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One-dimensional quantum systems, where the 
Hamiltonian H  depends on a single coordinate x, have 
been studied since beginning of quantum era due to 
the possibility of particle tunneling through a potential 
barrier [1]. In the 1980–90s, when computational 
capabilities were limited as compared to the modern 
ones, the Hamiltonian’s dependence on a single 
spatial coordinate enabled numerical simulation of 
nonlinear ionization in such systems [2–4]. In the last 
decade, the relatively low computational complexity 
of numerical integration of the one-dimensional time-
dependent Schrödinger equation has made it possible 
to self-consistently use quantum calculation results as 
a nonlinear source in (3D + t) propagation equations 
[5] and to model quantum electrodynamics effects in 
strong fields of ultrashort pulses [6].

The interaction of a one-dimensional quantum 
mechanical system with an electromagnetic field 
is described by the time-dependent Schrödinger 
equation for the wave function Y(x,t), hereafter the 
Hartree units are used unless otherwise specified:
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is the electron Hamiltonian in the time-independent 
potential t U x( ),  ( )t  is the operator describing the 
interaction of the electron with the electromagnetic 
wave field, and t is a time. Equation (1) must be 
provided with the initial condition Y( , = )x t −∞ .  
At t = −∞  the system is usually in a bound state, 
therefore, the initial conditions for equation (1) are 
the wave functions of bound states | Yn ñ  (most often 
the ground state with) with n = 0) the corresponding 
discrete energy spectrum En < 0,  where n = 0,1,2, 
Functions | Yn ñ  are eigenfunctions of the operator H  
and the search for bound states of the system reduces 
to solving the time-independent Schrödinger equation:

	 H En n n
 | = | .Y Yñ ñ � (2)

For the majority of quantum systems, there is no 
analytical solution to equation (2), and numerical 
search for eigenfunctions and eigenvalues is needed. 
This imposes high requirements on the accuracy 
of the found solutions for further description of 
quantum systems’ response using the time-dependent 
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Schrödinger equation, since inaccurate determination 
of the initial state leads to artifacts in the solution of 
equation (1).

Various numerical approaches are used for 
finding eigenfunctions and eigenvalues of the 
time-independent Schrödinger equation: direct 
integration [7] of equation (2), matrix approach 
[8], imaginary time methods [9], spectral [10], 
power [11] methods, etc. From a computational 
point of view, the advantage of power methods is 
that the same Hamiltonian approximation is used 
in solving equations (2) and (1), which reduces 
the rate of numerical error accumulation when 
solving the time-dependent equation. The power 
method is also free from the boundary conditions 
problem [12, 13] and can be applied to both one- 
and multi-dimensional problems. However, for 
quantum systems with a large number of bound 
states, the search for eigenfunctions can be 
extremely time-consuming. Acceleration of power 
methods convergence can be achieved, in particular, 
by applying operators that are inverse to the 
Hamiltonian [14] or Chebyshev polynomials of the 
Hamiltonian [11], § 16. Let us consider the second 
case, which is algorithmically simpler and in some 
sense more universal (inversion of the Hamilton 
operator is possible if it is approximated by finite 
differences on a grid, but not in the case when 
Fourier transform is used to calculate the derivative). 
Let us briefly outline the idea of the power method.

Let’s choose an arbitrary approximation | (0)Yn ñ  
taking into account the parity of the wave function 
n-th state and its decay in the classically forbidden 
region. We will repeatedly apply to the trial wave 
function a certain polynomial operator P H( ) ,  whose 
eigenbasis coincides with the basis of H.  When 
transitioning from k-th to (k + 1)-th iteration, we 
obtain
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Let’s consider the formal expansion | ( )Yn
k ñ  in the 

true basis | Y j ñ  of Hamiltonian H:
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where c j
k( )  are the expansion coefficients in 

basis | Y j ñ  at the k-th iteration. Then for the 
approximation at the next iteration we get
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Thus, the decrease in amplitudes for excited 
states and continuum states (and, accordingly, 
the convergence rate of the power algorithm 
|Y Yn

k
n

( )〉 → 〉)  i s  determined by the value 

j n j nP E P E¹max .| / |( ) ( )  The optimal power algorithm 
should minimize it.

As a result of applying such an algorithm and 
normalizing the wave function (at  each step), we 
will obtain the eigenfunction |Yn ñ  and eigenvalue 
E Hn n n= 〈 〉Y Y| | ,  for which P En( )  is maximal. After 
this, the algorithm can be repeated, removing from 
the wave function the projections onto already found 
states with lower n:
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i.e., ensuring cj = 0 for j < n, and find higher states 
and energy values.

The convergence rate of the power algorithm is 
determined by the chosen function P H( )  and its 
spectrum, i.e. ​the values P En( )  for all energy states 
in a given potential, including continuum ones. 
It is desirable to use operator functions that are 
polynomials of finite degree from the Hamiltonian 
operator, due to the algorithmic simplicity of their 
calculation (which is especially important in the 
multidimensional case). We will use the fact that 
among all polynomials of a given degree m, whose 

Fig. 1. Dependence of the amplification factor at each iteration 
of the algorithm on the state energy when using Chebyshev 
polynomials of different degrees m. Purple lines qualitatively 
show the levels of discrete spectrum
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absolute values on the segment [–1,  1] do not 
exceed 1, Chebyshev polynomials of the first kind 
T mm ( ) = [ ( )]ε εcos arccos  have maximum values 
outside this segment. Let E xmax = (2 )2 2π / ∆  be the 
maximum energy state corresponding to the Nyquist 
frequency on a given computational grid with step Dx. 
Using the linear transformation

P T Em m( ) = (1 2 ),ε ε- / max

we place the center of the Chebyshev polynomial 
Tm at Emax/2, i.e., transfer the region where the 
polynomial | |Pm ( ) 1ε £ ,  from [–1,  1] to the range 
of positive energies of continual states [0, Emax]; for 
bound states we have | |Pm ( ) 1ε ³ ,  see Fig.  1. For 
bound state energies -E Enmax  < 0
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i.e., at each iteration the amplitude of the n-th state 
will increase approximately by 1 2 2+ m E En| | / max .

In this work, we use the power algorithm 
with Chebyshev operator polynomials to find 
eigenfunctions and eigenvalues of one-dimensional 
quasi-Coulomb potential (8) with nine bound states. 
The dependence of the algorithm’s speed on the 
degree of Chebyshev polynomial is investigated. The 

“optimal” polynomial degree m » 8  provides search 
for the ground state |Y0ñ  in k » 125  iterations (4 s 
on a workstation with Intel® Xeon® E5–2630 
processors), and the bound state with the highest 
energy |Y8ñ  in k » 8000  (with calculation time about 
4 min). When substituting the found wave functions 
|Yn ñ  as initial conditions of the time-dependent 
Schrödinger equation (1) without external field, the 
artifact value of the electron’s mean coordinate 
deviates from zero by ≤ −10 10  over 50 fs.

In simulations, we use a uniform grid along the 
coordinate x with step size Dx = 0.125 and number of 
nodes N = 216. This provides a sufficiently large region 
in x, which is important for the time-dependent 
problem and wave function components related 
to electrons detached from the atomic core. This 
relatively coarse resolution complicates the finite-
difference approximation of the second derivative in 
the Hamiltonian, therefore for its determination we 
used the Fourier transform.

To study the convergence of the Chebyshev power 
algorithm, let’s consider the potential

U x x( ) = ( ),2- -ch

with the analytical solution for single bound state

Ya x x( ) =
1

2
( )1ch-

and energy

Ea =
1
2

= 13.6 .- - eV

To determine the accuracy of the eigenfunctions 

Y( )( )k x  in such potential we will use relative errors
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Fig. 2. a, b – ​Dependencies on the iteration number k of relative 
errors in determining the wave function δΨ

( )k  and  ∆Ψ
( )k ,  as well as 

the bound state energy error δE
k( )  of potential U x x( ) = ( )2- -ch .  

Panel a corresponds to the power algorithm with Chebyshev 
polynomial P H1( ) ,  b – with P H8( ) .  c – Number of iterations 
k and number of operations km, required to determine |Yñ  with 
relative error ∆Ψ = 10 15-  for polynomials of different degrees m

(a)

(b)

(c)
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The first of these expressions is applicable only for 
potentials with analytical eigenfunction, while the 
second is for an arbitrary one-dimensional potential. 
The relative error in the state energy is defined as

δE
k

a
k

aE E E( ) ( )= ( ) .| / |-

In Figs. 2a, b for polynomials of degrees m = 1 and 
m = 8, the dependencies of relative errors δΨ

( )k ,  ∆Ψ
( )k  

and δE
k( ) in the studied potential on the iteration number 

k are shown. The error of energy δE
k( )  with increasing 

k decreases faster than δΨ
( )k  and ∆Ψ

( )k ,  therefore, in the 
following, we will evaluate the algorithm execution 
speed via the errors in determining the wave function. 
Errors δΨ

( )k  and ∆Ψ
( )k  decrease with the same slope and 

almost simultaneously reach the “noise level” ~10–15 
associated with errors of double precision numbers 
(Figs. 2a, b). Thus, the termination condition for the 
iterative algorithm can be chosen based on ∆Ψ

( ) 1510k ≈ − .

With increasing polynomial degree m, the number 
of iterations required to achieve the same accuracy 
∆Ψ = 10 15-  monotonically decreases by 2 orders of 
magnitude when m changes from 1 to 24 (see Fig. 2c). 
However, one iteration using polynomial P Hm ( )  
requires m times more operations than for polynomial 
P H1( ) .  Therefore, the choice of polynomial order 
was determined by the saturation of the number of 

operations km, allowing to find |Yñ  with relative error 
∆Ψ = 10 15- ,  which in our case is ~103 and is achieved 
at m ≈ 8. Thus, the degree of Chebyshev polynomial 
m = 8 is optimal for the practical implementation of 
the power algorithm for solving the time-independent 
Schrödinger equation (2).

Now let’s apply the power algorithm with the 
“optimal” value m = 8 to the potential U(x), with no 
analytical solution to equation (2):
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The first factor here corresponds to the quasi-
Coulomb potential with an infinite number of levels 

Fig. 3. a, b – ​Wave functions Y0( )x ,  Y1( )x ,  c, d – ​Y6( )x ,  Y7( )x .  Figures are plotted on a linear scale, b, d – on a semi-
logarithmic scale. The simulation was conducted for potential (8) using Chebyshev polynomial P H8( )

Fig. 4. The dependence of the relative error of wave functions DY 
on the number of iterations k for potential (8). Numbers indicate 
state numbers (0 corresponds to the ground state)

(a)

(c)

(b)

(d)
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[2], while the second one makes their number finite. 
To obtain a sufficiently large number of bound states, 
we fixed the constant C  =  512. Then we selected 
the parameters A = 1.13 and  B = 0.827 in such a 
way that the ground state energy corresponds to 
the ionization potential of the helium atom. In the 
resulting potential, we found nine bound states. 
The wave functions of the ground Y0(x) and some 
excited Y1(x), Y6(x), and Y7(x) states are shown in 
Fig. 3 in linear (a, c) and semi-logarithmic (b, d) 
scales respectively. The energies of these states are 
E0 = –24.61 eV, E1 = –9.84 eV, E6 = –1.20 eV, and 
E7 = –0.92 eV. In agreement with known analytical 
solutions [15], outside the well, the wave functions 
Yn(x) decrease as exp − −( )| |x En2  down to the 

“noise” associated with double precision errors 
(Figs. 3b, d).

Let’s examine the convergence of the power 
algorithm for bound states with different quantum 
numbers n. Figure 4 shows the dependence of relative 
error ∆Ψ  on iteration number k. At n = 0 the value 
∆Ψ = 10 15-  is achieved in k » 125  iterations, which 
corresponds to program execution time of 4 s, at 
n =1 – in k » 125  iterations and 11 s, and at n =8 
the value k increases to ~8000 and computation 
time increases to ~4  min (on  a workstation with 
Intel® Xeon® E5–2630 processors).

We used the obtained wave functions Yn x( )  as initial 
conditions for the time-dependent Schrödinger equation 

(1) with H = 0,  which was numerically integrated 
according to the method described in [16]. The average 
value 〈 〉Y Y| |x , of the electron coordinate operator x  
obtained during simulation changes by ≤ −10 10  over 
50 fs for all found wave functions Yn x( )  (see Fig. 5). 
Such magnitude of the average electron coordinate is 
6–7 orders smaller than the value 〈 〉Y Y| |x ,  achieved 
in a one-dimensional quantum system under the action 
of a pulse with intensity  1 100 2- TW/cm  [16]. This 
indicates that the power algorithm for finding eigenstates 
of a one-dimensional system determines |Yn ñ,  with an 
accuracy sufficient for quantum mechanical simulations 
of the evolution of a one-dimensional system under the 
action of an intense ultrashort pulse.

In conclusion, we applied the power algorithm using 
Chebyshev operator polynomials to determine wave 
functions Yn x( )  and energy levels En of bound states of 
one-dimensional potentials with accuracy sufficient for 
their use as initial conditions Y Y( , = ) = ( )x t xn−∞  
of the time-dependent Schrödinger equation. We have 
shown that the increase in polynomial degree m results 
in the faster convergence of the power method: the 
number of iterations required to achieve the specified 
accuracy decreases rapidly. However, the number of 
operations km of calculating the Hamiltonian decreases 
much more slowly, and saturates at m ³ 8.  Thus, using 
Chebyshev polynomials of degree higher than eight in 
the power method for finding bound states appears 
redundant.

Fig. 5. a – ​Dependence of the maximum artifact deviation from zero of the electron mean coordinate over 50 fs on the number of 
the bound state of potential (8), obtained by numerical integration of the time-dependent Schrödinger equation (1) in the absence of 
external field (

?
) = 0  with initial condition Y Y( , = ) = ( )x t xn−∞ .  b, c – Examples of artifact dependencies of the electron mean 

coordinate on time for n = 0 and n = 8 respectively

(b)

(a) (c)
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