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Abstract. The interference contribution to the optical conductance (total transmission) of a disordered 
sample is calculated. It is shown that wave interference in the medium is suppressed due to helicity-flip 
scattering events. As a result, when the cross-section of this process changes resonantly, as in the case 
of scattering by Mie particles near the first Kerker point, the spectral dependence of the interference 
contribution also becomes resonant. When waves propagate through a magneto-active medium, the 
applied magnetic field does not disrupt the interference of waves with given helicity but suppresses it if 
the helicity changes along different parts of the trajectory. This leads to a decrease in the interference 
contribution to conductance with increasing magnetic field. A similar phenomenon ― negative 
magnetoresistance ― is known as a consequence of weak localization of electrons in metals with 
impurities. It is found that with increasing magnetic field, the change in the interference correction to 
the optical conductance approaches a certain limit value, depending on the ratio of transport mean free 
path to helicity-flip scattering length. The possibility of controlling the transition to strong “Anderson” 
localization in the quasi-one-dimensional case (magneto-active waveguide) using the field is discussed.
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1. INTRODUCTION

Optical analogues of mesoscopic effects observed 
in electron transport in solid-state structures 
[1, 2], underlie many modern achievements in the 
manipulation of coherent light fields [3]. As examples 
illustrating the analogy between optical and quantum 
electronic phenomena, one can point to Anderson 
localization of light in random layered structures 
[4, 5], optical Tamm states in photonic crystals [6], 
universal fluctuations of optical conductance [7, 8], 
and topological effects in photonic systems [9].
As known [2], interference of time-reversed waves 
leads to the weak localization effect. For electron 

waves in solids, this effect leads to decreased 
conductivity. When an external magnetic field is 
applied, which breaks time-reversal symmetry and 
suppresses interference, the weak localization effect 
manifests as negative magnetoresistance [2, 10, 11]. 
For electromagnetic radiation, the interference of 
waves traveling along time-reversed trajectories 
causes such a well-known phenomenon as coherent 
backscattering enhancement [2, 12]. This effect 
manifests as a sharp peak in the intensity of light 
scattered exactly in the backward direction. Along 
with coherent backscattering, the interference 
of time-reversed waves should lead to an optical 
analogue of the effect of decreased electron 
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conductivity ― the emergence of a negative 
correction to optical conductance. It is defined as 
the product of the transmission coefficient from a 
diffuse source by the number of propagating modes. 
Although optical conductance has been discussed 
in many theoretical and experimental works (see 
[8, 12]) in the context of studying its fluctuations in 
Q1D systems (waveguides), the contribution of weak 
localization of electromagnetic waves to conductance 
has not been studied yet. Unlike electrons, for which 
various methods of manipulating the interference 
contribution to conductance are known [10, 11, 13], 
this issue has not been considered in relation to 
optical conductance.
According to [14–17], the parameters that control 
wave interference in a medium are the attenuation 
lengths of different polarization modes. These lengths 
depend on the optical characteristics of individual 
scatterers and the applied external magnetic field 
when dealing with scatterers in a magnetically active 
matrix. Depolarization processes with changes in 
helicity have a significant impact on the interference 
of time-reversed waves [14, 15]. Therefore, a strong 
change in the interference contribution to optical 
conductance should occur near the first Kerker 
point in the Mie resonant scattering region, where 
the helicity-f lip scattering cross-section with 
changes sharply depending on wavelength [18]. The 
mechanism of wave interference destruction in 
a magnetic field is directly related to helicity-flip 
scattering processes [19-22]. The magnetic field's 
inf luence on interference is due to the Faraday 
effect. Unlike electronic waves, whose interference 
is always disrupted by a magnetic field, the applied 
field does not affect the interference of optical waves 
at all if their helicity remains unchanged [21, 22]. 
The mechanism of interference destruction by the 
field is only activated due to the depolarization 
process, helicity-f lip scattering. For waves with 
opposite helicity, the magnetic field-induced phase 
shifts cancel out, while for waves with the same 
helicity, they add up. Random phase shifts between 
interfering waves occur due to helicity changes at 
different points along the trajectory.

In the present work, the interference contribution 
to the optical conductance of a disordered sample is 
calculated. The calculations are based on a system 
of diffusion equations for two cooperon modes 
describing the interference of time-reversed waves 
with given helicity. The sensitivity to the value of 

helicity-f lip scattering length is illustrated with 
the example of resonant spectral dependence of 
the interference contribution near the first Kerker 
point. It is shown that an external magnetic field 
causes suppression of the interference contribution 
to the optical conductance of a magneto-active 
sample, similar to the negative magnetoresistance in 
metals with impurities. In the strong magnetic field 
limit, a “saturation” effect occurs: the interference 
contribution to optical conductance reaches a 
limiting value that is independent of field strength 
and is determined by the ratio of transport elastic 
scattering length to circular polarization decay 
length. In the case of a waveguide (Q1D geometry), 
the interference contribution decreases inversely 
proportional to the field strength and sample length 
L. This allows concluding about the possibility to 
control using the field the critical length L at which 
the transition to Anderson localization regime 
occurs. Some of the results presented below were 
briefly outlined in [23].)

2. THEORETICAL MODEL OF WAVE 
INTERFERENCE IN MAGNETO-ACTIVE 

MEDIUM WITH SCATTERING PARTICLES

 2.1. General Relations

Let us consider electromagnetic wave propagation 
through a sample of non-absorbing magneto-
active medium containing scattering particles. It 
is assumed that its linear dimensions Lx, Ly and 

=zL L significantly exceed the l  mean free path, 
Lx, Ly, L ≫ l, and the weak localization condition is 
satisfied, k0l ≫ 1 (k0 — wave number). The number 
of transverse modes N , in which electromagnetic 
waves propagate through the sample is large, 

	
2
0= 1,
4

k
p

?
A

N  ≫ 1,	

здесь = x yL LA   — cross-sectional area of the 
sample [8].

According to [2, 3, 12], the conductance (or total 
transmission) of the sample is determined by the 
sum of transmission coefficients Tab linking input 
and output modes a and b respectively,

	
,

= .ba
a b

T Tå 	 (1)

Under the weak localization conditions, k0 ≫ 1, 
the interference contribution Tdá ñ to conductance 
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averaged over scatterer positions is determined by a 
diagram containing one Hikami vertex (see Fig.1) [2, 
10, 13]. The average Green's function ( , ' | )ikGá ñr r h
included in the diagram describes electromagnetic 
wave propagation in a magnetoactive medium 
between scattering events. It is defined by the 
expression [22, 24–28]

	 ( , ' | ) = (| ' |)ik scalG Gá ñ á - ñ́r r h r r 	

	 ( ) ( ')/2 ( ) ( ')/2( ) ( ) ,i i
ik ikP e P e+ - - - -é ù´ +ê úë û

h r r h r rn n 	 (2)

where (| |)scalGá ñr  — is the scalar Green's function 
[2], = ( ')/ | ' |- -n r r r r  and   

	 ( )( ) = 12( )ik ik i k ikj jP n n ie nd± - ±n 	 (3)

 — are projection operators for field states with given 
helicity ( ikje  is the antisymmetric tensor). Vector h 
in (2) is proportional to the applied magnetic field 
strength H, = 2Vh H (V  is the Verdet constant [29]).

We will assume that the magnetic field is sufficiently 
weak, hl ≪ 1, and the phase accumulation due to 
the field occurs as a result of multiple scattering 
events. In this approximation, one can neglect 
the magnetic field's influence on single scattering 
amplitude and disregard the field when calculating 
the Hikami vertex. The diagram shown in Fig. 1 can 
be calculated by “linking” the input propagators 
in the formula for the correlation function of 
intensity fluctuations of polarized light obtained 

in [16, 17]. The resulting internal propagator in the 
diagram (see “loop” in Fig. 1a) ― the Cooperon 

*
1 1

ˆ = ( , ' | ) ( , ' | )ik jl CC G Gá ñr r h r r h ,  descr ibes  the 
interference of waves propagating towards each other 
(i.e., along time-reversed trajectories). Using the 
equality * *

1 1 1 1( , ' | ) = ( ' , | )jl ljG G -r r h r r h  the Cooperon 
can be reduced to a sum of ladder diagrams where 
indices and coordinates are transposed in one of the 
Green's functions and the magnetic field direction is 
reversed (see Fig. 2 and [25, 26]),

	 *
1 1

ˆ ( , ' | ) ( , ' | ) =ik jl CC G Gr r h r r h= á ñ 	

	 *
1 1= ( , ' | ) ( ' , | ) .ik lj LG Gá - ñr r h r r h 	 (4)

Assuming that successive scattering events occur 
in the wave zone, the correlator *( ) ( )ik lj LG Gá - ñh h  
included in (4) can be written in the Wigner 
representation,

	 *
1 1( , ' | ) ( , ' | ) =ik lj LG Gá - ñr r h r r h 	

	
( ) '( ' ' )1 1

3 3
'=

(2 ) (2 )
i id d e

p p
k r r k r rk k - - - ´ò 	

	 0 0
2 2

( ) ( )
,

k k k k
k k

d d ¢- -´
¢

	 (5)

 

	
1 1

,
0 0

' ' ', = , ' = ,
2 2il kj k k

G r r r rk kn n
æ ö+ + ÷ç ÷ç ÷ç ÷çè ø

Fig. 3. Integral transport equation for the propagator Ĝ

Fig. 2. Transformation of the Cooperon to a sum of ladder diagrams 

Fig. 1.  a — Interference contribution to conductance. b — 
Hikami vertex [10]. Solid lines correspond to average Green's 
functions in the medium. Dashed lines denote scattering by 
medium inhomogeneities. The incoming  i and outgoing f  ladder 
propagators contain summation over modes
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where the propagator , ( , | ', ')il kjG r n r n  obeys the 
transport equation (see Fig. 3 and [22, 24]).

When going from the laboratory reference frame 
to the concomitant frame, the matrix transforms as

	 ( )*( )( )
,

, , ,
( , | ', ') = ( ) ( ) ,il kj i le e ba

a b g d
G år n r n n n 	

	 ( )*( ) ( )
, ( , | ', ') ( ') ( ') ,k je eg d

ab gdG r n r n n n 	 (6)

where vectors ( )( )i
ae n  are unit polarization vectors 

in the concomitant coordinate system in linear or 
circular basis. For example, in the circular basis 
formed by the triad of vectors

	 = (sin cos ,sin sin ,cos ),q j q j qn 	

	 ( )( ) = ( / [ / ]) / 2,iq q± ¶ ¶ ´ ¶ ¶e n n n nm 	

where indices , , ,a b g d  take values 1±  (see, for 
example, [30]).

As is known (see, for example, [10, 13]), the 
magnitude of the interference correction in the 3D 
case is determined by wave propagation trajectories 
with length less than or on the order of trl . However, 
what is observable is not the correction itself, but 
its change depending on factors limiting the length 
of interfering wave trajectories. This change is 
determined by long trajectories and, accordingly, 
by modes that decay slowly on the scale of the 
transport length trl . Only circularly polarized modes 
[14,22,31,32]. can decay slowly in a scattering 
medium. Linear polarization always decays on scales 
of order trl  [14,31,32]. Taking this into account, let's 
keep in (6) only the terms corresponding to two 
circularly polarized modes with given helicity. For 
this, in sum (6) we need to preserve terms with  

=a b and =g d [22]. Then instead of (6) we obtain

	 , ( , | ', ') =il kjG r n r n 	

	 ( )( )

,
= ( ) ( , | ', ') ( '),il jkP P ba

ab
a b

Gå n r n r n n 	 (7)

where

	 ( )*( ) ( ) ( )( ) = ( ) ( )il i lP e ea a an n n 	

are projection operators (3).

In the case of electromagnetic wave propagation 
through a thick (L ≫  ltr) sample, as for electrons 
[2, 13, 10, 11], when calculating the incoming and 
outgoing ladder propagators in the diagram shown 
in Fig. 1a, one can use the standard diffusion 
approximation (see, for example, [16, 17]). As a 
result, in the two-mode approximation (7) we arrive 
at the expression for the interference contribution to 
conductance,

	
222 1( ) =

3 4
trl

T
L

d
p

h
æ öæ ö ÷÷ ççá ñ - ´÷÷ çç ÷÷÷ç ÷çè ø è ø

	

	
0 '(1 ( '))n d d d´ - ´ò òr n n nn 	

	 ˆ(̂ , ') ( , ' | , ),a Gé ù´ -ê úë ûn n r n r n 	 (8)

where 0n  is the number of scatterers per unit volume. 
 Matrix aab  is expressed through the single 

scattering matrix ,ik jld  [30] using the relation [22] 

	 ( )( )
,( , ') = ( ) ( , ') ( ').il il kj jka P d P ba

ab n n n n n n 	 (9)

For spherically symmetric scatterers, matrix aab  
has the form 

	
( ') ( ')

( ') = ,
( ') ( ')

a a
a

a aab
+ -

- +

æ ö÷ç ÷ç ÷ç ÷ç ÷è ø

nn nn
nn

nn nn
	 (10)

where ( ')a± nn are expressed through the single 
scattering amplitudes of co- and cross- polarized 
waves, AP and  A^ , 2( ') =| | /4a A A± ^±nn P .

The propagator ( )ˆ cG  appearing in (8) obeys the 
transport equation [22] 

	 { }ˆ( )( ) ( , | ', ') =ziag ag gbs d s Gé ù¶¶ + +ë ûn r nh r n r n

	 0= ' ( , ' ) ( , ' | ', ')n d aag gbG¢ ¢ ¢ +ò n n n r n r n 	

	 ( ') ( '),abd d d+ - -r r n n 	 (11)

where s  is the scattering coefficient; ˆ zs  is the Pauli 
matrix. The medium is assumed to be non-absorbing.

In the absence of a magnetic field, the system 
of equations for propagators G± ±  and  ± ±Γ , which 
describe the interference of waves with given helicity, 
can be reduced to equations for the first (intensity) 
I  and fourth V  Stokes parameters of circularly 
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polarized light. In this case, the propagators G± ±  
and ± ±Γ  are related to the Stokes parameters I  abd 
V  by relations 

	 = = ( ) / 2,I VG G+ + - - + 	

	 = = ( ) / 2.I VG G+- - + - 	

If we define the intensities of waves with given 
helicity as 

	 = ( ) / 2,I I V± ± 	

then their connection with the Stokes parameters I  
and V  can be written as a linear transformation 

	
1 11= .

2 1 1
I I

VI
+

-

æ ö æ öæ ö÷ ÷÷ç çç÷ ÷÷ç çç÷ ÷÷ç çç÷ ÷÷÷ ÷ç ç÷ç -è øè øè ø
	 (12)

Under conditions of magneto-optical effect, the 
system of equations (11) can no longer be reduced 
to equations for Stokes parameters, and therefore 
the corresponding quantities G± ±  and ±±Γ  in the 
magnetic field cannot be expressed through the 
first and fourth Stokes parameters. However, for 
convenience, we will retain the notations I  and V  
for linear combinations of these quantities. Using 
transformation (12), equation (11) transforms to

	

i

i

s

s

æ ö¶ ÷ç ÷+ç ÷ç ÷¶ç ÷́ç ÷ç ÷¶ ÷ç ÷ç + ÷çè ø¶

n nh
r

nh n
r

	

	 ( , | ', ') ( , | ', ')
=

( , | ', ') ( , | ', ')
V

I

I I
V V

æ ö÷ç ÷´ ç ÷ç ÷÷çè ø

r n r n r n r n
r n r n r n r n

	

	
1 1

0 1
2 1

( ) 0
=

0 ( )
a

n d
a

æ ö÷ç ÷́ç ÷ç ÷÷çè øò
nn

n
nn

	

	
1 1

1 1

( , | ', ') ( , | ', ')
( , | ', ') ( , | ', ')

V

I

I I
V V

æ ö÷ç ÷´ +ç ÷ç ÷÷çè ø

r n r n r n r n
r n r n r n r n

	

	
1 0

( ') ( '),
0 1

d d
æ ö÷ç ÷+ - -ç ÷ç ÷÷çè ø

n n r r
	 (13)

where

	 a A A2 2( ) = (| | | | ) / 2,nn ⊥+ 	

	 a A A*( ) = Renn ⊥	

are differential scattering cross-sections entering 
into the transport equations for intensity and the 
fourth Stokes parameter [30, 33].
The off-diagonal elements in equation (13) appear due 
to the Faraday effect. In the absence of a magnetic 
field, system (13) splits into two independent transport 
equations for I  and V . [14, 15, 18].

2.2. Diffusion approximation

Assuming that the modes in (13) decay on spatial 
scales exceeding trl , we transform the system of 
equations (13) to the diffusion form. In the diffusion 
approximation, in the expansion of propagators 
entering into (13) in spherical harmonics, we should 
keep the first two terms. For example, for I  we have 
(see, for example, [2])

	 ( , | ', ') =I r n r n 	

	 2
1= [ ( , ') 3( ') ( , ')],

(4 )
I

p
r r n n J r r+ -

	 (14)

 where
	 ( , ') = ' ( , | ', ')I d d Iòr r n n r n r n 	

is density propagator, ( , ')J r r  is the corresponding 
current (flux density). Similar expansions are valid 
for other propagators, ( , | ', ')V r n r n , ( , | ', ')VI r n r n  
and ( , | ', ')IV r n r n , entering the system of equations 
(13).

Substituting the diffusion formulas for quantities 
I  and  V  into (8), we obtain the optical conductance 
in the two-mode approximation:

	 ( ) =Tdá ñh 	

	
2

(2)
2

2= ( , ) ( , ),
3

tr
tr tr

l
d I V

L
s sr r r r ré ù- +ê úë ûò 	 (15)

where

	 0 1= '(1 ( ')) ( '),tr n d as -ò n nn nn 	

	 (2)
0 2= '(1 ( ')) ( ')tr n d as -ò n nn nn 	

are the transport scattering coefficients for intensity 
and the fourth Stokes parameter. Formula (15) 
transforms to the corresponding result [23] under 
conditions of slow decay of circular polarization 
( (2)

tr tr trs s s- =≪  σ t r),  as wel l  as under strong 
depolarization (I ≫ V ).
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Density propagators ( , ')I r r  and ( , ')V r r , included in 
(15), obey the system of diffusion equations

	
( )

( )
( ) 2 ( )

( ) ( ) 2 ( )

( )

( ) 3

V V
tr tr tr tr

V V V
tr tr tr tr dep tr tr

h i

i h

s D s s s

s s s D s s s s

æ ö÷- + Ñç ÷ç ÷ç ÷́ç ÷ç ÷ç ÷+ Ñ - - ÷çè ø

h

h

	
( , ') ( , ')
( , ') ( , ')

V

I

I I
V V

æ ö÷ç ÷´ ç ÷ç ÷÷çè ø

r r r r
r r r r

	

	 ( ) 1 0
= 3 ( ') ,

0 1
V

tr trs s d r r
æ ö÷ç ÷- - ç ÷ç ÷çè ø

	 (16)

where

	 ( ) (2)= ,V
tr tr deps s s+ 	

	 0 1 2= '( ( ') ( '))dep n d a as -ò n nn nn 	

is the depolarization coefficient of circularly 
polarized light [14, 32, 18]. The helicity-f lip 
scattering coefficient with helicity reversal is two 
times smaller,	 / 2deps . The system of equations 
(16) is a generalization of independent diffusion 
equations for I  and V  in the absence of magnetic 
field [14, 15].
Under a relatively weak magnetic field, h ≪ 1 / circh l= , 
where

	 ( )= 3 V
circ dep trl s s 	 (17)

is the attenuation length of circular polarization, the 
field's influence on interference occurs at distances 
|r − r′|, exceeding circl . [14, 15, 32] In this situation, 
the main contribution to the magnetic f ield-
dependent part of the interference correction (15) 
will be given by the value I(r; r′) surviving at large 
|r − r′|. Mode ( , ')V r r  decays on the scale of circl  and 
is independent of the magnetic field. The equation 
for mode V in the considered case reduces to the 
diffusion equation in the absence of a magnetic field. 
In equation (16) for mode I , the term proportional 
to IV  can be neglected (see Appendix). As a result, 
this equation takes the form

	
2 2

( ) ( , ') = 3 ( ').tr
trV

tr

h I
s s d
s

r r r r
é ù
ê úÑ - - -ê ú
ê úë û 	 (18)

Under conditions of slow circular polarization 
decay 14, 18, 34, 35, the difference between the 

cross-sections 1( ')a nn  and 2( ')a nn  entering into (13) 
is small and, consequently,

	
(2), , .dep tr tr tr tr circ trl ls s s s s-= = ?≪ 
(2), , .dep tr tr tr tr circ trl ls s s s s-= = ?, 

(2), , .dep tr tr tr tr circ trl ls s s s s-= = ?(2), , .dep tr tr tr tr circ trl ls s s s s-= = ?≪
(2), , .dep tr tr tr tr circ trl ls s s s s-= = ?, 

(2), , .dep tr tr tr tr circ trl ls s s s s-= = ?≫
(2), , .dep tr tr tr tr circ trl ls s s s s-= = ? 	

Under strong depolarization, dep trs s: , mode V  
decays on scales of the order of transport length trl . 
For example, under Rayleigh scattering conditions (

=deps s , =trs s , (2) = / 2trs s-  [22]), the attenuation 
length of mode V  is 1.176l  [32]. For Mie scattering 
near the second Kerker point [18], when scattering 
to backward hemisphere predominates ( = 2deps s , 

= 3 / 2trs s , (2) =tr trs s- ), the corresponding length 
equals 1.038l . In the considered case, the diffusion 
expansion cannot be applied for mode V , and 
therefore the system of equations (16) can only be 
used for qualitative analysis of electromagnetic 
wave interference in a magneto-optical medium 
[22, 24]. In this situation, the contribution of I  to 
the interference correction is still determined by the 
first term in (15), but for calculating the contribution 
of V , a more general formula (8) should be used. It is 
essential that the contribution of V  at dep trs s ~ dep trs s is 
determined by short trajectories (length less than or 
of the order of trl  ), and under conditions of relatively 
weak magnetic field, h ≪ 1 / trh l=  , will not depend on h. 
Under strong depolarization conditions, system (13) 
leads to a separate diffusion equation for mode I  (see 
Appendix)

	
2 2 ( , ') = 3 ( ').tr

trh I
s s d
s

r r r r
æ ö÷çÑ - - -÷ç ÷÷çè ø 	 (19)

The change in the circular polarization decay 
regime is reflected in the coefficient value before 2h  
in equation (19) compared to (18).

3. INTERFERENCE CORRECTION IN THE 
ABSENCE OF MAGNETIC FIELD 

Let's calculate the interference correction Tdá ñ to 
the conductance of a flat layer, ,x y trL L L l? ? ≫ L ≫ Ltr, in 
the absence of field, = 0h . As known [2, 10, 13], the 
main contribution to Tdá ñ in the 3D case comes from 
small distances, less than or of the order of transport 
length trl . However, what is observed experimentally 
is not the interference correction itself, but the 
contribution of long trajectories sensitive to the factor 
destroying interference. In the considered case, this 
factor is depolarization caused by scattering with 
helicity change.
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Let's analyze how the interference correction Tdá ñ 
changes depending on deps  The inf luence of the 
depolarization process on the contribution of long 
trajectories to Tdá ñ is determined by the difference 

	 ( ) = =dep V IT T Td s d dá ñ á ñ - á ñ

	

2
(2)

2
2

= ( , ) ( , ).
3

tr
tr tr

l
d V I

L
s sr r r r ré ù- -ê úë ûò 	 (20)

In the absence of helicity-flip scattering =V I , 
(2) =tr trs s  and expression (20) turns to zero.

In experiment, the dependence Tdá ñ on  deps  can 
be observed in light scattering by Mie particles in 
the resonant spectral region near the first Kerker 
point [18, 36], where the difference between 
differential scattering cross-sections 1a  and 2a , 
entering equations (16), is minimal. The position of 
the first Kerker point is determined by the condition 

2.29nal »  na, where l   is the wavelength of light, n 
and a  are the refractive index and particle radius 
[18, 36, 37]. In this case, in a narrow spectral range, 
the helicity-flip scattering cross-section can vary 
hundreds of times (while the transport cross-section 
remains practically unchanged). At the Kerker point 
itself, circular polarization decays on scales much 
exceeding the transport length [18, 36].

In the absence of magnetic field, the equations in 
system (16) become independent: 

	 ( ) ( )

( , ') = 3 ( '),

3 ( , ') = 3 ( ').
tr

V V
dep tr tr

I

V

D s d

D s s s d

- -
é ù- - -ê úë û

r r r r

r r r r
	(21)

 The solution of the diffusion equation for the 
Fourier component over variables parallel to layer 
boundaries is determined by expression

	 ( , | ) = 3 ( ) ,trV z z l z L z Lg g g g-q 	 (22)
	

2 2= 1 / .circq lg +

Similar expression for ( , | )I z z q  follows from  (22) at 
= qg .
Substitution of solution (22) into formula (20) 

gives the following expression for the relative change 
in the interference correction 

	
1( ) = .

2dep
circ

T
Ll

d s
p

á ñ A
	 (23)

In (23) it is assumed that

	 (2) .tr tr trs s s- =≪(2) .tr tr trs s s- = 	

Note that, unlike the resonant spectral dependence 
of  deps , the values of transport coefficients in the 
vicinity of the first Kerker point remain practially 
unchanged. Result (23) is valid in the limit L ≫

circL l? . It can also be obtained if, when calculating V  
we neglect the finite size of the sample and use the 
solution in the infinite medium approximation.

Taking into account the finite value of L somewhat 
complicates the expression for the interference 
contribution to conductance

	
2

( / )1( ) = ln .
2 ( / )

circ
dep

circ

sh L l
T

L lL
d s

p
æ ö÷çá ñ ÷ç ÷÷çè ø

A 	 (24)

The spectral dependence Td , calculated using 
formulas (23) and (24), is shown in Fig. 4. The value 
of the length circl  entering into (23) and (24) was 
calculated using Mie theory [38]. As follows from 
the calculation results, the resonant dependence of 

deps  directly affects the behavior of the interference 
contribution to conductance. Taking into account 
the finite thickness of the sample only leads to a 
decrease in peak amplitude.

Fig. 4. Spectral dependence of interference correction to 
conductance near the first Kerker point (showing the change of 
(δT ) relative to the value at k0a = 0.9). Particles Si, refractive 
index and particle radius are n = 3.5 and 0.2  μm respectively. 
Calculations were performed using formulas (23) (upper curve) and 
(24) (lower curve, L/ltr = 10). The inset shows spectral dependence 
of σdep
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4. WAVE INTERFERENCE CORRECTION 
IN MAGNETO-ACTIVE MEDIUM 

Let us proceed to analyze the dependence of the 
interference contribution to optical conductance 
on the magnetic field. As in the previous section, 
we consider a sample in the form of a flat layer and 
assume that ,x y trL L L l? ? ≫ L ≫ Ltr.

In the absence of depolarization ( = 0deps , 
(2) =trs  = trs ) the systems of equations for pairs of 

quantitiesI , IV  and V  in (16) coincide with each 
other. The magnetic field in the equations for linear 
combinations II V±  and VV I±  can be eliminated 
by transformation

	 ( , '; ) ( , '; ) = exp( ( ) ) ( , '),II V i Fr r h r r h h r r r r′ 	

	 ( , '; ) ( , '; ) = exp( ( ) ) ( , ').VV I i Fr r h r r h h r r r r′ 	

Therefore, the values ( ), ';I r r h  and ( ), ';V r r h  entering 
into equation (15) with matching arguments are 
independent of the magnetic field. Thus, in the 
absence of depolarization, the magnetic field 
does not affect the magnitude of the interference 
contribution to conductance.

The dependence of the interference correction to 
conductance on the magnetic field arises only due 
to depolarizing collisions, which change the helicity 
at different sections of wave propagation trajectories.

Consider the case of a relatively strong magnetic 
field, 1/L ≪ h ≪ 1/ltr, when calculating propagators 
I  and V , the medium can be considered unbounded, 
but the diffusion approximation is applicable (see 
the system of equations (16)). In this situation, 
the interference contribution does not depend on 
the field direction. The orientational dependence 
manifests only at h ≤ 1/L, when effects due to the 
finiteness of the sample become significant. However, 
at h ≤ 1/L the field's influence on change of the 
interference correction is insignificant.

At h ≫ 1/L, expanding the solution of equation 
system (16) in a Fourier integral, from formula (15) 
we obtain

	 3( ) =
4

T
L

d
p

há ñ - ´A
	

	

2

2 2 2 ( ) 2
( ) 1

( ) 4( ) ( / )V
tr tr

Q d

Q Q h

F
F s s

Q
Qh

é
ê´ +ê- +êë

ò

	

(2) ( )

2 2 ( ) 2 2
1 ,

( / ) 1 /

V
tr tr

V
tr tr tr circQ h l

s s
s s s

ù
ú+ ú+ + úû 	(25)

where

	 ( )
( )

2
2( )

4
( ) =

V
tr tr

V
tr tr

Q
s sF

s s
´

+ 	

	
( )

2 2 2 2
( ) 2

1 .
V

tr tr
V

trtr circ

Q h Q h
l

s s
ss

æ öæ ö÷ ÷ç ç÷ ÷ç ç´ + + +÷ ÷ç ç÷ ÷ç ç÷ ÷è øè ø
	(26)

As known [2, 10, 13], in the 3D case, the 
interference correction itself diverges in the diffusion 
approximation (each contribution in formula (25) 
is a divergent quantity at large Q). The observable 
is the relative change in the interference correction 
depending on the magnetic field,

	 ( ) ( = 0) .T Td dh há ñ- á ñ 	

Integrating (25) over the direction of vector Q, 
this quantity can be represented as

	 2
2

0

( ) ( = 0) =T T Q dQ
L

d d
p

h h
¥

á ñ- á ñ - ´òA
	

	
2 ( ) 2

1
( / )V

tr trQ hs s

ì éïïï ê´ ´í êï +êï ëïî 	

F i g .  5 .  C h a n g e  i n  i n t e r f e r e n c e  c o n t r i b u t i o n 
(δT (h)) − (δT (h = 0))  to optical conductance with increasing 
magnetic field. Change in interference contribution to optical 
conductance with increasing magnetic field under conditions of slow 
circular polarization decay effect (σtr/σdep = 10), Rayleigh scattering  
(σtr /σdep = 1)  and at the second Kerker point Spectral dependence 
of interference correction to conductance near the first Kerker 
point (σtr /σdep = 0.75) from lower to upper curves.
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	 2
( ) ( ) 2 1ln

4 ( ) 2
Q Q Qh

Qh Q Qh Q
F F

F
ùæ ö+ ÷ç ú´ - +÷ç ÷ ú÷ç -è ø û 	

	

(2) ( )

2 2 ( ) 2 2
1

( / ) 1 /

V
tr tr

V
tr tr tr circQ h l

s s
s s s

é
ê+ ´ê + +êë 	

2 2
( ) ( ) 2 1ln .

4 ( ) 2 1 / circ

Q Q Qh
Qh Q Qh Q l

F F
F

üùïæ ö+ ïïú÷ç´ -÷ ýç ú÷÷ç ï-è ø + úïûïþ
	 (27)

Under conditions of circular polarization 
“memory” effect,

	 dep trs s=≪dep trs s= 	

(note that in this case ( )V
tr tr trs s s- =≪ dep trs s= ), two regions 

can be distinguished Tdá ñ on h. At h ≪ 1/ lcirc  Tdá ñ 
changes linearly with magnetic field h:

	 1( ) ( = 0) = .
2

hT T
L

d d
p

h há ñ- á ñ A 	 (28)

Only the first term contributes to formula (28) 
in (15) and, accordingly, in (27). In this case, the 
interference correction

	 ( ) ( = 0)T Td dá ñ- á ñh h 	

is determined by long trajectories exceeding circl , and 
mode I  is determined by equation (18).

When h ≫ 1/ circl  the interference contribution 
Tdá ñ  reaches a plateau (see Fig. 5) and tends to the 

value

	
2 1( ) ( = 0) = .
2 circ

T T
Ll

d d
p

h h -á ñ- á ñ A
	 (29)

T he  pl a t e au  i n  t he  d ep end enc e  of 
( ) ( = 0)T Td dá ñ- á ñh h  on the magnetic field can 

be explained by the decrease in the probability of 
depolarizing collisions over the length 1h-  with 
increasing field. Under conditions of "memory" of 
circular polarization (σdep ≪ σtr, 

( ) =V
tr trs s ) the 

integral in formula (25) takes the form

	 2 2 2

2 2 2 2 2 4

1 / (2 )

( 1 / (2 )) 4( ) 1 / (4 )
circ

circ circ

Q h l
d

Q h l l

+ +

+ + - -ò Q
Qh

	

(30)
In a strong field, h ≫ 1/ circl , neglecting the term 

41 / circl  in the denominator of equation (30), this 
expression can be written as

	 2 2
1 1
2 ( ) 1 / (2 )circ

d
l

é
ê +ê - +êë

ò Q
Q h 	

	 2 2
1 .

( ) 1 / (2 )circl

ù
ú+ ú+ + úûQ h 	 (31)

Field h is eliminated from (31) by shifting in 
the integration variable Q, and the interference 
contribution to conductance ceases to depend on 
the magnetic field. 

In the absence of the circular polarization 
“memory” effect, σdep ~ σtr, (for example, in the case 
of Rayleigh scattering or in the vicinity of the second 
Kerker point), the magnetic field- dependent part of 
the interference correction is determined only by the 
first term in expression (15), and, accordingly, by 
the solution of equation (19). The slope in the linear 
dependence ( ) ( = 0)T Td dá ñ- á ñh h  on h at h ≪ 1/ circl
changes compared to (29) due to the change in the 
coefficient before 2h  in equation (19),

	
1( ) ( = 0) = .

2
trhT T

L
sd d

p s
h há ñ- á ñ A

	 (32)

Mode V  does not contribute to the linear 
dependence (32) on the magnetic field. In strong 
magnetic fields, h ≫1/ltr, the diffusion description 
loses its applicability.

5. OPTICAL CONDUCTANCE  
OF A WAVEGUIDE

Besides a flat layer, another frequently used type 
of samples in research is a waveguide with scattering 
inhomogeneities [39, 40]. When electromagnetic 
waves propagate in a waveguide, Lx, Ly ≪  L  
(Q1D-geometry), the situation changes. In this case, 
if we do not consider a waveguide with a specially 
selected transverse profile of refractive index, the 
effect of circular polarization preservation is 
suppressed. At each ref lection from the lateral 
boundaries of the waveguide, the sign of circular 
polarization changes to the opposite [41]. The main 
contribution to the interference correction (15) is 
made by the quantity I(r; r′) surviving at large at 
large L  ( , ')I r r  which in the absence of a magnetic 
field corresponds to the scalar intensity mode. Mode 
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( , ')V r r  decays on the scale min( , , )x y circL L l , and its 
contribution turns out to be a small value. In this 
situation, in the equation for mode I , the term 
proportional to IV  (see (16)) can be neglected (see 
Appendix), and we arrive at equation (18). For the 
waveguide, equation (18) should be supplemented 
with boundary conditions

	 = /2

= /2

( , ') = 0,

( , ') = 0

x Lx

y Ly

I
x

I
y

r r

r r

±

±

¶
¶

¶
¶

	 (33)

on the lateral surfaces of the waveguide and 

	
=0,

( , ') = 0
z L

I r r 	 (34)

at the input and output cross-sections of the 
waveguide.

Equation (18) is valid when modes I  and IV  
propagate in the diffusion regime. Under conditions 
of strong depolarization, when circular polarization 
decay occurs on scales of the order of mean free path 
l, equation (19) should be used instead of equation 
(18) (see Appendix). The reduction in depolarization 
length is reflected in the coefficient value before 2h  in 
the equation for .I .

The solution of equation (18) with boundary 
conditions (33) can be sought in the form of 
expansion in eigenmodes cos cosxn ymq x q y, where

	 = (2 / ), = (2 / ),xn x ym yq n L q m Lp p

	 , = 0, 1, 2,n m ± ± K

Then formula (15) transforms as follows:

	 2

0

( ) = 23 ( , ),
L

trT l L dzI z zd
é ù
ê úá ñ - ê ú
ê úë û
å ò q

q
h 	 (35)

where ( , )I z z¢q  are the expansion coefficients of value 
( , ')I r r  over the waveguide's transverse eigenmodes. 

From the solution of equation (18) with boundary 
condition (34), one can obtain the expression for 
them

	
sh ( ( ))3( , ) = ,

shtr

z L z
I z z

l L
g g

g gq
-¢

	 (36)

 where

	

2 2 2
( )= , = .tr
V

tr

h h h
sg
s

q +
�� �

	 (37)

Under conditions of strong depolarization, only 
the proportionality coefficient between h and h 
changes (see (19)).

In Q1D-geometry (L ≫ Lx,Ly) the mode with 
= 0q  is characterized by the lowest attenuation. 

Keeping only the term with = 0q  in (35), for the 
interference contribution to conductance we obtain

 

	 1 1( ) = ( )
( )

T hL
hL hL

d h
�

� �
é ù
ê úá ñ - -ê úë û

.	 (38)

In the limit h = 0, equation (38) leads to the 
known result [42] for the interference contribution 
to the conductance of scalar waves = 1 / 3Tdá ñ - . 
With increasing magnetic field, the magnitude of the 
interference correction monotonically decreases. At 
large h, the value of Tdá ñ decreases as −1/hL. The 
change in Tdá ñ with increasing field qualitatively 
resembles the behavior of the interference correction 
to electronic conductance [11, 10], however, the 
corresponding functional dependencies differ.

The results obtained above refer to the case of a 
waveguide with a sufficiently large cross- section, 
l ≪ l = A , when the conditions for going from the 
system of transport equations (13) to equation (18) 
(or (19), see Appendix) are met.

The situation changes in a waveguide with 
small cross-section, l ≫ l = A . It can be assumed 
that the circularly polarized mode propagates in 
ballistic regime and is destroyed upon ref lection 
from boundaries at scales of order A . In this 
approximation, we arrive at a diffusion equation for 
I , similar to (18) (or (19)), but with an additional 
factor proportional to / trlA  before 2h . In the 
case of a waveguide with circular cross-section, the 
corresponding numerical coefficient changes from 
8 p  in longitudinal field to 4 p  in transverse field.

As the waveguide cross-section decreases, 
the inf luence of magnetic field on the value of 
interference correction decreases as well. The length 
at which interference destruction occurs increases 
with decreasing  A  as 1/2 1/4( / )(1 / )trl hA . Since 
the applicability of the diffusion treatment used 
for I in this work is limited by fields  < 1 / trh l , this 
length always exceeds 3/2 1/4( / )trl A . To observe the 
influence of magnetic field on interference, this value 



JETP, Vol. 166, No. 3 (9), 2024

308	 GORODNICHEV, ROGOZKIN

should not be greater than the localization length 
2= /loc tr trl l l l:N A~ 2= /loc tr trl l l l:N A . Therefore, the above results 

are limited by the condition on the waveguide cross-
section 2 2/5> ( / )trll lA . In the considered case, in 
the weak localization limit λ ≪ trll = , the waveguide 
can be considered multi-mode.

6. DISCUSSION OF RESULTS

Let us analyze how the interference contribution 
to optical conductance changes depending on the 
ratio /dep trs s   and the magnetic field strength.

In the absence of a magnetic field ( = 0h ) the 
negative interference correction  Tdá ñ to conductance 
is maximal in magnitude in the limit when there 
is no depolarization at all (i.e., no mixing of 
polarizations due to scattering, and   =I V  in (15)). 
In this case

	 ( )= 2 scT Td dá ñ á ñ,	

 where ( ) < 0scTdá ñ  ― corresponds to the result in the 
scalar wave approximation. The scattering of light 
on an ensemble of Mie particles near the first Kerker 
point ( = 2.29nal , where  l    is the wavelength of 
light, a and n  are the radius and refractive index of 
the particle) corresponds most closely to the limiting 
situation described above [18,36,37]. In this case, for 
particles with a high refractive index, the helicity-
flip scattering cross-section can be two orders of 
magnitude smaller than the transport scattering 
cross-section [18, 36]. Taking into account the small 
but finite value of deps   leads to deviation of  Tdá ñ 
from  ( )2 scTdá ñ. Under conditions of rare helicity-flip 
collisions (σdep ≪ σtr) the interference contribution 
to optical conductance acquires an additional term 
(see (23)) 

	 ( ) 1= 2 .
2

sc

circ
T T

Ll
d d

p
á ñ á ñ+ A

	 (39)

The deviation from  ( )2 scTdá ñ in (39) is determined 
by the second term of expression (15), which 
increases sharply as it moves away from the first 
Kerker point. The resonant behavior of deps  directly 
affects the magnitude of the interference correction 
(see Fig.4).

In the case of strong wave depolarization, when 
helicity changes occur in each scattering event,  

( )= scT Td dá ñ á ñ (this follows directly from formula 
(15) if we neglect the contribution of  V ).

If there were no wave scattering with helicity 
change, then the interference contribution to 
optical conductance would remain unchanged, 

( )= 2 scT Td dá ñ á ñ when applying a magnetic field. 
This is because  the magnetic field can be eliminated 
from equation (16) and, accordingly, formula 
(15) (see section 4). Depolarization turns on the 
influence of the magnetic field on the value of  Tdá ñ. 
Under conditions of slow depolarization (σdep ≪ σtr) 
the change in the interference contribution with 
increasing magnetic field is described by expressions  
(28), (29), and at h ≫ 1 / circh l?  the value of Tdá ñ tends 
to

	
( ) 1= 2 ,

2
sc

circ
T T

Ll
d d

p
á ñ á ñ+ A

	 (40)

i.e., the difference between Tdá ñ and   ( )2 scTdá ñ 
changes by approximately one and a half times when 
the field varies from zero to large values.

The saturation of the interference correction 
dependence on  h with increasing magnetic field can 
be explained by the decrease in the probability of 
depolarizing collisions over the length 1h- . Before 
the first helicity-flip scattering event modes I  and 
V  manage to mix strongly, and “hybridization” of 
modes  I  and V  occurs. Only two modes with given 
helicity survive, II V+  and  VV I+ , which are 
characterized by an attenuation length  2 times 
greater than the attenuation of mode V  in the 
absence of a magnetic field (see expression (31)).

In the case of strong depolarization, the 
interference contribution to conductance tends 
to zero as the magnetic field strength increases. 
Under conditions of wave diffusion through a Q1D 
sample (waveguide), this is precisely the case that 
is realized. With rapid attenuation of mode V  the 
main contribution to (15) comes from intensity I . 
According to (35), the transition to Q1D geometry 
occurs when the term with  = 0q . becomes 
predominant in (35). In the absence of a magnetic 
field, the contribution to (35) from non-zero 
harmonics can be estimated as

	 ( )
2 2

0

2= ( , ) ,
3 (2 )

L
sc tr

tr

l dT dzI z z
l LL

d
p q
qá ñ - -ò ò

A A~( )
2 2

0

2= ( , ) ,
3 (2 )

L
sc tr

tr

l dT dzI z z
l LL

d
p q
qá ñ - -ò ò

A A
	(41) 

where it is taken into account that the integral over 
q is cut off at values q ~ 1 / trq l: . The requirement that 
(41) be small compared to the contribution from the 
zero harmonic ( )

=0 = 1 / 3sc
qTdá ñ -  [42] leads to the 

inequality trl L=A ≪ ltrL, i.e., the cross-sectional area of 
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the sample should be smaller than the average square 
of the transverse displacement of the light beam 
during diffusion in the medium layer of thickness L. 

It should be noted that the disorder-averaged 
conductance in the diffusion approximation in the 
first   01 / trk l  order equals 

	 8=
3

trl
T

L
á ñ

N
 	

(see, for example, [8, 17]. The interference correction 
to conductance Tdá ñ has the order of

	 2
0

1 ,
( )

tr

tr

l
T

Lk l
dá ñ:

N
~

2
0

1 ,
( )

tr

tr

l
T

Lk l
dá ñ:

N
 	

until the transition to Q1D geometry occurs. In 
this geometry, in the absence of a magnetic field 

=Tdá ñ −1/3. Therefore, in a long L ~ =loc trL l l: N  
[42], waveguide, when Tá ñ becomes of the order 
of Tdá ñ, a transition to the Anderson localization 
regime occurs. Since the interference correction 

Tdá ñ in the presence of the magnetic field decreases 
in the Q1D case in the presence of a magnetic 
field with increasing  L as 1 / L (see (38)), the 
transition to the Anderson localization regime at 
h > hc ~ 1 / Nltr should be disrupted. Due to the 
destruction of time-reversed wave interference, the 
localization length should increase (see, for example, 
[42]). In multimode optical fiber ( 1?N  ≫ 1) the critical 
value of the magnetic field  ch  turns out to be much 
smaller than that which leads to a noticeable effect 
in coherent backscattering from a Faraday medium 
[19,22]. In electron transport through Q1D systems 
(wires) it is difficult to observe such an effect, since 
with increasing L there is destruction of coherence 
of electron waves due to inelastic interactions, 
temperature, and other factors [11,13]. 

In conclusion, we consider the conditions under 
which experimental observation of the interference 
contribution to conductance is possible. The 
simplest scheme is the one for measuring the total 
transmission coefficient through a waveguide with 
scattering inhomogeneities. Let's assume that 
the measurement sensitivity allows registering 
relative changes in the transmission coefficient of 
about one percent. Since in Q1D geometry the 
interference correction varies from 1 / 3-  to zero 

(when a magnetic field is applied), this imposes a 
requirement on the value of Tá ñ, which should not be 
greater than 210 . Such value of Tá ñ can be provided in 
a waveguide with length = 10L  cm, cross-sectional 
area 2= 10-A  mm2 , number of modes 4= 10N  at 
wavelength = 1l  µm with a typical transport length 
of = 100trl  µm for disordered media. In this case, 
the ratio / ( )trLlA  (see (41)) equals 310-  , so the 
Q1D geometry approximation is certainly justified. 
Since in a magnetic field the interference correction 
changes significantly at 10 /h L:  (see (38)), then 
for characteristic values of the Verdet constant  
(V = 0.06 mm−1 T for λ = 1.064 µm, see , for example 
[43, 44]) the correction to conductance can be 
observed in a field of 1 T. With increasing waveguide 
length, the amplitude of conductance changes 
increases with magnetic field, which makes it 
possible to study the transition to strong localization 
regime under conditions of broken T -invariance.

ACKNOWLEDGMENTS

The authors thank V. V. Marinyuk for useful 
discussion of the problem considered in the article.

FUNDING

This work was supported by the Ministry of 
Science and Higher Education of the Russian 
Federation (contract No. 075-15-2021-1361 dated 
07.10.2021).

APPENDIX

Assuming that mode V  decays faster than 
mode I  (i.e., in the approximation of relatively 
rapid depolarization), the interference correction 
to conductance is determined only by mode I . 
According to the system of transport equations (13), 
the coupled equations for modes I  and IV  have the 
form

 	 ( , | ', ') ( ) ( , | ', ') =tot II i Vsn r n r n nh r n r n
r

ì ü¶ï ïï ï+ +í ýï ï¶ï ïî þ  

	 1 1 1 1= ( ) ( , | ', ')d a I +ò n nn r n r n  	

	 ( ') ( '),d d+ - -n n r r 	 (42) 

	
( , | ', ') ( ) ( , | ', ') =tot IV i Isn r n r n nh r n r n

r
ì ü¶ï ïï ï+ +í ýï ï¶ï ïî þ

 

	 1 2 1 1= ( ) ( , | ', ').Id a Vò n nn r n r n 	 (43) 
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Writing the expression for IV  as a convolution of 
the Green's function of equation (43) with the term 
( )i Inh  in (43) and substituting IV  into (42), we obtain 
a closed equation for mode I  

	 ( , | ', ')tot Isn r n r n
r

ì ü¶ï ïï ï+ +í ýï ï¶ï ïî þ
 	

	 ( ) ' ' ( , | ' , ' )( ' )Vd d G¢ ¢ ¢ ¢ ¢+ ´ònh r n r n r n n h  	

	
( ' , ' | ', ') =I ¢ ¢´ r n r n

 	

	
1 1 1 1= ( ) ( , | ', ')d a I +ò n nn r n r n

 	
	 ( ') ( '),d d+ - -n n r r 	 (44) 

where ( , | ', ')VG r n r n    is the Green's function 
of equation (43) with a source in the form of 
( ') ( ')d d- -n n r r . Performing the standard procedure 

of transition to the diffusion approximation in (44) 
(see, for example, [45]), we arrive at the equation 

	 ( , ') 3 ' ' ( ) 'i
i

I d d d n d
x

D r r r n n nh n¶ ¢ ¢+ ´
¶ ò ò ò 	

	 ( , | ' , ' )( ' ) ( ' , ' | ', ')VG I¢ ¢ ¢ ¢ ¢´ -r n r n n h r n r n  	

	 3 ' '( ) 'tr d d d ds ¢ ¢- ´ò ò òr n n nh n  	

	 ( , | ' , ' )( ' ) ( ' , ' | ', ') =VG I¢ ¢ ¢ ¢ ¢´ r n r n n h r n r n  	

	 = 3 ( ').trs d- -r r 	 (45) 

Assuming further that function VG  decreases at 
distances much smaller than the characteristic scale 
of mode I-variation, we can expand I  in the vicinity 
of ' =¢r r. 

Keeping only the first term in the expansion, we 
obtain

	
( ) 2 ( ) ( )( , ') ( , ') 3V V V

tr tr j k tr tr trI h I h hD s s s s s- + - ´r r r r  

	 ' ' ( ) ( , | ' , ')j k Vd d n n d Gé ù¢ ¢ ¢´ Ñ ´ê úë ûò òn n r n r n r n  	

	 ( , ') = 3 ( ').trI s d´ - -r r r r 	 (46) 

Then we transform the third term in the left part of 
equation (46). Substituting the equality that follows 
from the reciprocity theorem (see, for example, [46]) 

	 ( ) ( , | ' , ') =VG ¢Ñ rn r n r n  	

	 '= ( ' ) ( ' , ' | , ),VG¢ ¢- Ñ - -rn r n r n 	 (47)
we can represent it as 

	 ( ) ( )3 V V
j k tr tr trh h s s s- ´

 

	 [ ' ( ' ) ( , ' | , )]k j V S
S

d d n n d Gn n n s r n r n¢´ - - ´ò ò 	  

	 ( , '),I´ r r 	 (48) 

where integration is performed over the sample 
surface, and rs is taken at its boundary. When the 
distance from point r to the sample boundary exceeds 
the decay length of the circularly polarized mode circl

, the contribution of term (48) to equation (46) can 
be neglected. As a result, equation (46) reduces to 
equation (18). This statement remains valid as long 
as the linear dimensions of the sample are much 
larger than the transport length, ( , ) trL l?A , and 
to calculate the Green's function VG  one can use the 
diffusion approximation, setting
 

	 2( , | ' , ') = ( , ' ) / (4 ) ,V VG G p¢ ¢r n r n r r  

where

	 ( , ' ) = ' ( , | ' , ')V VG d d G¢ ¢òr r n n r n r n  

is the density propagator of the circularly polarized 
mode V . In this case, contribution (48) vanishes 
due to the density propagator becoming zero at the 
boundaries of the integration region [45].

If in the expansion of I  in the vicinity of 
' =¢r r  we keep the next term in (45), this will 

lead to renormalization of the coefficient before 
ID  in equation (46) by a small addition of order 

2( ) 1trhl = ≪ 1, which can be neglected in the considered 
approximation.

The results obtained above (see (18)) rely on 
the diffusion approximation when calculating the 
Green's function VG . Under conditions of strong 
depolarization, dep trs s:~dep trs s: , the attenuation length 
of the circularly polarized mode turns out to be 
close to the mean free path l  [18, 32], and in the 
first approximation for calculating the function, VG  
one can use the ballistic approximation, i.e., assume 
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that the main contribution to   VG  comes from non-
scattered waves,

	 ( , | ', ') =VG r n r n  	

	
| '|

2
'= ( ') .

| ' | | ' |
e s

d d
r rr rn n n

r r r r

- -æ ö- ÷ç- - ÷ç ÷÷ç -è ø - 	 (49) 

Substituting (49) into (44), and assuming that 
the mode I  is a smoother function of coordinates 
and directions than VG , we arrive at a diffusion 
equation for I of the form (18), in which ( )V

trs  should 
be replaced with s  (see (19)).

 Equations (18) and (19) remain valid for the 
waveguide,L ≫ L ? A . The applicability of equation 
(18) under conditions of slow circular polarization 
decay is related to the use of the diffusion 
approximation for VG . Due to the fact that upon 
reflection from the waveguide's lateral boundaries 
the sign of circular polarization changes to the 
opposite, the density propagator VG  vanishes at 
the waveguide boundaries (i.e., when the scattering 
medium is placed in a waveguide with reflecting 
boundaries, the boundary conditions for VG  , unlike 
the mode I , do not change). Equation (19) under 
conditions of strong depolarization is valid as long 
as the cross-section is sufficiently large, > lA . In 
a waveguide with a small cross- section but remains 
multimode, λ ≪ ll = =A  ≪ l, substitution of the ballistic 
Green's function (49) into (44) after intermediate 
integration over spatial variables leads to a diffusion 
equation for =0( , )I z z¢q , similar to (19), but with an 
additional factor proportional to / trlA  before 2h . 
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