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1. INTRODUCTION

Today, a significant portion of information 
is transmitted using optical signals, therefore, 
creating devices for processing optical information 
directly without conversion to electronic signal is 
an urgent task. Analog optical signals can undergo 
mathematical operations such as differentiation 
and integration [1]. Let us first consider photonic 
differentiators, whose output optical signal 
is proportional to the time derivative of the 
input. There are two main categories of optical 
differentiators: f ield differentiators (FD) and 
intensity differentiators (ID). In ID, both input 
signals and output differentiated signals are carried 
by optical intensity or optical power independently of 
the signal phase, which is useful for ultra-wideband 
microwave communication and signal encoding [4]. 
ID can be implemented through nonlinear effects in 
semiconductor optical amplifiers using incoherent 
photonic processors [5] of highly nonlinear optical 
fiber [2].

On the other hand, field differentiation means that 
the output optical field (complex signal including 
both amplitude and phase) represents differentiated 

signals of the input field, which can potentially 
be applied for ultrashort pulse generation [6, 7], 
generation of odd-symmetry Hermite–Gaussian 
signals [8], pulse front recognition [9], and tunable 
microwave filtering [10]. To date, PDs have been 
implemented using fiber Bragg gratings [11], phase-
shifted Bragg gratings [12, 13], Bloch waves in one-
dimensional photonic crystals (PC), long-period 
fiber gratings [8, 14], interferometers [15], metal-
dielectric structures [16], semiconductor optical 
amplifiers [7, 10], silicon microring resonators [17, 
18, 19], and selective directional couplers [20, 21].

An optical temporal differentiator of order N is 
defined as a device that computes the Nth-order 
time derivative of the complex envelope of an input 
optical signal. Such devices can provide more 
complex temporal signal shapes, such as Hermite–
Gaussian functions [22], as these functions are 
Nth-order derivatives of the Gaussian function. 
Furthermore, optical signals of arbitrary shape can 
also be composed from a family of arbitrary-order 
differentiations of a Gaussian pulse.

The spectral response of an N th-order 
differentiator must have an N th-order zero at 
the pulse central frequency, which is typically 

287



JETP, Vol. 166, No. 3 (9), 2024

278	 EMELYANTSEV, SVYAKHOVSKY	

achieved by adjusting the spectral response 
parameters of known photonic structures. High-
order differentiators have been implemented using 
cascaded [23], tilted [24], and specially designed 
fiber Bragg gratings [11], using programmable 
pulse shapers [25], silicon Bragg gratings [26], two-
cascade self-coupled silicon waveguides [27], etc.

It is also worth noting the possibility of 
implementing photonic differentiators based on  
Mach–Zehnder interferometers [28, 29]. Such 
devices can serve as both intensity and field 
differentiators, depending on the relative shift 
between the probe wavelength and the resonance 
mark.

A photonic time integrator of the N-th 
order (where N=1,2,3... refers to the order of 
integration) is a device that computes the N-th  
cumulative time integral of the input signal. Time 
integrators are fundamental building blocks in 
many signal processing operations of interest, for 
example, in computational, control, sensing, and 
communication networks [30]. Compared to their 
electronic counterparts, photonic time integrators 
can provide much greater operating bandwidth, 
i.e., higher processing speed. First-order photonic 
time integrators have been proposed for various 
applications, including ultrafast pulse shaping 
[31, 32], all-optical memory devices [33, 34], and 
analog optical computing devices [35, 36]. A 
relevant example of these devices' application is 
computational systems designed to solve ordinary 
differential equations (ODEs). Linear ODEs 
can be solved in real-time using an appropriate 
combination of f irst-order and high-order 
integrators, adders, and multipliers. Implementation 
of these operations in an all-optical manner would 
lead to processing speeds completely unattainable by 
modern electronic technology.

In recent years, various implementations of 
photonic time integrators based on different 
technologies have been widely investigated, for 
example, using fiber Bragg gratings [37, 38], phase-
shifted Bragg gratings [39], resonant diffraction 
gratings [40], microring resonators [41, 42, 43], 
temporal spectral convolution systems [44], active 
Fabry–Perot resonators with semiconductor optical 
amplifiers as the active medium [45].

It should be noted that despite numerous works 
in this field, the proposed approaches to solving this 
problem rely on known spectral properties of various 

photonic structures, including Bragg structures. 
For example, to obtain an N th-order differentiator 
in [13], a combination of  N  microresonator modes 
of a Bragg structure with defects is used. However, 
this approach has significant limitations since the 
spectral response of the defect mode in a Bragg 
structure has a fixed shape that differs from the 
power law, and only an approximation of the power 
law dependence can be created from combinations 
of such responses. 

In this work, we use a universal method for 
constructing the spectral response based on 
solving the inverse problem [46]. The required 
spectral response in the form of a power function 
is artificially created and can have any desired 
shape. The proposed method makes it possible to 
implement integrators and differentiators in any 
spectral range without limitations on its width. The 
method's applicability is demonstrated for devices 
with a wide operating range up to an octave and 
beyond.

2. CALCULATION METHODS

 The paper examines field pulse differentiators 
and integrators. Consider an optical pulse incident 
on an optical medium at zero angle with the form 

	 ( )0
0( , ) ( ) ,i t kr

iE r t E t e
-= w 	 (1) 

where 0( )E t  is the pulse envelope, 
( )0i t

e
w - kr

  — 
oscillations at the pulse central frequency 0w

, whose wave vector in free space is 0= /k cw . 
Since light is incident normally, pulse polarization 
is not important, and the problem reduces to one 
dimension.

Let a one-dimensional photonic crystal be defined 
as a refractive index dependence ( )n x  on the optical 
path length, measured from the input face. Using 
optical path automatically accounts for the refractive 
index dispersion effect, which simplifies calculations. 
The complex reflection coefficient spectrum ( )r w  of 
this PC is calculated using the propagator matrix 
method [47], where the continuous dependence 
( )n x  was approximated discretely by dividing the 

medium into layers with optical thickness of 20 nm, 
which is much smaller than the wavelength and, 
consequently, the characteristic modulation period. 
The correctness of this approach was discussed in [48]. 
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The form of the pulse reflected from the crystal 
is found through Fourier transformation. The 
spectrum of the original signal envelope 

	 0 0 0
1( ) ( )
2

i tE E t e dt
¥

-

- ¥

- = ò ww w
p

	 (2) 

is multiplied by the reflection coefficient spectrum 
( )r w , followed by calculating the inverse Fourier 

transform: 

	 0 0
1( ) ( ) ( ) .
2

i tE t r E e d
¥

- ¥

= -ò ww w w w
p

	 (3) 

The Fourier transform was performed numerically 
using the fast Fourier transform algorithm, using 
8192 points with a time step of 1 fs, frequency step 

112.84 10×  Hz.

3. PULSE ENVELOPE DIFFERENTIATOR

A signal differentiator can be implemented using 
the Fourier transform property for function ( )f t  and 
its derivative: 

	
( ) ( ) ( ).

N
N

N
d f t i f

dt
¾ ¾®F w w 	 (4) 

In the case of differentiating the optical pulse 
envelope 0( )

i t
f t e

w
, we have 

	 0 0
( ) ( ( )) ( ).

N
N

N
d f t i f

dt
¾ ¾® - -F w w w w 	 (5) 

 Therefore, signal differentiation can be performed 
using an element whose spectral response equals 

	 0( ) ( ( )) .N
NK i= -w a w w  	

The design and fabrication of such structures 
presents significant complexity. In this work, we 
will use the previously developed [46] universal 
method for constructing multilayer media structures 
with arbitrary spectral dependence of the reflection 
coefficient. Applied to the task of constructing 
specified responses, ( )NK w  the method is as follows. 

Consider the case = 1N . Let's construct a 
photonic crystal whose ref lection coefficient 
spectrum has a linear frequency dependence with 

a first-order pole in the middle. Let the PC initially 
be a continuous medium with thickness = 100D  
μm, refractive index 0 = 1.5n  and optical thickness 

= = 100L nd μm. Let's introduce refractive index 
modulation 

	 1 1 1 1 0( ) = cos( ) ,n x A k x nf+ + 	 (6) 

where 1k   is the wave number corresponding to 
frequency 1w ; 1A , 1f  is the amplitude and phase of 
the wave. A light wave with wave number 1 / 2k  will 
experience diffractive reflection from the medium 
with this modulation. The reflection coefficient 1( )r w  
will be proportional to the modulation amplitude 1A
, relevant calculations are provided, for example, in 
[49], and with increasing 1A  coefficient 1( )r w  will 
reach the maximum value of 1. To prevent this, the 
modulation amplitude must be limited from above. 

Now let's introduce M  spatial harmonics, let 
their frequencies jw  be evenly distributed in the 
considered range, with the middle corresponding to

0w . Let the amplitude and phase change linearly 
with the harmonic number j in a certain required 
spectral range: 

	
, < ,1 2 2= , =

2 , > ,
2 2

j j

NjjA n
M Nj

p

d f
p

ìïï -ïæ ö ï÷ ïç ÷-ç í÷ç ÷ç ïè ø ïïïïî

	 (7) 

where nd   is the amplitude of refractive index 
modulation. Let's sum up all modulation harmonics, 
resulting in the following distribution of refractive 
index with PC depth: 

	 0
=1

21( ) = cos .
2

M
j

I j
j

xjn x n n
M c

w
d f

æ öæ ö ÷ç÷ç ÷ç÷+ - + ÷ç ç÷ ÷ç ÷ç ç ÷è ø çè ø
å 	 (8) 

The dependence ( )In x  completely defines PC 
structure. The graph ( )n x  is shown in Fig.1a, it has 
the form of a sum of harmonic functions with close 
frequencies, between which beats are observed, with 
the maximum beats observed approximately in the 
middle of the crystal.

 Let's construct such a PC, choosing = 100L  μm, 
= 0.07nd , number of harmonics = 300M , spectral 

range from 11,000 to 14,000 inverse centimeters. 
The middle of the range corresponds to the wave 
number 0 = 12500k  cm 1-  or wavelength 0 = 800l  
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nm. The ref lection coefficient spectrum of such 
PC is demonstrated in Fig.1 b. The spectrum has a 
V -shaped form as a function =| |y x , the function's 
zero coincides with the middle of the spectral range. 

Spectrum sections that were set as linear 
functions were approximated by a power function, 
whose zero corresponded to the wave number 

0 = 12500k  cm 1- . The section from 11,000 
to 12,400 cm−1 was approximated by function 

0= ( )y A k k a- , the section from 12,600 to 
14,000 cm−1 — by function 0= ( )y A k k a- . 
Approximation results give power indices values nd 

1 = 1.003a  and   2 = 1.004a  respectively, which is 
very close to a linear function. 

Let a light pulse with central wavelength of 800 
nm and Gaussian envelope of 50 fs duration fall on 
this PC, its spectrum is shown in Fig. 2a, and time 
profile in Fig. 2b. The pulse spectrum falls within 
the operating range of the PC, with the central 

pulse frequency corresponding to zero reflection 
coefficient. The temporal profiles of the reflected 
and transmitted pulses through the crystal are 
shown in Fig. 2b.

The envelope of the ref lected pulse has the 
form of a first-order Hermite-Gaussian function, 
which corresponds to the derivative of a Gaussian 
function. The center of the ref lected pulse exits 
the PC at = 334t  fs, corresponding to an optical 
path of = 100ct  μm, thus the pulse is ref lected 
approximately from the middle of the crystal. 

For the same structure, ( )In x  let's consider 
examples of differentiation of other functions. Figure 
3 shows calculations of reflected pulses for different 
shapes of incident pulses. In the case of incident 
pulses with envelopes in the form of 1st and 5th 
order Hermite–Gaussian functions, the reflected 
pulses have envelopes corresponding to 2nd and 6th 
order Hermite–Gaussian functions respectively. A 
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Fig. 1. a − PC structure in the form of spatial profile of refractive index nI(x), with an enlarged fragment of 60-63 μm in the inset, 

Fig. 2. a − Reflection coefficient modulus spectrum compared to incident pulse spectrum, b − time profiles of the real part of incident 
and reflected pulses from this PC
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rectangular pulse is differentiated in the form of two 
short peaks of opposite signs, with the time delay 
between maxima corresponding to the duration of 
the original pulse. After transformation, a triangular 
pulse appears as two consecutive U-shaped pulses 
of different polarity with horizontal sections, whose 
average amplitude values are 0.56 and 0.67, with 
pulse deviations from the mean values of horizontal 
sections not exceeding 17 %. 

4. HIGHER-ORDER  
DIFFERENTIATORS 

Let us consider a second-order differentiator. Let 
the spatial profile of the refractive index have the form 

	
0( )IIn x n= +

 	

	
2

=1

21 cos 2 .
2

M
j

j
j

xjn
M c

w
d f

æ öæ ö ÷ç÷ç ÷ç÷+ - + ÷ç ç÷ ÷ç ÷ç ç ÷è ø çè ø
å 	 (9) 

The ref lection coef f icient spectr um of 
such PC is shown in Fig.  4a. In the region of  
11,000–14,000 cm−1 it has the form of a quadratic 
function, the branches of this function were 
approximated using a power function with zero in 
the middle of the range. The approximation results 
show powers of 2.009 and 1.999, which indicates 
good reproduction of the given quadratic sequence. 

Fig. 3. Temporal profiles of incident and reflected pulses from PC with linearly modulated bandgap. Incident pulses: a — 1st order 
Hermite–Gaussian, b — 5th order Hermite-Gaussian, c — rectangular, d — triangular
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The calculated result of reflection of a Gaussian 
pulse with 50 fs duration and central wavelength of 
800 nm = 12500 cm−1 is shown in Fig. 4b. The shape 
of the reflected pulse corresponds to the 2nd order 
Hermite-Gaussian function. As in the case of the 
first-order differentiator, the center of the reflected 
signal is also shifted by 330 fs, which corresponds 
to reflection from the middle of the crystal. In the 
case of a rectangular pulse (Fig. 4c), the response 
has the form of four sharp peaks corresponding to 
the derivative of the function shown in Fig. 3c. In 
the case of a triangular pulse, the reflected signal 
dependence has the form of three peaks, with the 
middle one having reverse polarity and being twice 
as large as the outer ones. This corresponds to the 
derivative of the first derivative of the triangular 
function (Fig. 3d). 

Higher-order differentiators (N ) can be obtained 
by constructing a photonic crystal structure of the 
form 

	
0( ) =Nn x n +

 	

	
=1

21 cos .
2

NM
j

j
j

xjn N
M c

w
d f

æ öæ ö ÷ç÷ç ÷ç÷+ - + ÷ç ç÷ ÷ç ÷ç ç ÷è ø çè ø
å 	 (10) 

Figure 5 shows examples of constructing higher-
order differentiators and corresponding reflected 
pulses for the case of a 50 fs Gaussian pulse incidence. 
All ref lected pulse profiles have the number of 
zeros corresponding to the order of differentiation. 
However, with increasing order, the magnitude of 
the first and last maxima decreases, and the envelope 
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Fig. 4. a – Spectrum of the reflection coefficient module of the PC and approximations of spectrum parts by power functions, b – 
temporal profiles of the real part of incident and reflected pulses from this PC in case of Gaussian pulse incidence, c – rectangular, 
d – triangular
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Fig. 5. Spectra of reflection coefficient modulus of PC, approximations of spectrum parts by power functions, and temporal profiles of 
reflected pulses corresponding to differentiator orders: a, b – 3, c, d – 4, e, f – 5, g, h – 6
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shape differs from the corresponding Hermite–
Gaussian function. Therefore, it was decided not to 
perform further increase in the differentiation order.

5. INTEGRATOR

 According to the Fourier transform property for 
the antiderivative function 1( ) ( ) ( )F t i fw w-¾ ¾®F , 
the temporal Nth order integrator of the optical pulse 
envelope, similar to (5): 

	 ( )
0

0

1( ) ( )
( ( ))

N
NF t f

i
¾ ¾® -

-
F w w

w w
	 (11) 

can be constructed on an optical element whose 
spectral response has an Nth order pole. Let us 
construct a photonic crystal with refractive index 
profile 

	 0( ) =n x n +  	
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21 cos .
2
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j

j
j

xin N
M c

w
d f

- æ öæ ö ÷ç÷ç ÷ç÷+ - - ÷ç ç÷ ÷ç ÷ç ç ÷è ø çè ø
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The reflection coefficient spectrum of this PC 
is shown in Fig. 6а. The spectrum of PC with 
a second-order pole in the spectral response is 
shown in Fig 6с. The corresponding power function 
approximations are shown in the graphs, with power 
indices converging well with the input data. As 
input pulses for integration tasks Hermite-Gaussian 
functions of first and second orders were chosen. 
Their antiderivative is expected to be in the form of 
a Gaussian function. The first-order antiderivative 
is shown in Fig. 6b, its shape well reproduces the 
Gaussian function. The second-order antiderivative 
is shown in Fig. 6d. It can be seen that the function 
very roughly repeats the Gaussian pulse, and there is 
also significant pulse broadening in time. Therefore, 
further increase in the antiderivative order was not 
conducted. 
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Fig. 6. Spectra of reflection coefficient modulus of PC and approximations of spectrum parts by power functions a, c and temporal profiles 
of reflected pulses b, d demonstrating first and second order integrators
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6. OPERATING RANGE

T he proposed dev ices  per for m pul se 
transformation using spectral modulation, so it is 
important to determine their operating spectral 
range. As an example, let's take the considered 
second-order differentiator of the form ( )IIn x . Let 
pulses with full width at half maximum field from 
16 to 40 fs fall on it. Their spectra in comparison 
with the PC spectrum are shown in Fig.7a, the 
corresponding temporal profiles of incident and 
reflected pulses are shown in Fig. 7b. For clarity, the 
spectra are given in nanometers, so the spectrum 
of the ref lection coeff icient, which depends 
parabolically on the wave number, appears distorted.

As the pulse duration decreases from 40 to 16 
fs, the pulse spectrum broadens, its edges extend 
beyond the PC operating range. This leads to 
parasitic oscillations that are visible in the temporal 

profile of the reflected pulse. The pulse duration of 
25 fs in this demonstration is selected so that the 
amplitude level of parasitic oscillations reaches 1% 
by field, and duration of 16 fs. 10 % by field and 1% 
by intensity. These durations correspond to spectral 
widths of pulses 583 and 890 cm−1, thus, to avoid 
parasitic oscillations, it is necessary to choose the 
operating range wider than the pulse spectrum by 
5.3 and 3.5 times respectively.

Now let's expand the operating range to 
16400 cm−1, i.e., the range extends from 4300 
to 20700 cm−1, which is wider than an octave in 
frequency.

Fig. 7c shows the reflection coefficient spectrum 
for this range to 1. Let pulses with durations varying 
from 2.3 to 18 fs fall on the PC (Fig. 7d). Parasitic 
oscillations appear at a duration of 3.5 fs (spectrum 
width 6233−1), further reduction in duration leads 

Fig. 7. Spectral responses of second-order differentiators with center frequency 12500 cm−1and operating bandwidth 3125 cm−1 (a) and 
and 16400 cm−1 (c) their corresponding temporal profiles of incident (b) (b) and reflected (d) pulses
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to strong distortion in calculations. This is due to 
the fact that the optical cycle duration at 800 nm 
wavelength is 2.67 fs, and reducing the duration 
below this value violates the assumption about the 
existence of the pulse envelope.

7. CONCLUSION

Based on the presented calculations, for the 
considered PCs, it is necessary to continuously vary 
the refractive index ( )n x  with a spatial period of 
about half the wavelength, create structures up to 
100 μm thick, and ensure the absence of significant 
absorption or scattering after passing through 
such thickness. This can be implemented in PCs 
fabricated using anodic aluminum and titanium 
oxide, as well as two-photon laser lithography. It 
is known [50] that PCs based on oxidized porous 
silicon allow the fabrication of structures with the 
required size and period modulation magnitude.

In this work, methods for constructing photonic 
crystals that implement mathematical operations 
of differentiation from first to sixth orders, as well 
as first and second-order integration, performed 
on femtosecond pulse envelopes in time, were 
theoretically demonstrated. The maximum 
achievable pulse spectrum width was investigated, 
and it was shown that the proposed approach allows 
the fabrication of differentiators with a bandwidth of 
more than an octave.
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