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Institute for Electrophysics, Russian Academy of Sciences, Ural Branch, Amundsen str. 106, Ekaterinburg 620016, Russia

Abstract. We consider a certain class of exactly solvable models, describing spectral properties an electron moving 
in random in time external field with different statistical characteristics. This electron can be band – like or belong

to a quantum well. The known dynamical Keldysh model is generalized for the case of fields with finite correlation

time of fluctuations and for finite transfer frequencies of these fluctuations. In all cases we are able to perform the

complete summation of all Feynman diagrams of corresponding perturbation series for the Green’s function. This

can be done either by the reduction of this series to some continuous fraction or by the use of the generalized Ward

identity from which we can derive recurrence relations for the Green’s function. In the case of a random field with

finite transferred frequency there appear the interesting effects of modulation of spectral density and density of

states.

1. INTRODUCTION

While being an outstanding experimentalist,

P.L. Kapitza sometimes addressed also some purely

theoretical problems. Well known is his elegant solution

of a problem of the motion of a classical particle in

fast oscillating field [1], where he essentially described

this motion as a particle in a random field with

appropriate time averaging. Such fields and processes

appear in many problems of statistical radiophysics

and radiotechnics, where a vast literature exists [2, 3].

In quantum theory there is also multitude problems of

this kind.

In this work we shall consider a certain class of

exactly solvable quantum mechanical problems, related

in general to the theory of electrons in disordered

systems and quantum structures, which is a dynamical

generalization of the so called Keldysh model.

The initial model was introduced by L.V. Keldysh

in his unpublished thesis in 1965 [4]. Some of his results

were used by A.L Efros in Ref. [5], devoted to doped

semiconductors. The detailed presentation of different

aspects of this model in the general context of electron

theory of disordered systems was given in [6], where the

notion of “Keldysh model” was introduced for the first

time.

In the following, the number of similar models were

proposed, e.g. for the description of the pseudogap

appearing due to electron scattering by fluctuations of

short – range order in one – dimensional systems [6–12],

which were later generalized for two – dimensional

case to describe pseudogap in high-temperature 
superconductors [13–17].

dynamical generalization of the initial Keldysh 
model for the case of electron scattering by random 
in time fluctuations of external field was proposed 
by Kikoin and Kiselev [18], who considered electrons 
in quantum dots. Detailed presentation of different 
results obtained for this and similar models was 
given in Ref. [19]. The present paper is devoted 
to further development and generalization of this 
type of models both for the case of electrons in 
quantum dots and band – like electrons in conductors 
of different dimensionalities under the influence of 
dynamic random fields.

2. DYNAMICAL KELDYSH MODEL

The model under consideration was proposed 
byKeldysh in 1965 [4] as some limiting case of problem 
of electron scattering by the random field of static 
impurities in a disordered system [6, 20]. Keldysh has 
shown that the single – particle Green’s function in

Рис. 1. Diagrammatic expansion for the Green’s function.

Double line corresponds to “dressed” Green’s function,

wavy line corresponds to correlator of Gaussian random

field.
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Gaussian random field V (r) with “forward” scattering

(i.e. with zero transferred momentum, corresponding

to the limit of infinite spatial range of fluctuations of

the random potential) described by correlator (d is

spatial dimensionality):

D(r−r
′) = �V (r)V (r′)� = ∆2 → D(q) = (2π)d∆2δ(q),

(1)

can be found by complete summation of all Feynman

diagrams of perturbation series. In fact, according to

the usual diagram rules for the problem of scattering

by static random disorder [6, 20], diagram of N -

th order contains N interaction line with Gaussian

random field (denoted by by wavy lines), 2N + 1

solid lines, corresponding to Green’s functions and 2N

vertices. The total number of diagrams in the given

order of perturbation theory AN corresponds to the

total number of ways to connect 2N vertices by N

interaction lines, which is equal to [6, 21]:

AN = (2N − 1)!! =
(2N − 1)!

2N−1(N − 1)!
. (2)

Diagrammatic contributions of the lowest orders in the

series for single – electron Green’s function are shown

in Fig. 1. In this model all Feynman diagrams of the

given order N give the same contributions to Green’s

function, so that the full series for it is of the following

form:

G(E) = G0(E)

{
1 +

∞∑
N=1

(2N − 1)!!G2N
0 (E)∆2N

}
.

(3)

Further, to shorten notations we define E = ǫ − ǫp,

where ǫp is free the electron spectrum, so that the

“bare” Green’s function is written as G0(E) = 1/E.

Using integral representation of Γ – function, we can

use:

(2N − 1)!! =
1√
2π

∫ ∞

−∞

dtt2N−2e−t2/2 (4)

so that the retarded Green’s function (after the

summation of geometric series) can be written as:

GR(E) =
1√

2π∆2

∫ ∞

−∞

dV
e−V 2/2∆2

E − V + iδ
(5)

This equation has an obvious meaning [6] � electron

propagates in spatially homogeneous Gaussian random

field. There is also another way to obtain this elegant

result, which was also proposed by Keldysh [4] and later

by Efros [5], and is based on the use of an exact Ward

identity, which allows the derivation of differential

equation for the Green’s function. This equation has

the following form:

∆2 dG(E)

dE
+ E ·G(E) = 1. (6)

Solving this equation with boundary condition

G(E → ∞) = 1/E immediately leads to Eq. (5) [6].

Direct consequence of the obtained solution is the

appearance of the Gaussian “tail” in the density of

states of an electron in energy region ǫ < 0 [6].

In Refs. [18, 19] Keldysh model was reformulated

for the case of electron scattered by very slow temporal

fluctuations of the random potential. Appropriate

dynamical Keldysh model can also be generalized for

the case of scattering by multiple component Gaussian

non – Markovian random fields [19].

As an example, following Refs. [18, 19] we may

consider an electron in a single quatum well (dot),

which is formed by appropriate confining potential, as

shown in Fig. 2. The gate creates external noise slowly

changing confining potential of the well.

Single – particle Hamiltonian for this problem has

the following form:

H = [ǫ0 + V (t)]n. (7)

where n = c†c, and c†, c are creation and annihilation

operators of an electron at the level within well.

For simplicity we consider spinless (spinpolarized)

electrons. Classical potential random (Gaussian) in

time V (t) is determined by its average value and pair

correlation function:

�V (t)� = 0, �V (t)V (t′)� = D(t− t′). (8)

For this function we assume the following form:

D(t− t′) = ∆2e−γ|t−t′|, (9)

where γ = 1/τ , with τ determining characteristic

correlation time of potential fluctuations, while ∆ is the

Рис. 2. (a) single quantum dot, with noise applied by

external electrodes (gate), (b) corresponding quantum

well with fluctuating level.
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amplitude of the noise. We may consider two limiting

cases:

γ → ∞ : D(t− t′) → ∆2δ(t− t′), (10)

γ → 0 : D(ω) → 2π∆2δ(ω). (11)

Here D(ω) is the Fourier – transform of D(t − t′).

The first case corresponds to “fastest” possible noise

(“white” noise) and Markovian random process. The

second case corresponds to slow noise, with Keldysh

model giving its slowest possible realization with

(infinitely) large relaxation time of fluctuations (infinite

memory, of non – Markovian process).

Single – electron (retarded) Green’s function of

electron in a well for the given realization of the

potential is:

GR(ǫ) =
1

ǫ− ǫ0 − V + iδ
(12)

where ǫ0 is energy level in a well, while time –

averaging is again reduced to Gaussian integration

of this expression with distribution function

P (V ) = 1/
√
2π∆2 exp(−V 2/(2∆2):

GR(ǫ) =
1√

2π∆2

∫ ∞

−∞

dV
e−V 2/2∆2

ǫ− ǫ0 − V + iδ
(13)

Similarly we can consider an electron not within the

well, but within energy band of a system (placed

between capacitor plates, on which a random noise is

generated) of any dimensionality. In this case it is just

sufficient to make a replacement ǫ0 → ǫp, where ǫp is

band spectrum of an electron with quasimomentum p.

The single – well model is easily generalized

also for the case of several wells [18, 19], which

leads to Keldysh model with multicomponent noise.

Particularly interesting is the model of two quantum

wells, which (in its band – like variant) is deeply related

to an exactly solvable model of the pseudogap state

[7–12]. However, below we shall only consider the single

– well model, leaving the two – well case (pseudogap

fluctuations) for the separate work.

3. KELDYSH MODEL AND FLUCTUATIONS

WITH FINITE CORRELATION TIME

Below we show that an exact solution for the

single – particle Green’s function can also be obtained

for Keldysh model with finite correlation time of

fluctuations τ = γ−1. This solution is easily found using

the method proposed by one of the authors in Ref. [11],

devoted to the model of pseudogap in one – dimensional

systems.

Рис. 3. Typical diagrams of the third order.

Fourier – transform of Eq. (9), which is associated

with interaction lines in diagrams, can be written as:

D(ω) = 2π∆2 1

π

γ

ω2 + γ2
= 2π∆2 1

π

γ

(ω + iγ)(ω − iγ)
(14)

For γ → 0 this is naturally reduced to the second

expression in (11). Let us clarify the calculations of

a diagram of an an arbitrary order. In fact this can

be done exactly. As an example let us consider some

typical diagrams of third order shown in Fig. 3. We

can easily calculate the contribution of an arbitrary

diagram as we can actually guarantee that nonzero

contribution to integrals (over transferred frequencies)

appear only from the poles of Lorentzians1) D(ω).

1) In the problem analyzed in Ref. [11] this statement is only
approximate [21]. Here all calculations (frequency integrations)
are performed exactly.

3

Fig. 3.
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For example, elementary calculations show, that

contribution of diagram in Fig. 3 (d) to the retarded

Green’s function has the following form:

∆6 1

ǫ− ǫ0

1

ǫ− ǫ0 + iγ

1

ǫ− ǫ0 + 2iγ

1

ǫ− ǫ0 + 3iγ
×

× 1

ǫ− ǫ0 + 2iγ

1

ǫ− ǫ0 + iγ

1

ǫ− ǫ0
(15)

Contributions of arbitrary diagrams are quite similar:

integers k, written above electronic lines Fig. 3, show

have many times the term iγ enters corresponding

denominator. Note that contribution of diagram with

crossing interaction lines in Fig. 3 (d) are just equal

to the contribution of diagram with no intersections

of interaction lines shown in Fig. 3 (e). This is a

manifestation of the general property – contribution

of any diagram with crossing interaction lines is

equal to the contribution of some diagram with no

intersections [11]. Precisely because of this property

we can introduce an exact algorithm of complete

summation of Feynman series.

Details of combinatorics and rules to reduce

diagrams with crossing interaction lines to those

without intersections were considered in Ref. [11]

(see also Ref. [6])2). One can easily convince himself

that the number of irreducible diagrams for self –

energy which are equal to the given diagram with no

intersections of interaction lines is equal to the product

of certain combinatorial factors v(k) (k is the number

of iγ contributions in the denominator of the Green’s

function in diagram without intersections, standing

below k interaction lines) which are associated

with consequent interaction lines of this diagram.

Correspondingly in the following we can use just

the diagrams with no intersections of interaction

lines associating extra combinatorial factors v(k) to

interaction lines of such diagrams. In our case v(k) = k

[11].

Then we can easily obtain the recursion relation

determining the irreducible self – energy, which

includes all diagrams of corresponding Feynman series

[6, 11]:

Σk(ǫ, ǫ0) =
∆2v(k)

ǫ− ǫ0 + ikγ − Σk+1(ǫ, ǫ0)
; v(k) = k (16)

2) In the problem under consideration here combinatorics of
diagrams is reduced to commensurate case of Ref. [11].

Рис. 4. “Dyson equation” representation of recurrence

equation for the Green’s function. Here we introduced

G0k = [ǫ− ǫ0 + ikγ]−1.

Then we immediately get the recursion relation for

Green’ function itself:

Gk(ǫ, ǫ0) = {ǫ− ǫ0 + ikγ −∆2v(k + 1)Gk+1(ǫ, ǫ0)}−1,

(17)

and the physical Green’s function is defined as

G(ǫ, ǫ0) ≡ Gk=0(ǫ, ǫ0), which is equivalent the

complete sum of Feynman series for our model. In fact

these relations give the following continuous – fraction

representation od single – electron Green’s function:

G(εn, ξp) =

=
1

ǫ− ǫ0 −
∆2

ǫ− ǫ0 + iγ − 2∆2

iǫ− ǫ0 + 2iγ − 3∆2

ǫ− ǫ0 + 3iγ − ...

(18)

Symbolically our recursion relation can be represented

as a kind of “Dyson equation”, shown in Fig. 4.

For γ = 0 we can use the following continuous

– fraction representation of incomplete (upper) Γ –

function:

Γ(α, x) =

∫ ∞

x

dte−ttα−1 =
xα

x+ 1−α
1+ 1

x+ 2−α
1+...

(19)

to convince ourselves that Eq. (18) reproduces an exact

result of (13) obtained by direct summation of all

diagrams.

4. FLUCTUATIONS WITH FINITE

TRANSFERRED FREQUENCY AND FINITE

CORRELATION TIME

Let us consider now more general case of

fluctuations with finite characteristic frequency

ω0. We shall again consider classical potential random

in time V (t) (8) with pair correlation function:

4

Fig. 4.
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Рис. 5. Typical diagrams of second order.

D(t− t′) = ∆2e−γ|t−t′| cos[ω0(t− t′)] =

=
∆2

2
e−γ|t−t′|

[
eiω0(t−t′) + e−iω0(t−t′)

]
. (20)

For ω0 = 0 we obtain again correlator (9) and the model

with zero transferred frequency considered above.

Fourier – transform of correlator (20) has the form:

D(ω) = 2π
∆2

2

[
1

π

γ

(ω − ω0)2 + γ2
+

1

π

γ

(ω + ω0)2 + γ2

]
.

(21)

Thus in corresponding diagram technique we have

two sorts of interaction lines – wavy and dashed,

transfering frequencies +ω0 and −ω0 correspondingly.

Both interaction lines lead to addition of iγ term

to energy ǫ in each electron Green’s function, which

is below corresponding interaction line. In Fig. 5 we

show typical second order diagrams. It is easy to see

that in current model the contribution of diagrams

with intersecting interaction lines does not necessarily

coincide with some diagram without such intersections.

However, we still can obtain an exact solution for the

single – electron Green’s function using the generalized

Ward identity.

4.1. Generalized Ward identity and recurrence

equations for the Green’s function

Single – electron Green’s function G can be easily

determined via the full two – particle function Φ:

G(ǫ) = G0(ǫ)+G0(ǫ)
∆2

2

{∑
ǫ′

Φǫǫ′(ω0) +
∑
ǫ′

Φǫǫ′(−ω0)

}
.

(22)

Here Φ is the full two – particle Green’s function,

including four external electronic lines and contribution

corresponding to the product of two “dressed” single –

particle Green’s functions G. To shorten expressions in

our analysis we make a replacement ǫ − ǫ0 → ǫ, i.e.

count energies from energy level in the well ǫ0, then

Рис. 6. Diagrammatic representation of equation for the

Green’s function

G0(ǫ) = 1/ǫ. Diagrammatic representation of Eq. (22)

for the Green’s function is shown in Fig. 6. To find

two – particle Green’s functions Φ entering Eq. (22) we

shall use the generalized Ward identity [22], which in

this purely dynamical model takes the following form:

G(ǫ+ω)−G(ǫ) = −
∑
ǫ′

Φǫǫ′(ω)
{
G−1

0 (ǫ′ + ω)−G−1
0 (ǫ′)

}
.

(23)

Here the expression in figure brackets in the r.h.s.

G−1
0 (ǫ′ +ω)−G−1

0 (ǫ′) = ǫ′ +ω− ǫ′ = ω is independent

of ǫ′, so that we immediately obtain:

∑
ǫ′

Φǫǫ′(ω) = −G(ǫ+ ω)−G(ǫ)

ω
. (24)

In the current problem any interaction line again

adds iγ term to energy of electronic lines below it,

i.e. effectively our interaction lines transfer a complex

frequency ±ω0 + iγ. Then Ward identity (23) for the

vertex with +ω0 takes the form:

G(ǫ+ ω0 + iγ)−G(ǫ) =

= −
∑
ǫ′

Φǫǫ′(ω0)(ǫ
′ + ω0 + (k + 1)iγ − (ǫ′ + kiγ)) =

= −(ω0 + iγ)
∑
ǫ′

Φǫǫ′(ω0).(25)

As a result for the two – particle Green’s function with

+ω0 vertex we obtain:

∑
ǫ′

Φǫǫ′(ω0) = −G(ǫ+ ω0 + iγ)−G(ǫ)

ω0 + iγ
. (26)

Similarly for Φ with −ω0 vertex we get:

∑
ǫ′

Φǫǫ′(−ω0) = −G(ǫ− ω0 + iγ)−G(ǫ)

−ω0 + iγ
. (27)

Substituting these two – particle functions (26) and

(27) into Eq. (22), we obtain the functional equation

for the Green’s function:

5
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Fig. 6.
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G(ǫ) = G0(ǫ)−G0(ǫ)
∆2

2
×

×
{
G(ǫ+ ω0 + iγ)−G(ǫ)

ω0 + iγ
+

G(ǫ− ω0 + iγ)−G(ǫ)

−ω0 + iγ

}
(28)

so that:

G(ǫ) =
1− ∆2

2

[
G(ǫ+ω0+iγ)

ω0+iγ + G(ǫ−ω0+iγ)
−ω0+iγ

]

G−1
0 (ǫ) + ∆2 iγ

ω2
0+γ2

. (29)

It should be noted that the use of the generalized Ward

identity (23) allows also an exact solution (reducing

to the integral equation) of the problem of finding the

single – particle Green’s function G(ǫ) od an electron

in random Gaussian potential with arbitrary correlator

D(ω). Equation for the Green’s function in this case has

the following form:

G(ǫ) = G0(ǫ) +G0(ǫ)

∫ +∞

−∞

dω

2π
D(ω)

∑
ǫ′

Φǫǫ′(ω). (30)

Using Ward identity (23) we immediately obtain (24)

and the integral equation for the Green’s function:

G(ǫ) = G0(ǫ)−G0(ǫ)

∫ +∞

−∞

dω

2π
D(ω)

G(ǫ+ ω)−G(ǫ)

ω
.

(31)

If we use D(ω) in the form given by Eq. (21) the

frequency integral here is easily calculated. The second

factor in the integrand does not contain pole at ω = 0

and is analytic in the upper half – plane of complex

ω, so that closing the integration contour above, we

obtain the contribution to integral only from the poles

at ω = ±ω0+iγ of two Lorentzians in (21) immediately

getting (28), and functional equation (29).

Solving Eq. (29) by iterations, starting from initial

the approximation

G̃0(ǫ) =
1

G−1
0 (ǫ) + ∆2 iγ

ω2
0+γ2

, (32)

one can easily see that each iteration adds to energy

(besides ±ω0) additional iγ term. Thus we can

introduce the following notations:

Gn(ǫ) ≡ G(ǫ+niγ) G0n(ǫ) ≡ G0(ǫ+niγ) =
1

ǫ+ niγ
,

(33)

where n = 0, 1, 2 . . . and apply Eq. (29) for energy

ǫ + niγ, making replacement ǫ → ǫ + niγ. Then in

notations of (33) equation (29) takes the form3):

Gn(ǫ) =
1− ∆2

2

[
Gn+1(ǫ+ω0)

ω0+iγ + Gn+1(ǫ−ω0)
−ω0+iγ

]

G−1
0n (ǫ) + ∆2 iγ

ω2
0+γ2

. (34)

3) Naturally, Eq. (34) can be also obtained directly using the
generalized Ward identity applying it for energy ǫ+ niγ.

As a result we obtain the recursion procedure where

at each “storey” n Gn depends only on real energy.

Numerical realization of such procedure is rather

simple. At some high “storey” n = N ≫ 1 we define

a set of GN (ǫ), e.g. GN (ǫ) = 0. Then, withe the help

of (34) and interpolation we find the set GN−1(ǫ) etc.,

until we reach the physical G(ǫ) = Gn=0(ǫ).

For ω0 = 0 we return to the model with zero

transferred frequency and finite correlation time

described above. In this limit the recursion equation

(34) takes the form:

Gn(ǫ) =
1 + i∆

2

γ Gn+1(ǫ)

G−1
0n (ǫ) + i∆

2

γ

. (35)

Visually the recursion procedure (35) has nothing in

common with procedure (17), leading to continuous

– fraction representation of G given by Eq. (18).

However, direct numerical calculations show that

both produce absolutely same results for the physical

Green’s function Gn=0(ǫ) (in the limit of initial

“storey” N → ∞).

For γ = 0 in the limit of ω0 → 0 Eq. (28)

immediately reduces to differential equation (6) for

the Green’s function in the usual Keldysh model,

as lim
ω0→0

G(ǫ+ω0)−G(ǫ)
ω0

= lim
ω0→0

G(ǫ−ω0)−G(ǫ)
−ω0

= dG(ǫ)
dǫ .

Green’s function G(ǫ) is analytic in the upper half –

plane of complex energy ǫ and the derivative dG(ǫ)
dǫ gives

the same result along different directions of dǫ in this

half – plane. Thus for other order of limits ω0 = 0,

γ → 0 from Eq. (28) we again obtain the differential

equation (6). Analyticity of the Green’s function allows

to write it (in the upper half – plane of ǫ) as:

G(ǫ) =

∫ ∞

−∞

dǫ′
ρ(ǫ′)

ǫ− ǫ′
, (36)

where ρ(ǫ) = − 1
π ImG(ǫ) is the spectral density

(density of states for the quantum dot). Then in this

limit in Eq. (28) we get:

lim
γ→0

G(ǫ+ iγ)−G(ǫ)

iγ
=

= lim
γ→0

1

iγ

∫ ∞

−∞

dǫ′ρ(ǫ′)

[
1

ǫ+ iγ − ǫ′
− 1

ǫ− ǫ′

]
=

= −
∫ ∞

−∞

dǫ′
ρ(ǫ′)

(ǫ− ǫ′)2
=

dG(ǫ)

dǫ
(37)

Analytic properties of Green’s function (36) allow to

reduce the functional equation (29) to integral equation

for spectral density ρ(ǫ). Let us rewrite functional

equation (29) as:

6
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G(ǫ) = G̃0(ǫ)− G̃0(ǫ)
∆2

2
×

×
[
G(ǫ+ ω0 + iγ)

ω0 + iγ
+

G(ǫ− ω0 + iγ)

−ω0 + iγ

]
, (38)

where G̃0(ǫ), defined in (32), can be written as:

G̃0(ǫ) =
1

ǫ+ iΓ
. (39)

Here

Γ =
∆2γ

ω2
0 + γ2

(40)

is an effective non – perturbative damping due to

the random field. Then for the spectral density we

immediately obtain:

ρ(ǫ) = ρ̃0(ǫ) +
∆2

2π
×

×Im

{
G̃0(ǫ)

[
G(ǫ+ ω0 + iγ)

ω0 + iγ
+

G(ǫ− ω0 + iγ)

−ω0 + iγ

]}
(41)

where ρ̃0(ǫ) = − 1
π ImG̃0(ǫ) = 1

π
Γ

ǫ2+Γ2 is an effective

“bare” spectral density (density of states). Eq. (41) is

easily solved numerically by iterations, starting from

initial approximation ρ(ǫ) = ρ̃0(ǫ).

4.2. Exact solution for the Green’s function in

the form of infinite series

Eq. (38) can be solved by iterations starting

from G̃0(ǫ). If we represent the result of each

iteration as simple fractions (so that there are no ǫ

in the coefficients), one can easily convince himself,

that the Green’s function G becomes the sum of

G̃0(ǫ + (n − m)ω0 + (n + m)iγ), where n and m are

integers, with coefficients independent of ǫ. Thus we

look for the solution for the Green’s function in the

following form:

G(ǫ) =
∞∑

n,m=0

Anm
1

ǫ+ (n−m)ω0 + (n+m)iγ + iΓ
,

(42)
where coefficients Anm are independent of ǫ and can be
found substituting (42) into (38). Then we have:

G̃0(ǫ)G(ǫ+ ω0 + iγ) =

=
∞∑

n,m=0

Anm

1

ǫ+ iΓ

1

ǫ+ iΓ + (n+ 1−m)ω0 + (n+ 1 +m)iγ
=

=

∞∑

n,m=0

Anm

1

(n+ 1)(ω0 + iγ) +m(−ω0 + iγ)
×

×

[
1

ǫ+ iΓ
−

1

ǫ+ iΓ + (n+ 1)(ω0 + iγ) +m(−ω0 + iγ)

]
(43)

G̃0(ǫ)G(ǫ− ω0 + iγ) =

=
∞∑

n,m=0

Anm

1

n(ω0 + iγ) + (m+ 1)(−ω0 + iγ)
×

×

[
1

ǫ+ iΓ
−

1

ǫ+ iΓ + n(ω0 + iγ) + (m+ 1)(−ω0 + iγ)

]
(44)

Substituting (43), (44) into (38) we find the coefficient
A00 before 1

ǫ+iΓ as:

A00 = 1−
∆2

2
×

×

[
1

ω0 + iγ

∞∑

n,m=0

Anm

1

(n+ 1)(ω0 + iγ) +m(−ω0 + iγ)
+

+
1

−ω0 + iγ

∞∑

n,m=0

Anm

1

n(ω0 + iγ) + (m+ 1)(−ω0 + iγ)

]
.(45)

For other coefficients:

Anm =
∆2

2

1

n(ω0 + iγ) +m(−ω0 + iγ)
×

×
[
An−1m

ω0 + iγ
+

Anm−1

−ω0 + iγ

]
. (46)

Naturally we have A−1m = An−1 = 0.

Eq. (46) allows to obtain the whole set of coefficients

at nf = n+m “storey” from the values of coefficients at

nf −1 “storey”, and finally to express all coefficients via

A00. Coefficients obtained foer several lower “storeys”

allow us to guess, that the general form of the

coefficients can be written as:

Anm =
A00

n!m!

(
∆2

2

)n+m
1

(ω0 + iγ)2n(−ω0 + iγ)2m
.

(47)

Substitution of Anm from (47) into Eq. (46) confirms

this guess.
Now using Eq. (45) we can find A00:

A00 = 1−
∆2

2
×

×

[
1

ω0 + iγ

∞∑

n=1,m=0

An−1m

1

n(ω0 + iγ) +m(−ω0 + iγ)
+

+
1

−ω0 + iγ

∞∑

n=0,m=1

Anm−1

1

n(ω0 + iγ) +m(−ω0 + iγ)

]
.

(48)

Using (46) in (47) we get:

A00 = 1−
∑
n,m

n+m �=0

Anm =

= 1−
∑
n,m

n+m �=0

A00

n!m!

(
∆2

2

)n+m
1

(ω0 + iγ)2n(−ω0 + iγ)2m
.

(49)
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Finally A00 takes the form:

A00 =
1

∞∑
n=0

1
n!

(
∆2

2

)n 1
(ω0+iγ)2n

∞∑
m=0

1
m!

(
∆2

2

)m 1
(−ω0+iγ)2m

=

= e
− ∆2

2(ω0+iγ)2 e
− ∆2

2(ω0+iγ)2 = e
−

∆2(ω2
0−γ2)

(ω2
0+γ2)2 (50)

As a result we obtain the following expression for the

Green’s function (42):

G(ǫ) = e
−

∆2(ω2
0−γ2)

(ω2
0+γ2)2

∞∑
n,m=0

1

n!

1

m!

1

(ω0 + iγ)2n(−ω0 + iγ)2m

(
∆2

2

)n+m
1

ǫ+ (n−m)ω0 + (n+m)iγ + iΓ
(51)

Let us briefly analyze the limiting behavior of the

Green’s function and corresponding spectral density

ρ(ǫ) = − 1
π ImG(ǫ) following from (51).

In the limit of γ → 0 we get:

G(ǫ) = e
−∆2

ω2
0

∞∑
n,m=0

1

n!

1

m!

(
∆2

2ω2
0

)n+m
1

ǫ+ (n−m)ω0 + iδ
,

(52)

and spectral density has the form:

ρ(ǫ) = e
−∆2

ω2
0

∞∑
n,m=0

1

n!

1

m!

(
∆2

2ω2
0

)n+m

δ(ǫ+ (n−m)ω0)

(53)

which is the set of δ peaks at ǫ = ±kω0. The weights

of these peaks (coefficients before corresponding δ –

functions) are:

S(+k) = S(−k) = e
−∆2

ω2
0

∞∑
n=0

1

n!(n+ k)!

(
∆2

2ω2
0

)2n+k

=

= e
−∆2

ω2
0 Ik

(
∆2

ω2
0

)
, (54)

where Ik – is the modified Bessel function of imaginary

argument. The total area of all these peaks is:

S =

∞∑
k=−∞

S(k) = e
−∆2

ω2
0

∞∑
n,m=0

1

n!

1

m!

(
∆2

2ω2
0

)n+m

=

= e
−∆2

ω2
0

∞∑
n=0

1

n!

(
∆2

2ω2
0

)n ∞∑
m=0

1

m!

(
∆2

2ω2
0

)m

= 1, (55)

as it should be.

In the limit of ω0 → 0 we return to the model of

fluctuations with finite correlation time and from Eq.

(51) we obtain:

G(ǫ) = e
∆2

γ2

∞∑
n,m=0

1

n!

1

m!

(
−∆2

2γ2

)n+m
1

ǫ+ (n+m)iγ + i∆
2

γ

=

= e
∆2

γ2

∞∑
k=0

[
k∑

n=0

1

n!(k − n)!

](
−∆2

2γ2

)k
1

ǫ+ kiγ + i∆
2

γ

. (56)

As
k∑

n=0

k!
n!(k−n)! = 2k we get for the Green’s function:

G(ǫ) = e
∆2

γ2

∞∑
k=0

1

k!

(
−∆2

γ2

)k
1

ǫ+ kiγ + i∆
2

γ

= (57)

= e
∆2

γ2
1

iγ

(
∆2

γ2

)−
(

ǫ
iγ

+∆2

γ2

)

γ

(
ǫ

iγ
+

∆2

γ2
,
∆2

γ2

)
, (58)

where

γ(α, x) =

∫ x

0

dte−ttα−1 (59)

is incomplete (lower) Γ – function. Eqs. (57) and (58)

can be considered as series and integral representations

for continuous fraction of (18).

The problem of an electron in Gaussian field of

dynamic fluctuations with finite correlation time has

much in common with the problem of Holstein polaron

in semiconductors with low mobility, i.e. with the

problem of finding the single electron Green’s function

in Holstein model [23] of an electron interacting with

optical phonon mode with frequency Ω in the limit

of transfer integral between nearest neighbors t → 0

(t ≪ Ω). Usually such problem is analyzed by

making Lang – Firsov canonical transformation [24]

in Holstein Hamiltonian [23] However, the diagram

technique for electron – phonon interaction in this

model is completely equivalent to diagram technique

in our model of dynamical fluctuations with finite

correlation time after the replacement:

∆ → g iγ → −Ω (60)

where g is electron – phonon coupling constant.

We only have to take into account that in this

diagram technique in the denominators of electron

Green’s functions we have continuous addition −Ω

terms instead of iγ, because of two terms in phonon

propagator:

D(ω) =
1

ω − Ω+ iδ
− 1

ω +Ω− iδ
(61)

only the first term contribute to frequency integrals due

to the fact that all electronic Green’s functions in thes

problem are retarded.

Thus the Green’s function of Holstein polaron (for

t → 0) is determined by continuous fraction (18) with

8
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replacement (60). For the first time Holstein polaron

Green’s function of this form was derived in Ref. [25].

Our series expression for the Green’s function (57)

in the model of dynamical fluctuations with finite

correlation time immediately allows us to get (after the

replacement (60)) the well known exact result for the

Green’s function of Holstein polaron as [24,25]:

G(ǫ) = e−
g2

Ω2

∞∑
k=0

1

k!

(
g2

Ω2

)k
1

ǫ− kΩ+ g2

Ω + iδ
= (62)

Note that our use of the Ward identity is in some sense

equivalent to Lang – Firsov transformation in Holstein

polaron problem. An effective “bare” Green’s function

(39)with non – perturbative damping (40), appearing

due to the use of the Ward identity, in the model with

ω0 = 0 is:

G̃0(ǫ) =
1

ǫ+ i∆
2

γ

. (63)

which in the Holstein polaron problem, after the

replacement (60), takes the form:

G̃0(ǫ) =
1

ǫ+ g2

Ω + iδ
, (64)

appearing after Lang – Firsov transformation of an

effective “bare” Green’s function of polaron with non –

perturbative shift of the ground state ǫ0 = − g2

Ω [24,25].

5. NUMERICAL RESULTS

Now for the most general model of fluctuations with

finite frequency and correlation time we actually have

three exact numerical procedures to find the Green’s

function:

1. recursive procedure (34),

2. integral equation for spectral density (41),

3. series representation (51).

For the wide range of parameters (∆, γ, ω0) of the

model our numerical calculations showed that all three

procedures lead to absolutely same results for spectral

density (density of states). Of these, the recursion

procedure (34) is most fast for numerics, though

for small values of γ ≪ ∆, ω0 and ω0 < 0.3∆ it

requires significant increase of the number of energies

in corresponding array and the number of an initial

“storey” to start, while series representation (51) in

this range of parameters is well convergent. However,

the series representation is inappropriate for direct
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Рис. 7. Spectral density (density of states in quantum

dot) in the model with finite correlation time (ω0 = 0)

for different values of γ.

numerical analysis in the region of ∆ ≫ γ > ω0, which

is connected both with large values of the exponent

before the series and with the large number of terms in

the series to be taken into account to compensate this

exponent.

Now let us discuss our numerical results. In Fig.7

we demonstrate evolution of the spectral density with

increasing γ (i.e. with decreasing correlation time of

fluctuations) for the model with ω0 = 0. For γ = 0 (in

the usual Keldysh model) spectral density is Gaussian

with the width ∆ (dispersion – ∆2). The growth of γ

leads to decrease of characteristic width of the spectral

density with appropriate growth of ρ(0).

In Fig. 8 we show spectral densities (densities

of states in quantum dot) in the model with finite

transferred frequency for ∆ = 1 and different values

of ω0 and γ. We can see that in all cases for small γ

significant modulations of the spectral density appear

with frequency ω0 with peaks of spectral density

appearing at energies ǫ = ±nω0, where n is integer. The

height of these peaks decreases with increasing n and

for ǫ > 3∆ peaks are practically invisible. Increasing γ

leads to decreasing peak heights and starting from some

values of γ modulations with frequency ω0 become

unobservable. Further increase of γ only somehow

narrows Gaussian – like spectral density, as it was

observed in Fig.7 for the model with ω0 = 0. At large

enough values of γ, when no modulations of spectral

density with frequency ω0 are observed, the growth of

ω0 only weakly changes the spectral density (see Fig.8f)

and we can use more simple model with ω0 = 0. Note

that the values of γ, for which modulations of spectral

9
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numerical analysis in the region of ∆ ≫ γ > ω0, which

is connected both with large values of the exponent

before the series and with the large number of terms in

the series to be taken into account to compensate this

exponent.

Now let us discuss our numerical results. In Fig.7

we demonstrate evolution of the spectral density with

increasing γ (i.e. with decreasing correlation time of

fluctuations) for the model with ω0 = 0. For γ = 0 (in

the usual Keldysh model) spectral density is Gaussian

with the width ∆ (dispersion – ∆2). The growth of γ

leads to decrease of characteristic width of the spectral

density with appropriate growth of ρ(0).

In Fig. 8 we show spectral densities (densities

of states in quantum dot) in the model with finite

transferred frequency for ∆ = 1 and different values

of ω0 and γ. We can see that in all cases for small γ

significant modulations of the spectral density appear

with frequency ω0 with peaks of spectral density

appearing at energies ǫ = ±nω0, where n is integer. The

height of these peaks decreases with increasing n and

for ǫ > 3∆ peaks are practically invisible. Increasing γ

leads to decreasing peak heights and starting from some

values of γ modulations with frequency ω0 become

unobservable. Further increase of γ only somehow

narrows Gaussian – like spectral density, as it was

observed in Fig.7 for the model with ω0 = 0. At large

enough values of γ, when no modulations of spectral

density with frequency ω0 are observed, the growth of

ω0 only weakly changes the spectral density (see Fig.8f)

and we can use more simple model with ω0 = 0. Note

that the values of γ, for which modulations of spectral
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density are observable depends on ω0. In particular,

for ω0 = 0.1 (Fig.8a) modulations are observed only

for γ = 0.0001, while for ω0 = 0.5 (Fig.8c) modulations

are observable already for γ = 0.05.

As was already noted above it is not difficult to

generalize our model to consider not a single quantum

well in dynamical random fields, but electron in crystal

lattice of d dimensions (in the following we take lattice

parameter a ≡ 1) with transfer integral between

nearest neighbors t, which is placed in a capacitor,

with noise created at its plates, the same for all lattice

sites. This field is thus constant in space and the

electron momentum is not changed during scattering,

so that the account of electron hops between lattice

sites is taken into account by a simple replacement

ǫ → ǫ−ǫp, where ǫp is band – like spectrum of electrons

with quasimomentum p. In such a model the Green’s

function is given by:

G(ǫ,p) =

∫ ∞

−∞

dǫ′
ρ(ǫ′)

ǫ− ǫp − ǫ′ + iδ
, (65)

where ρ(ǫ) is the spectral density (density od states)

obtained above for the problem of a single quantum

dot. Then for the density of states of our lattice model

in d dimensions in dynamical random field we obtain:

Nd(ǫ) = − 1

π
Im

∑
p

G(ǫ,p) =

∫ ∞

−∞

dξN0d(ξ)ρ(ǫ− ξ),

(66)

where N0d(ξ) =
∑

p
δ(ξ − ǫp) is the “bare” density of

states of d dimensional system in the absence of random

field.

For one – dimensional chain:

ǫp = −2t cos(p) (67)

“Bare” density of states in this case is:

N0d1(ǫ) =
1

π

1√
4t2 − ǫ2

(68)

and diverges at the band edges. Full densities of states

for this model for initial band of the width W = 4t = 1

and different values of random field parameters are

shown in Fig. 9.

For two – dimensional lattice:

ǫp = −2t(cos(px) + cos(py)). (69)

“Bare” density of states in this case has step – like

behavior at the band edges and logarithmic Van-Hove

singularity at the band center. Full densities of states

obtained in this model for the band with initial width

W = 8t = 1 and different values of random field

parameters are shown in Fig.10.

To analyze three – dimensional case we use as the

“bare” the model semi – elliptic density of states:

N0d3(ǫ) =
2

πD2

√
D2 − ǫ2, (70)

where D is the band half – width. This model

guarantees the valid ∼ ǫ1/2 “bare” density of states

behavior near the band edges for d = 3. Full densities of

states in this model for initial bandwidth W = 2D = 1

and different values of random field parameters are

shown in Fig.11.

Thus in all these models for small values of

γ we can observe modulations of the density of

states with frequency ω0. Increasing γ leads to sharp

weakening of these modulations. The growth of random

field amplitude ∆ (Figs.9,10,11a,b,c) leads to some

increase of modulations amplitude and weakening

of singularities (Van - Hove, at band edges etc..),

related to the “bare” density of states. For ∆ = W

(Figs.9,10,11c) density of states pratically “forgets” the

bare one. Increase of spatial dimensionality d leads to

weakening of the modulations.

In one – dimensional chain (Fig.9) for ω0 = 0.5

peaks at ǫ = ±ω0 coincide with band – edges, where

the bare density of states (68) diverges, while the peak

at ǫ = 0 appears at the minimum of the bare density

of states. Thus the peaks at ǫ = ±ω0 are effectively

increased and can can become larger than the weakened

peak at ǫ = 0 (Fig.9a,b,e). This mutual influence of

divergence in the bare density of states at the bad edges

in one dimension and modulations with frequency ω0

leads to significant changes if the amplitude and shape

of central peak (at ǫ = 0) with small changes of ω0 close

to ω0 = 0.5 (Fig.9d,e,f).

For two – dimensional lattice Van - Hove divergence

is at the band center, and central peak of modulations

is always significantly larger than peaks at ǫ = ±ω0 and

its shape is only weakly changes with small variations

of ω0 close to ω0 = 0.5 (Fig.10d,e,f).

For three – dimensional model modulations in the

density of states with frequency ω0 are weak enough

and for ω0 = 0.5 even a small dip is observed in the

density of states in the middle of the band (at ǫ = 0)

(Fig.11a,b,c,e). Small variations of ω0 close to ω0 = 0.5

significantly change the shape of this weak feature at

the band center (Fig.11d,e,f).
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Рис. 8. Spectral density (density of states) of the quantum dot in the model with finite transfer frequency and relaxation

time for ∆ = 1 and different values of ω0 and γ.
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Рис. 9. Density of states for one – dimensional chain with initial bandwidth W = 4t = 1 for different ∆, ω0 and

γ.
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Рис. 10. Density of states in two – dimensional lattice with initial bandwidth W = 8t = 1 for different ∆, ω0 and

γ.
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Рис. 11. Density of states of three – dimensional system with initial semi – elliptic density of states with bandwidth

W = 2D = 1 for different ∆, ω0 and γ.
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6. CONCLUSIONS

Our analysis shows a plenty of new and interesting

results, which can be derived even for this simple

enough version of the generalized dynamical Keldysh

model for the case of random fields with finite

transferred frequency. It seems obvious that this model

can have a direct relation to situations realized in real

systems with quantum dots, which are used in different

microelectronic devices, while the frequency ω0 can

be related to the clock frequency of these devices. Of

course, the current simplest model is oversimplified,

but one can hope that the results obtained can be

useful also for the analysis of processes in realistic

devices.

The question of experimental realization of our

model remains open. In principle, the studies of

quantum dots in the specially created (e.g. by

electrotechnical means) random field seems quite

feasible, though parameters of interaction with

this are to be specially chosen to make the results

discussed above observable. All this is also directly

related to electronic systems (lattices) of different

dimensionalities placed in a random field created on

“capacitor” plates.

In real physical systems dynamical random fields

can be created e.g. by phonons in the classical

limit, when the temperature is much larger than

the characteristic frequency of these phonons ω0. For

example, we can consider electron scatterring at the

interface of metallic film and dielectric substrate. It

is well known that scattering with small transferred

momenta (almost “forward” scattering) can appear

at the interface of metallic monolayer of FeSe on

the substrate made of ionic SrTiO3 insulator [26],

which leads to interesting models of superconductivity

enhancement in this system [27]. Unfortunately we can

not apply the analysis given above to this system,

because the frequency of optical phonon in SrTiO3 is

pretty high and it can not be considered as classical

(external random field). However, we can not exclude

the existence of similar systems (structures) wth “soft”

enough optical phonons.

As was already noted above, the model with a single

quantum well is directly generalized to the case of

several wells [18, 19], leading to Keldysh model with

multicomponent noise. In particular, the model with

two wells is closely related (in the variant with band

electrons) to the exactly solvable model of pseudogap

state [7–12]. Different models of this kind were actively

used to describe the pseudogap, appearing due to

electron scattering by fluctuations of short – range

order in one – dimensional models [6–12], which were

also generalized for two – dimensional case to describe

pseudogap in high – temperature superconductors [13–

17]. In most of these papers only scattering by quasi

static fluctuations was considered. It is of great interest

to generalize these models for the case of dynamical

fluctuations with finite transferred frequency, created

by appropriate “soft” modes. However, it is clear

that the analysis of such models requires significant

development of the methods used in this paper. We

hope to perform such studies in some future.
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