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Abstract. For numerical solution of the time-dependent Schrodinger equation describing the electron evolution
in a given potential interacting with the high-intensity ultrashort pulse field, one has to find bound states of
this potential with high accuracy. The paper considers the application of power algorithm using Chebyshev
operator polynomials to search for bound states of one-dimensional quasi-Coulomb potential. The algorithm
convergence improves with increasing polynomial degree m, saturating at m > 8. For such degree, the ground
state is found in ~10° Hamiltonian calculation operations, while higher states require ~10° operations (several

seconds and several minutes respectively).

DOI: 10.31857/5004445102411e04X

One-dimensional quantum systems, where the
Hamiltonian H depends on a single coordinate x, have
been studied since beginning of quantum era due to
the possibility of particle tunneling through a potential
barrier [1]. In the 1980—90s, when computational
capabilities were limited as compared to the modern
ones, the Hamiltonian’s dependence on a single
spatial coordinate enabled numerical simulation of
nonlinear ionization in such systems [2—4]. In the last
decade, the relatively low computational complexity
of numerical integration of the one-dimensional time-
dependent Schrodinger equation has made it possible
to self-consistently use quantum calculation results as
a nonlinear source in (3D + f) propagation equations
[5] and to model quantum electrodynamics effects in
strong fields of ultrashort pulses [6].

The interaction of a one-dimensional quantum
mechanical system with an electromagnetic field
is described by the time-dependent Schrodinger
equation for the wave function W(x,f), hereafter the
Hartree units are used unless otherwise specified:

; oY (x,t)

T = HY(x,t) + HY(x,1),

(1

where

—~ 192 -~
H 7§§+U(X)

is the electron Hamiltonian in the time-independent
potential # U (x), H(¢) is the operator describing the
interaction of the electron with the electromagnetic
wave field, and ¢ is a time. Equation (1) must be
provided with the initial condition W(x,f = —o0).

At t = —oo the system is usually in a bound state,
therefore, the initial conditions for equation (1) are
the wave functions of bound states | ¥,) (most often
the ground state with) with » = 0) the corresponding
discrete energy spectrum E, <0, where n = 0,1,2,...
Functions | ¥, ) are eigenfunctions of the operator H

and the search for bound states of the system reduces
to solving the time-independent Schrodinger equation:

H|¥,)=E,|¥,) 2)

For the majority of quantum systems, there is no
analytical solution to equation (2), and numerical
search for eigenfunctions and eigenvalues is needed.
This imposes high requirements on the accuracy
of the found solutions for further description of
quantum systems’ response using the time-dependent
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Schrodinger equation, since inaccurate determination
of the initial state leads to artifacts in the solution of
equation (1).

Various numerical approaches are used for
finding eigenfunctions and eigenvalues of the
time-independent Schrodinger equation: direct
integration [7] of equation (2), matrix approach
[8], imaginary time methods [9], spectral [10],
power [11] methods, etc. From a computational
point of view, the advantage of power methods is
that the same Hamiltonian approximation is used
in solving equations (2) and (1), which reduces
the rate of numerical error accumulation when
solving the time-dependent equation. The power
method is also free from the boundary conditions
problem [12, 13] and can be applied to both one-
and multi-dimensional problems. However, for
quantum systems with a large number of bound
states, the search for eigenfunctions can be
extremely time-consuming. Acceleration of power
methods convergence can be achieved, in particular,
by applying operators that are inverse to the
Hamiltonian [14] or Chebyshev polynomials of the
Hamiltonian [11], § 16. Let us consider the second
case, which is algorithmically simpler and in some
sense more universal (inversion of the Hamilton
operator is possible if it is approximated by finite
differences on a grid, but not in the case when
Fourier transform is used to calculate the derivative).
Let us briefly outline the idea of the power method.

Let’s choose an arbitrary approximation | ‘Pﬁ,o) )
taking into account the parity of the wave function
n-th state and its decay in the classically forbidden
region. We will repeatedly apply to the trial wave

function a certain polynomial operator P(ﬁ ), whose

eigenbasis coincides with the basis of H. When
transitioning from k-th to (k + 1)-th iteration, we
obtain

Dy = PCH) W), (3)

Let’s consider the formal expansion | ¥} in the
true basis | ¥;) of Hamiltonian H:
k k
W57) od W)+ 3 eI ),
Jj=n

where c;.k) are the expansion coefficients in

basis |¥;) at the k-th iteration. Then for the
approximation at the next iteration we get
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Fig. 1. Dependence of the amplification factor at each iteration
of the algorithm on the state energy when using Chebyshev
polynomials of different degrees m. Purple lines qualitatively
show the levels of discrete spectrum

P(E)
(*)
26 P(E) ¥

j=n

PH)YY) o ¥,) 4)

c(k+D)
J

Thus, the decrease in amplitudes for excited
states and continuum states (and, accordingly,
the convergence rate of the power algorithm

P8y ¢ ) is determined by the value
max jn|P(E;)/P(E,). The optimal power algorithm
should minimize it.

As a result of applying such an algorithm and
normalizing the wave function (at each step), we
will obtain the eigenfunction |¥,) and eigenvalue
E, =(¥, |I/17|‘Pn ), for which P(E,) is maximal. After
this, the algorithm can be repeated, removing from
the wave function the projections onto already found
states with lower n:

|\P(k+l)> |‘P(k+l)

SO,

j<n

i.e., ensuring ¢; = 0 for j < n, and find higher states
and energy values.

The convergence rate of the power algorithm is

determined by the chosen function P(ﬁ ) and its
spectrum, i.e. the values P(E,) for all energy states
in a given potential, including continuum ones.
It is desirable to use operator functions that are
polynomials of finite degree from the Hamiltonian
operator, due to the algorithmic simplicity of their
calculation (which is especially important in the
multidimensional case). We will use the fact that
among all polynomials of a given degree m, whose
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absolute values on the segment [—1, 1] do not
exceed 1, Chebyshev polynomials of the first kind
T, (e) = cos[m arccos(e)] have maximum values

outside this segment. Let £, = n? /(2Ax2) be the
maximum energy state corresponding to the Nyquist
frequency on a given computational grid with step Ax.
Using the linear transformation
P,(e)=T,(1—-2e/E,,),
we place the center of the Chebyshev polynomial
T, at E_,./2, i.e., transfer the region where the
polynomial |P,(¢) <1, from [—1, 1] to the range
of positive energies of continual states [0, £, ]; for
bound states we have |P, (¢) >1, see Fig. 1. For
bound state energies —E,,, < E, <0

max

2|En| — 2 |En|

max max

P, (E)~T,(1)+T. (1)

i.e., at each iteration the amplitude of the n-th state
will increase approximately by 1+ 2m 2|En |/E ax -

In this work, we use the power algorithm
with Chebyshev operator polynomials to find
eigenfunctions and eigenvalues of one-dimensional
quasi-Coulomb potential (8) with nine bound states.
The dependence of the algorithm’s speed on the
degree of Chebyshev polynomial is investigated. The
“optimal” polynomial degree m ~ 8 provides search
for the ground state |¥,) in k ~ 125 iterations (4 s
on a workstation with Intel® Xeon® E5-2630
processors), and the bound state with the highest
energy [Vg) in k& ~ 8000 (with calculation time about
4 min). When substituting the found wave functions
|¥,) as initial conditions of the time-dependent
Schrodinger equation (1) without external field, the
artifact value of the electron’s mean coordinate
deviates from zero by < 1019 over 50 fs.

In simulations, we use a uniform grid along the
coordinate x with step size Ax = 0.125 and number of
nodes N = 2'°. This provides a sufficiently large region
in x, which is important for the time-dependent
problem and wave function components related
to electrons detached from the atomic core. This
relatively coarse resolution complicates the finite-
difference approximation of the second derivative in
the Hamiltonian, therefore for its determination we
used the Fourier transform.

To study the convergence of the Chebyshev power
algorithm, let’s consider the potential
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Fig. 2. a, b — Dependencies on the iteration number & of relative
errors in determining the wave function SS{’,‘) and Aflf‘ ), as well as

the bound state energy error 6%‘) of potential U (x) = fchfz(x).
Panel a corresponds to the power algorithm with Chebyshev
polynomial P (H), b — with Pg(H). ¢ — Number of iterations
k and number of operations km, required to determine |¥) with
relative error Ay = 1071 for polynomials of different degrees m

U(x) = —ch%(x),
with the analytical solution for single bound state

¥, (x) = lch—l(x)

V2

and energy

ool

a 5 = —13.6¢V.

To determine the accuracy of the eigenfunctions

¥®)(x) in such potential we will use relative errors

(6)

8% = max|\P”(xf)_lP(k)(xi)|
OO Yl

and
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Fig. 3. a, b — Wave functions ¥(x), ¥(x), ¢, d — W¢(x), ¥,(x). Figures are plotted on a linear scale, b, d — on a semi-
logarithmic scale. The simulation was conducted for potential (8) using Chebyshev polynomial Pg(H)

|‘P(k)(xi) _ ‘P(kfl)(xi)|
mlax| \P(k—l)(x[) | )

The first of these expressions is applicable only for
potentials with analytical eigenfunction, while the
second is for an arbitrary one-dimensional potential.
The relative error in the state energy is defined as

(k) —
Ay’ =

87 =NE, — EY)/E,|

In Figs. 2a, b for polynomials of degrees m = 1 and
m = 8, the dependencies of relative errors %) A\(I,k )
and 8%‘) in the studied potential on the iteration number
k are shown. The error of energy 6%‘) with increasing
k decreases faster than 65{,‘) and Afl,k), therefore, in the
following, we will evaluate the algorithm execution
speed via the errors in determining the wave function.
Errors 8{{,‘) and Afyk ) decrease with the same slope and
almost simultaneously reach the “noise level” ~10~1
associated with errors of double precision numbers
(Figs. 2a, b). Thus, the termination condition for the
iterative algorithm can be chosen based on AY? ~ 1071,

With increasing polynomial degree m, the number
of iterations required to achieve the same accuracy
Ay = 101 monotonically decreases by 2 orders of
magnitude when m changes from 1 to 24 (see Fig. 2c¢).
However, one iteration using polynomial P, (ﬁ )
requires m times more operations than for polynomial
Pl(il\ ). Therefore, the choice of polynomial order
was determined by the saturation of the number of
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Fig. 4. The dependence of the relative error of wave functions A,
on the number of iterations k for potential (8). Numbers indicate
state numbers (0 corresponds to the ground state)

operations km, allowing to find [¥) with relative error
Ay = 10715, which in our case is ~10% and is achieved
at m ~ 8. Thus, the degree of Chebyshev polynomial
m = 8 is optimal for the practical implementation of
the power algorithm for solving the time-independent
Schrodinger equation (2).
Now let’s apply the power algorithm with the
“optimal” value m = 8§ to the potential U(x), with no
analytical solution to equation (2):

16

Ux)=— 8)

A {i
Jx? + B? ¢

The first factor here corresponds to the quasi-
Coulomb potential with an infinite number of levels
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Fig. 5. a — Dependence of the maximum artifact deviation from zero of the electron mean coordinate over 50 fs on the number of
the bound state of potential (8), obtained by numerical integration of the time-dependent Schrodinger equation (1) in the absence of
external field (H = 0) with initial condition ¥(x,r = —c0) = ¥, (x). b, ¢ — Examples of artifact dependencies of the electron mean

coordinate on time for » = 0 and n = 8 respectively

[2], while the second one makes their number finite.
To obtain a sufficiently large number of bound states,
we fixed the constant C = 512. Then we selected
the parameters A = 1.13 and B = 0.827 in such a
way that the ground state energy corresponds to
the ionization potential of the helium atom. In the
resulting potential, we found nine bound states.
The wave functions of the ground ¥ (x) and some
excited W¥,(x), W¢(x), and ¥,(x) states are shown in
Fig. 3 in linear (a, ¢) and semi-logarithmic (b, d)
scales respectively. The energies of these states are
E,=-2461¢V, E,=-984¢eV, E,=—1.20 ¢V, and
E, = —0.92 eV. In agreement with known analytical
solutions [15], outside the well, the wave functions

WV, (x) decrease as exp (—Lx|\/—2E,,) down to the

“noise” associated with double precision errors
(Figs. 3b, d).

Let’s examine the convergence of the power
algorithm for bound states with different quantum
numbers n. Figure 4 shows the dependence of relative
error Ay on iteration number k. At n = 0 the value
Ay =107" isachieved in k ~ 125 iterations, which
corresponds to program execution time of 4 s, at
n=1—in k ~ 125 iterations and 11 s, and at n =8
the value k increases to ~8000 and computation
time increases to ~4 min (on a workstation with
Intel® Xeon® E5—2630 processors).

We used the obtained wave functions ¥, (x) as initial
conditions for the time-dependent Schrodinger equation
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(1) with H = 0, which was numerically integrated
according to the method described in [16]. The average

value (¥ | x| V) of the electron coordinate operator x

obtained during simulation changes by < 10~'* over
50 fs for all found wave functions ¥, (x) (see Fig. 5).
Such magnitude of the average electron coordinate is
6—7 orders smaller than the value (¥ | x | ¥), achieved
in a one-dimensional quantum system under the action
of a pulse with intensity ~ 1 —100 TW/cm? [16]. This
indicates that the power algorithm for finding eigenstates
of a one-dimensional system determines ¥, ), with an
accuracy sufficient for quantum mechanical simulations
of the evolution of a one-dimensional system under the
action of an intense ultrashort pulse.

In conclusion, we applied the power algorithm using
Chebyshev operator polynomials to determine wave
functions ¥, (x) and energy levels E, of bound states of
one-dimensional potentials with accuracy sufficient for
their use as initial conditions ¥ (x,f =—o0) = ¥, (x)
of the time-dependent Schrodinger equation. We have
shown that the increase in polynomial degree m results
in the faster convergence of the power method: the
number of iterations required to achieve the specified
accuracy decreases rapidly. However, the number of
operations km of calculating the Hamiltonian decreases
much more slowly, and saturates at m > 8. Thus, using
Chebyshev polynomials of degree higher than eight in
the power method for finding bound states appears
redundant.
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