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Abstract. The study of interaction features between unipolar subcycle pulses and matter has shown the 
necessity of both revising standard theories of light-matter interaction and introducing new concepts in 
optics, such as pulse area interference. In this work, based on numerical solution of the time-dependent 
Schrödinger equation, we study the features of nonlinear interference of pulse areas during particle ex-
citation in a rectangular potential well driven by a pair of half-cycle attosecond pulses. It is shown that 
when changing the delay between pulses, the population dependence of bound states on delay exhibits 
characteristic beating pattern, unlike the simple harmonic dependence obtained in the case of small field 
amplitude. The conducted research directly demonstrates the possibility of controlling quantum systems 
using sequences of half-cycle pulses, particularly the possibility of increasing ionization probability or its 
complete suppression and the possibility of inducing population difference gratings in multilevel media.
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1. INTRODUCTION
The problem of reducing electromagnetic pulse 

duration has been relevant since the invention of first 
lasers [1] and remains important to this day [2–10]. 
Currently, using practically obtained femto- and 
attosecond electromagnetic pulses, it has become 
possible to study the dynamics of wave packets 
in atoms, molecules, and nanostructures [6–10]; 
thus, the recent Nobel Prize in Physics was awarded 
specifically for experimental methods of generating 
attosecond light pulses for studying electron 
dynamics in matter [11].

The attosecond pulses obtained in practice using 
the high-order harmonic generation method are 
bipolar and contain several half-waves of electric 
field strength [6–10]. For a fixed spectral interval 
of radiation, the shortest duration is achieved with 
a half-cycle (unipolar) pulse, which is obtained by 
keeping only one half-wave of the field from a multi-
cycle pulse [12]. An important characteristic of 
unipolar pulses is their electrical area, defined as the 
integral of the field strength over time at a given point 
in space [12]:

	 ( ) = ( , ) ,ES E t dt
+¥

-¥
òr r 	 (1)

Pulses with non-zero electrical area can quickly 
transfer mechanical momentum to a charged particle 
in one direction, which opens up various prospects 
for their application in ultrafast control of quantum 
systems, charge acceleration, etc., see reviews [12–14], 
monograph [15], and cited literature. The combination 
of many works in this direction [16–26] has led to the 
emergence of a new, but still not very well-known and 
sometimes difficult to comprehend research direction - 
“optics of unipolar and subcycle pulses".

If the duration of such pulses is shorter than 
characteristic intra-atomic times (the orbital period 
of an electron in the Bohr orbit in the ground 
state), then the nature of their interaction with 
quantum systems differs significantly from the case 
of conventional bipolar multi-cycle pulses (see 
reviews [12–15] for more details). Many familiar 
optical phenomena in this case lose their meaning or 
occur according to different scenarios. For example, 
light interference becomes impossible in its usual 
understanding [14, 15] or Keldysh's photoionization 
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theory [27] becomes inapplicable, which is valid 
for long multi-cycle pulses and demonstrates good 
accuracy even for extremely short pulses with 
duration of several periods of optical oscillations with 
near-atomic electric field strength [28, 29].

It should be noted that the impact of both single 
unipolar ultrashort pulses (USP) and sequences 
of such pulses on quantum objects is insufficiently 
studied to date. To describe the interaction of such 
USPs with quantum systems, the intro duction of 
new concepts was required. As shown by the results 
of numerous studies, the effect of a single USP, if 
its duration is τ shorter than the orbital period of 
an electron in an atom (or the characteristic time 

gT  associated with the particle energy in the ground 
state gE , < = 2 /g gT Eτ π ), on a quantum system is 
determined by the electric area of the pulse and its 
atomic scale, rather than the pulse energy [30–34].

The situation becomes more complex when a 
sequence of USPs affects the system. For example, 
when resonant media are excited by several USPs 
consisting of a small number of oscillations, it is 
possible to form a complex pattern of multi-frequency 
photon and combination echo [35–37].

In cases where pulse durations and delays between 
them become comparable to intra-atomic times, a 
non-trivial pattern of superposition of individual 
pulse contributions may arise. Without resorting 
to complex quantum mechanical calculations, it is 
possible to obtain a number of clear relationships 
in the case of low-amplitude pulse exposure when 
conventional perturbation theory is applicable. As 
we have shown earlier, in this case, the interaction 
of a USP sequence with quantum systems can be 
described based on the recently introduced concept 
of "interference of pulse electric areas" [38] (see 
also review [14]). In this case, the populations of 
bound states are determined by the sum of squares of 
pulse electric areas and an interference term, which 
resembles the expression for light intensity during 
interference of a pair of monochromatic light waves 
[39]. Note that when electromagnetic waves interact 
with quantum systems, one can also speak about the 
interference of bound states. It can be shown that the 
expression for the probability of system transition 
from one state to another is, again, formally similar 
to the classical one: the sum of squares of the system's 
basis state amplitudes and an interference term 
oscillating at the transition frequency [40].

Another possible application of USPs is the 
creation of population difference gratings using a 
sequence of pulses in a resonant medium during their 
coherent interaction with the medium, i.e., when the 

duration of pulses and delays between them are shorter 
than the medium's polarization relaxation time 2T . Such 
population difference gratings were previously studied 
for quasi-monochromatic pulses, particularly for 
applications in echo holography [41–44]. At the same 
time, such population gratings can also be induced by 
extremely short pulses [45–48]. In the approximation 
when low-amplitude pulses are used and the medium 
under consideration is sufficiently rarefied (which 
allows neglecting not only the influence of neighboring 
atoms on each other but also the change in the shape 
of incident pulses during propagation), the emergence 
of these gratings can be easily understood based on the 
introduced concept of pulse area interference [35].

All previous studies of population grating 
dynamics were conducted using various 
approximations, such as the few-level approximation 
of the resonant medium or the approximate solution 
of the Schrödinger equation in the first order of 
perturbation theory [48]. In work [49], coherent 
excitation of the medium was studied based on the 
model of one-dimensional infinite potential wells, 
which is also a rather crude idealization.

Despite the large number of recent works in 
the field of unipolar subcycle light optics, several 
questions regarding the interaction of subcycle USPs 
with quantum systems remain unexplored. These 
questions include the features of already nonlinear 
"interference of pulse areas" when a sequence of 
powerful USPs acts on quantum systems, where 
perturbation theory is not applicable and strong 
ionization of the system is possible. The question 
of the possibility of creating population gratings in 
multilevel media remains unexplored, taking into 
account ionization, which can lead to significant 
depletion of the well and bound states.

Therefore, in this work, based on the direct 
numerical solution of the time-dependent 
Schrödinger equation, we study the dynamics of 
bound state population excitation and particle 
ionization probability in a one-dimensional 
rectangular quantum well of finite depth, excited by 
a pair of attosecond pulses, depending on the delay 
between pulses. In this case, unlike previous studies, 
we consider the effect of powerful pulses when the 
delays between them are comparable to intra-atomic 
times, making both conventional perturbation theory 
and sudden perturbation approximation inapplicable.

The simplest model of a one-dimensional 
quantum well is used. This model, despite its 
simplicity, finds various applications in the physics 
of interaction between ultrashort light pulses and 
quantum systems  – atoms [50, 51], nanostructures 
[52–54], and other systems [55].
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 The features of nonlinear interference of pulse 
areas are studied. Based on the obtained results, 
the possibility of creating population gratings in an 
extended multilevel rarefied medium is discussed for 
the first time, taking into account its ionization when 
excited by a pair of non-overlapping USP.

2. THEORETICAL MODEL AND SYSTEM 
UNDER CONSIDERATION

The interaction of quantum systems with the 
field of external light USP is described by the time-
dependent Schrödinger equation for the electron 
wave function ( , )x tΨ  [56]:

	 

0= ( ) .i H V t
t
Ψ Ψ¶ é ù+ê úë û¶


	 (2)

Here 0H  is the system's own Hamiltonian and  
( ) = ( )V t dE t-   — energy of system interaction with 

the field of external pulses in dipole approximation, 
=d qx is the dipole moment, q is the electron charge, 

 is the reduced Planck constant.
The system is excited by a pair of attosecond 

USP, having the form

	
2
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where t — time, 1,2E  — amplitudes, 1,2τ  —  durations 
of both pulses respectively, 1,2ω  is the central 
frequency of pulses, 1,2ϕ  — phase (carrier envelope 
phase, CEP) (for USP these parameters have 

conditional meaning), ∆  — is the delay between 
acting pulses.

Simple relations for the population of bound 
states can only be obtained in the weak-field 
approximation in the first order of perturbation 
theory. Then the expression for the population can 
be written as
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where 1nd  is the dipole moment of transition, 1nω  is 
the resonant transition frequency, and the electric 
areas of both pulses are introduced

Fig. 1. a – Excitation of an extended medium by a pair of USPs propagating towards each other; medium particles are shown 
schematically as one-dimensional quantum wells. b  – Coherent excitation of a thin layer of medium by a pair of USPs 
propagating with some delay ∆ relative to each other. c – Schematic representation of the considered quantum well

(а)

(b)

(c)
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It is easy to see that the population of the bound 
state of the medium periodically depends on the 
delay between pulses ∆ and is determined by the 

sum of squares of electric areas S1,2. In this sense, 
we can talk about the interference of pulse areas, as 
discussed previously in work [38]. In the simplest 
case, with identical pulse parameters, i.e.

E1 ≠ E2,� τ1 = τ2 = τ,
ω1 = ω2 = ω,� ϕ1 = ϕ2 = ϕ,

Fig. 2. Dependencies of bound state populations |ai|2 in a rectangular potential well of finite depth on the delay between pulses 
∆/Tp at pulse amplitudes E02 = 5 ⋅ 107 B/cm (a), E03 = 1 ⋅ 108 B/cm (b), E04 = 2 ⋅ 108 B/cm (c)

(а)

(b)

(c)

Table 1. Parameters of pulses and quantum well model used in calculations

 Varying Pulse Parameters Quantum Well Parameters

E0i, В/cm  S0, B ⋅ c/cm Te, fs Ed = 1.5 eV a = 1.207 nm

1 ∙ 107 1.07 ∙ 10–9 128.04  Sa = 1.09 ∙ 10–8, B⋅c/cm

5 ∙ 107 5.36 ∙ 10–9 25.61 E, eV  Ti, fs ωi, 1014 rad/s

1 ∙ 108 1.07 ∙ 10–8 12.80 Е1 0.1547  26.73  2.35

2 ∙ 108 2.14 ∙ 10–8 6.40 Е2  0.6128  6.75  9.31

3 ∙ 108 3.22 ∙ 10–8  4.27 Е3  1.2784  3.24  19.42
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 expression (4) reduces to
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As shown previously [45–48], the case of an 
extended and rarefied medium (Fig. 1a) allows us 
to neglect both the influence of neighboring atoms 
on each other and the change in pulse shape during 
propagation. Expression (5) most clearly describes 
the interference of electric areas of a pair of exciting 
USPs acting on a quantum system.

Expression (5) also indicates the possibility of 
creating a population grating using a pair of pulses 
propagating towards each other without simultaneous 
overlap in the medium. In the case of a single structure 
(thin layer) (Fig. 1b), expression (5) shows the possibility 
of controlling the excitation of quantum systems using 
a pair of USP by changing the delay between them. 
Obviously, this consideration is approximate and does 
not allow taking into account the influence of medium 
ionization on the population of bound states.

Let's consider a model in the form of a one-
dimensional potential well of finite depth. Despite 
its simplicity, this model is used in describing metal 
nanoparticles and semiconductor nanostructures 
[52–54]. The potential energy of a particle in this 
case is written as

	 ( ) = 0, | | > ,
2
aU x x 	

	 ( ) = , | | .
2d
aU x E x-  	

The calculation parameters had the following 
values: well width = 1.2a  nm, depth = 1.5dE  eV; 
there are three bound states of the particle in the 

well with energies 1 = 0.1574E  eV, 2 = 0.6128E  eV, 
3 = 1.278E  eV (the associated characteristic 

frequencies ( = /i iE ω ) and times iT  are given 
in Table 1), which corresponds to transition 
wavelengths 12 = 2706.49λ  nm ( 12 = 9.03T  fs) and 

13 = 1103.36λ  nm ( 13 = 3.68T  fs) (see Fig. 1c). The 
well parameters were chosen so that the wavelength 
of the transition from the ground to the first excited 
state was on the order of several micrometers, which 
is typical, for example, for quantum dots.

The value ω was 10 ⋅ 1415 rad/s (wavelength 
= 134.6aλ  nm), period = 2 / = 448.8pT π ω , phase 

= 0φ , excitation pulse duration = 0.2 89.7pT »τ  ac. 
Pulses of such duration, with amplitudes on the order 
of ~108 B/cm can be obtained in various nonlinear 
processes [7, 20–26]. The amplitude was varied, see 
Table 1. The time-dependent Schrödinger equation 
was solved numerically using the Crank-Nicolson 
method [57].

3. INTERACTION OF A PAIR OF FCP  
WITH A SINGLE QUANTUM WELL

In this section, we will consider the interaction of 
a pair of USP with a single quantum well (optically 
thin layer). This situation is schematically shown in 
Fig. 1a. Fig. 2 illustrates the dependence of bound 
state populations after the pulse action on the 
amplitude of the field E0 and delay between pulses ∆, 
normalized to Tp. A complex form of this dependence 
is visible; and with increasing amplitude E0i it 
becomes more "peaked", differing from the simple 
harmonic form predicted by formula (4) above. It 
is evident that the population behavior has a similar 
form up to a certain pulse intensity threshold.

The dependencies above show the possibility 
of ultrafast control of bound states in quantum 
wells and creation of population inversion in 
them using a pair of FCP. For example, by 

Fig. 3. Dependencies of particle ionization probability in the considered quantum well on the delay between pulses ∆ at 
different pulse amplitudes E0 [B/cm]
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selecting parameters, it is possible to maximize 
the population of one state without affecting the 
population of others, see indicators A and B in 
Fig.  2c. Thus, for A at ∆/Tp = 8 it is possible 
to obtain values |a1|2 = 0.87, |a2|2 = 0.02, and 
|a3|2 = 0.05; and at point B at ∆/Tp = 12.35  the 
bound level populations are and |a3|2 = 0.07. Such 
possibility was previously demonstrated in atomic-
molecular systems [46, 48].

4. CONTROL OF PARTICLE IONIZATION 
IN QUANTUM WELLS USING A PAIR OF FCP

Fig. 3 illustrates the dependence of ionization 
probability

	 ( )2 2 2
1 2 3= 1 | | | | | |iw a a a- + + 	

on pulse intensity E0 and delay between them ∆. In 
the case of

	 × ×7 8
0 = 1 10 1 10  B/cmE – 	

the ionization value does not exceed 0.025; and 
for larger amplitude values, it is possible to select 
a delay value that minimizes ionization. It is 
interesting to note that for 8

04 = 2 10E ×  B/cm and 
8

05 = 3 10E ×  B/cm, ionization reaches its minimum 
value in the section 0.35 < / < 0.75pT∆ , after which 
the minimum inversion value reaches a "plateau"; the 
maximum value is achieved at / = 1pT∆ , point (b) in 
Fig. 3. Thus, by changing the ratio / pT∆  in a small 
range from 0.75 to 1, we can either exclude system 
ionization or completely remove particles from the 
well.

Let's examine in detail the ionization of particles 
in a quantum well for the most illustrative case 

8
05 = 3 10E ×  B/cm. For this, we will select four points 

marked in Fig. 3 and track the temporal evolution of 
the wave packet for cases of maximum and minimum 

Fig. 4. Wave packet propagation in the considered quantum well at the amplitude of interacting pulses E05 = 3⋅108 B/cm and 
different delay values ∆ : ∆/Tp = 0.5 (a), 1 (b), 7.5 (c), 11.25 (d); these points are also marked in Fig. 3. Arrows indicate the 
moments of pulse action

(а)

(c)

(b)

(d)
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 ionization at different values of the ratio / pT∆ . In 
Figs. 4 a, b the absolute minimum and maximum for 
particle ionization in the quantum well are presented; 
while pT∆  , i.e., the pulses are still close and can 
act as one, interfering in the process. Fig. 4c shows the 
local minimum of ionization; Fig. 4d shows the local 
maximum; for these cases > pT∆ , the pulses do not 
overlap.

Let's look at Fig. 4b  – the case of absolute 
maximum ionization, and Fig. 4c – the case of local 
maximum. It can be seen that some time after the 
action of the second pulse in Fig. 4 with we still 
observe some wave packet distribution inside the 
well, while in Fig. 4b there is practically none. It is 
visible that in the case of Fig. 4a the wave packet 
begins slow oscillations while remaining completely 
within the well, and in Fig. 4d complex behavior of 
the wave function is observed, although most of it is 
confined within the well boundaries.

We can talk about periodic motion of the wave 
packet as long as it hasn't significantly distorted 
(spread). The characteristic spreading time (analog 
of diffraction length) can be obtained from the 
Schrödinger equation for a free electron:

	
2

2= .
2

i
t m
Ψ Ψ¶

- Ñ
¶



 	

We assume by order of magnitude

	 Ψ Ψ ΨΨ¶
Ñ

¶
 

2
2, .

dt T a
	

Then ~ 

22 /dT ma  or 25.8dT »   fs, which is 
much longer than the considered times.

The relationship between the populations of 
bound states of the system and the parameters of the 
acting pulses can be described by comparing the area 
of the electric pulse ES  with the characteristic atomic 
scale of the system aS  [33, 34]. ES  is a quantitative 
measure of the incident pulse's effect on the system, 
namely: depletion of the ground state and excitation 
of upper levels; the area values SE for each amplitude 
value 0iE  are given in Table 1. Using the definition of 
atomic measure of electric area introduced in work 
[33], for the quantum well considered in this work we 
get × ×

-8=2 / =1.09 10 B s/cmaS ea .
For E01 and E02  the atomic measure of electric area 

is larger than the electric area of the pulses interacting 
with it, Sa > SE. Indeed, in Fig. 2a it can be seen that 
the pulse has almost no effect on the population of 
excited states, and only slightly populates the ground 
state, 

2
1a ; no ionization is observed either (see Fig. 3). 

In Fig. 2b, where 
3

> EaS S , a significant population 
of states is visible, and in Fig. 5a there is population 
inversion. Ionization is present but does not have 
a noticeable effect on the system. For pulses with 
amplitude E04 and E05, the relation <a Ei

S S  holds 
(see Table 1), and, as a result, significant ionization 
(complete for E05, Fig. 3) and the difference in 
populations of bound states (see Fig. 5b).

Let's try to explain the dependence of ionization 
on the delay between pulses from another perspective. 
Let the first pulse transfer momentum of magnitude 

= Ei i
p eS  to the electron in the well; the corresponding 

wave packet will move between the well walls with 
velocity = /i i eV p m . In the simplest model considered, 
the electron motion in the well after the first "push" 
will be periodic, with period ¿e i¿ , or 

Fig. 5. Dependencies of particle population inversion n in the final well on the delay between pulses  / pT∆  at pulse amplitude 
E03 = 1⋅108 B/cm (a), E04 = 2⋅108 B/cm (b)

(а)

(b)
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22[c] = 1.3727 10 / [B s/cm]e Ei
T S-× × ; the dependence 
on the delay of the second pulse is characterized by the 
same period. The obtained period values Te are listed 
in Table 1. It can be seen that they are 1–3 orders of 
magnitude larger than Tp. For E04 = 2 ⋅ 108 B/cm, the 
ratio is /2 = 7.13peT T ; for E05 = 3 ⋅ 108  B/cm, the 
ratio is /2 = 4.75peT T ; the latter is marked with a dot 
in Fig. 3. These are local minimums, not absolute ones.

5. CREATION OF POPULATION  
GRATINGS IN AN EXTENDED  

MEDIUM OF QUANTUM WELLS
In this section, we will consider the possibility of 

creating population gratings in an extended medium 
based on quantum wells using a pair of pulses 
propagating towards each other and not overlapping 
in the medium, see Fig. 1a. It was previously shown 
that the problem of the effect of such pulse pairs on 
an extended medium can be reduced to the problem 
of the effect of a pair of extremely short pulses on a 
single quantum object with variable delay between 
pulses, as in Fig. 1, in the case when particle density 
is low, which allows neglecting changes in pulse shape 
during propagation in the medium and the influence of 
neighboring atoms on each other, see [45, 46, 48]. By 
delay ∆  /z c  we should understand the moment of 
arrival of the second pulse into the medium at the point 
with coordinate z, c — speed of light, therefore below 
we also use the results from the previous section. The 

results of such simplified consideration are consistent 
with the results obtained based on numerical solution 
of Maxwell-Bloch equations taking into account pulse 
propagation effects in an extended medium [45, 46, 48].

For detailed analysis, let's focus on the data for pulse 
amplitudes E03 = 1 ⋅ 108 B/cm and E04 = 2 ⋅ 108 B/cm, 
(see Fig. 2); in this case, significant population values 
are visible and there is no large ionization (see Fig. 3). 
The resulting dependence of population inversion 

2 2
1 1=i in a a-  on ratio of delay between pulses ∆ to 

pulse length pT  is shown in Fig. 5.
In Fig. 5a, harmonic beats are clearly visible; let's 

try to describe this dependence in the form

	
=1

= cos 2
n

i i
pi

n C a
T
∆π ν

æ ö÷ç- ÷ç ÷÷çè øå 	

using numerical Fourier transformation of the data. 
The coefficients С we obtained, dimensionless 
frequencies vi (equivalent to the value of ratio /pT ∆) 
and their amplitudes ai are presented in Table 2.

On the graph Fig. 5b beats with a more complex 
dependence, therefore when describing we will 
consider the phase iθ :

	
∆

- +å
=1

= cos (2 ),
n

i i i
pi

n C a v
T

π θ 	

coefficients , ,i iC a θ  and frequencies vi are also 
presented in Table 2.

Table 2. Parameters of population inversion approximation n, obtained using Fourier transformation of dependencies 
in Fig. 5

E0 E0 = 1 ⋅ 108 B/cm E0 = 2 ⋅ 108 B/cm

n12 n13 n12 n13

C 0.53 0.7 0.09 0.24

Frequency vi, Tp/∆ ai ai Phase ϕ, rad ai Phase ϕ, rad

0.0242 0.1182 4.5113 0.0475 4.482

0.15 0.0212 0.1043 1.4241 0.0388 1.78

0.90 0.0134 – 0.0559 1.92

0.95 0.3061 0.1826 0.3629 0.4018 0.3217 0.1443

1.05 0.2655 0.1606 0.2909 0.3223 0.2745 0.424

1.10 0.0119 – 0.0425 1.2315

1.90 – 0.0632 –3.9111 –

2.00 0.0980 0.0817 0.0746 –2.6365 0.0313 0.5828

2.95 – 0.1218 –1.8758 0.0447 –2.7384

3.05 – 0.1043 3.7552 0.0375 –1.817
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 Although formula (4) predicts a simple harmonic 
dependence at frequency = / = 1i pTν ∆ , calculations 
in both cases show that it is absent in the spectrum. 
Instead, the main contribution comes from two 
components near it with a small detuning: / = 0.95pT ∆  
and / = 1.05pT ∆ , or ∆ = ±/ 1pT δ , where 

 0.05δ , 
which corresponds to - -= 21 24 aupT δ , of the order 
of one atomic unit (24.189 au). The addition of these 
two oscillations with close frequencies generates the 
beats.

It can also be assumed that the low frequencies 
( = 0.1iν  and  = 0.15iν ) appear due to connection 
with characteristic transition times, the corresponding 
ratios have the form

	
13 12 23

0.12, 0.05, 0.08.p p pT T T

T T T
» » » 	

The presence of additional frequencies, 
detuning, and, in the case of high field amplitude, 
the appearance of a significant phase shift θi is 
difficult to explain; multi-frequency response is 
characteristic of quantum systems in strong fields; 
the complex picture of nonlinear interference 
cannot be underestimated.

6. CONCLUSIONS
Based on a one-dimensional model of a particle 

in a rectangular well, the system's response to a 
pair of half-cycle attosecond pulses was studied. 
Using numerical solution of the time- dependent 
Schrödinger equation, the dependencies of bound 
state populations and ionization probability on 
the delay between pulses were studied. It is shown 
that this dependence has the form of beats and 
with increasing field amplitude, it takes on a more 
complex peak structure. This demonstrates the 
manifestation of nonlinear interference of pulse 
areas in strong fields and its difference from the 
linear case, where the dependence of populations 
on the delay between pulses is harmonic and is 
determined by expressions (4) and (5).

The calculation results showed the possibility 
of both enhancement and suppression of particle 
ionization in the well when changing the delay 
between pulses, which in the case of a rarefied 
extended multilevel medium qualitatively predicts 
the possibility of inducing a spatial population 
difference grating. The results obtained in this 
work show the possibility of using a sequence 
of half-cycle pulses for ultrafast control of wave 
packet dynamics in matter and thereby open new 
directions in unipolar light optics.
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