identified and used to determine α. The co-
herence factor α depends on temperature [22], pro-

viding a means for thermometry, including the tem-
peratures significantly below the critical temperature,
which cannot be determined by the conventional bi-
modal fitting [19,23].

The crossover between the two regimes of the in-
terference shown in Fig. 5 was achieved by gradually
varying the lattice depth s. For depths s ≤ 18.4, the
height of the calculated spectrum clearly exceeds the
experimental one. The cause of this discrepancy is not
clear. It is worth noting that the Pitaevskii-Gross ap-
proximation does not take into account the depletion
of the condensate caused by the interactions. Addi-
tionally, as the lattice depth s decreases, the axial
wave function of the initial condensate deviates from

5
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Fig. 5. The spectra of linear density distributions obtained after the free evolution of condensates during the Talbot
period Td. The results of the experiment [17] and the calculations are shown. The variable parameters are indicated
in the figures, «# of reps» denotes the number of experimental repetitions. The calculations are averaged over 200

sets {φj}, the borders of the purple shading correspond to ± one standard deviation.

the Gaussian profile (3).

The wide spectrum peaks corresponding to the
phase fluctuations are shifted to the left relative to
the predictions of the model without the interactions.
In the case of a = 0, the centers of the peaks in Figs.
4 and 5 would be located at kd/(2π) = 0.5 and 1.0.
The model based on the Pitaevskii-Gross equation re-
produces the peak shift well. The broadening of the
condensate, given by formula (6), plays an important

role in achieving the quantitative agreement. Without
this broadening, when σ = lz, the shift is 2–3 times
smaller.

5. CONCLUSION

Within the framework of the Pitaevskii-Gross
equation, we calculated the interference of a long chain
of Bose condensates. We identified two distinct inter-

6
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ference regimes and their combination. Comparison
of the calculated interference fringe spectrum with the
experimental data revealed quantitative agreement in
the positions and widths of the peaks, including the
mean field shifts. Regarding the heights of the peaks,
we found a discrepancy with some of the data.
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