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Abstract. An evolution equation for polarization (electric dipole moment density) has been derived for type 11
multiferroics, where polarization is proportional to the vector product of cell ion spins. A regime is considered
in which the main evolution mechanism is exchange Coulomb interaction, modeled by the Heisenberg
Hamiltonian. The obtained polarization evolution equation contains spin density and nematic tensor density,
which appears as an anticommutator of spins for particles with S = 1 and higher (for particles with spin S = 1/2
it degenerates into particle concentration). Also, to construct a closed model of spin and polarization evolution
in multiferroics, equations for the above-mentioned physical quantities were obtained. The spin-current model
is justified using the momentum balance equation and spin evolution equation, derived from the microscopic
many-particle Pauli equation taking into account spin-orbit interaction. To analyze the mechanism of electric
dipole moment formation proportional to the vector product of magnetic ion spins, the spin-current model
was used, within which the relationship between the proportionality coefficient and the exchange integral was
obtained. The mean-field approximation is used in the work, where the many-particle wave function of the ion

system is approximated by the product of single-particle functions.
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1. INTRODUCTION

The diversity of phenomena in magnetically ordered
and dielectrically ordered media has been attracting
researchers’ attention over the past decades. One
example of theoretical research is the famous Landau-
Lifshitz-Gilbert equation for the evolution of magnetic
moment in magnetically ordered media, the concept of
which was proposed by Landau and Lifshitz in 1935. Of
particular interest is the simultaneous manifestation of
magnetic and dielectric ordering that occurs in media
called multiferroics. Moreover, these phenomena can
coexist relatively independently (type I multiferroics) or
exhibit interconnection (type II) [1]. In this paper, we
consider type 11 multiferroics, in which the polarization
of the crystal cell is formed proportionally to the vector
product of the spins of its constituent magnetic ions.

Usually, three mechanisms of polarization
emergence in type II multiferroics are distinguished
[2], for each of which a relationship between the
electric dipole moment of the crystal cell and the
spins of its magnetic ions was proposed [2]. The
features of the crystal lattice structure for the
formation of multiferroics can also be found in [2].
For our case under consideration, the relationship
between the dipole moment and spins of magnetic
ions was derived in [3] based on the spin-current
model. We use it below to derive a macroscopic
expression for polarization, which coincides with the
result of [4], where polarization was obtained from
symmetry considerations applied to thermodynamic
potentials. We also consider the justification of the
spin-current model from the perspective of the
quantum hydrodynamics method [5—9], which is the
main research method in this work. Using effective
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spin current in the spin field evolution equation,
caused by exchange interaction, allows not only
to reproduce the result of [4] but also to establish
a connection between the coefficient determining
the cell dipole moment and the exchange integral.
Moreover, a generalization of the result from [4] is
provided, taking into account the contribution of
quantum spin current associated with the Bohm
potential. Such generalization also helps to clarify
the applicability range of the result obtained in
[4]. Our proposed approach to justifying the form
of polarization and, one might say, to justifying
the spin-current model, allows establishing the
proportionality coefficient between spin current and
polarization.

The results described above serve as preliminary
steps before deriving the polarization evolution
equation, for which a set of possible interactions
can be included in the initial Hamiltonian in the
microscopic non-stationary Schrodinger-Pauli
equation. However, in this work, we limit ourselves
to considering Coulomb exchange interaction
in the form of the Heisenberg Hamiltonian
Hy =-JSI-S; , Where S; and S, are the spins
of two interacting particles (in our case, ions), and
J is the exchange integral related to the overlap of
electron wave functions.

In most cases, when analyzing magnetic
phenomena, the analysis is limited to using the
magnetization of the medium, which is proportional
to spin density (for a system of magnetic particles
of the same type). However, such a simplified
representation is valid only for particles with spin
1/2 [10]. When considering atoms/ions with large
spin, which is true for most magnetics forming
magnetically ordered states (ferromagnetic phases,
antiferromagnetic phases, etc.), quantum average
values of products of spin operator projections of
a single particle yield new physical quantities. The
simplest example is the nematic tensor, proportional
to the quantum average of the spin operators’
anticommutator [11, 12]. When examining individual
domains of a ferromagnet, we see a system of parallel
spins. In this case, the nematic tensor can be, at
least approximately, expressed through a single non-
zero spin projection. However, when disturbance
propagates, the picture becomes more complex,
and the degree of inaccuracy in the approximate
transition from the nematic tensor to the combination
of spin projections increases and requires systematic
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evaluation. A similar situation arises in the domain
wall region. In this paper, we focus on discussing
the nematic tensor because it enters the evolution
equation of electric polarization. Therefore, below we
derive the evolution equation of the nematic tensor
along with the evolution equation of spin density
and the evolution equation of polarization. Note
that the exchange interaction for a system of ions
with spin greater than 1/2 is not limited to the term
Hy =-JS; - S, , and at least for - particles with spm
S =1 gives biquadratic exchange Hur = —J(81 Sz)
Its contribution to the Landau-Lifshitz equation and
the necessity of using the nematic tensor are discussed
in work [13]. However, in this paper, we focus on the
contribution of exchange interaction described by the
Heisenberg Hamiltonian Hg = —-JS; - S».

The article is organized as follows. Section 2
examines the fundamentals of the quantum
hydrodynamics method and uses the momentum
balance equation for approximate justification of
the spin-current polarization model. Section 3
investigates the relationship between microscopic
electric dipole moment and macroscopic electric
dipole moment density. Section 4 derives the
polarization evolution equation under the influence
of exchange interaction described by the Heisenberg
Hamiltonian. The evolution equation derivation is
performed based on microscopic theory. Section 5
presents a brief discussion of the obtained results.

2. QUANTUM HYDRODYNAMICS METHOD —
MOMENTUM BALANCE EQUATION,
EQUILIBRIUM STATE, JUSTIFICATION
OF POLARIZATION STRUCTURE

The simplest definition in quantum theory of
material fields is the particle number concentration
(we only consider magnetic ions, but a more general
model allows accounting for concentration of
particles of different type — non-magnetic ions)

n(r,z)=fwg(R,t)Zs(r—r,.)\PS(R,t)dR. (1)

The evolution of concentration leads to the
continuity equation, in which particle flux density
appears j, coinciding with momentum density for non-
relativistic systems. In this work, we partially consider
spin-orbital interaction for analyzing the spin-current
model, i.e., we account for relativistic effects. Here
it is important to distinguish between particle flux
density and particle momentum density. The structure
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of particle flux density was used in work [14] to justify
the spin-current model. In this work, we consider the
evolution equation of momentum density and force
balance in it to reinterpret the result of work [ 14] within
the quantum hydrodynamics method.

Following the logic of concentration definition
(1), we define momentum density

p(r0) = [OPEROY B0 —r)p,¥g(Ro1) +

{H.c.)dR, )

and spin density
S(r,t) = f‘P}(R,t)ZS(r —1;) % (gi‘P(R,t))SdR, 3)

where H.c. is used to denote the Hermitian conjugate
term.

2.1. Momentum and Spin Balance Equations

The main purpose of this work is to examine the
influence of exchange interaction on the evolution
of electrical polarization in type Il multiferroics.
However, we will begin with a preliminary analysis
of polarization definition. For this, let us consider
the evolution of momentum and spin density of
the medium. We will take into account several
other interactions, namely, spin-orbital interaction,
Dzyaloshinskii-Moriya interaction, and electric
dipole moment energy in an external electric field.
Eventually, we will use the microscopic many-
particle Schrodinger-Pauli equation

ihd,¥(R,t) = HY(R,1) (4)
with the interaction Hamiltonian of the form
~ N . 1 -~ .
H = ;[—di By =5 (- [E; <Py ]) -
N 1 & ~ A
— ;- B; _EZ(UI'J'S” -S;+Dy .[si ijD . (%

Here N is the total number of particles/ions,
Y(R,t) is the wave function of the particle system,
R ={r,...,ry}, d, is the electric dipole moment
operator, which is defined through ion displacement,
its further connection with ion spins [2] will be
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determined during the analysis of the obtained evolution

equations of macroscopic functions, f) P = —ihV is
the momentum operator of the i-th particle, % isthe
reduced Planck constant, m; is the particle mass, c is
the speed of light in vacuum, E; and B, are the electric
field strength and magnetic field induction acting on the
i-th particle/ion, si is the dimensional spin operator, ﬁ,-
is the magnetic moment operator, proportional to the
spin operator ﬁ,- = y,-§,- through the gyromagnetic ratio
v;»Uy; = U(r; —r;) isthe scalar coefficient of exchange
Coulomb interaction in the Heisenberg Hamiltonian
(exchange integral D; =D(r; —r;) = -D; is the
vector coefficient of Dzyaloshinskii-Moriya exchange
spin-orbital interaction. Further in the work, the mean
field approximation is used, where the many-particle
wave function of the ion system is approximated by the
product of functions.

The Hamiltonian (5) contains five terms
corresponding to different interactions, namely
(in the order of terms in the Hamiltonian): the
potential energy of dipole moments in an external
electric field, spin-orbital interaction corresponding
to the effect of electric field on magnetic moments
of ions [15] (see sections 33 and 83), potential
energy of magnetic moment in an external magnetic
field, exchange Coulomb interaction in the form
of Heisenberg Hamiltonian, and Dzyaloshinskii-
Moriya exchange spin-orbital interaction. A more
detailed description allows accounting for the electric
field created by the system’s dipoles and acting on
dipole moments along with the external electric
field. It can also be noted that the electric field in
spin-orbital interaction can be caused by electric
dipole moments of the medium. Including exchange
interaction in the Hamiltonian for the Schrodinger
equation is not an example of a fundamental
microscopic approach. In this work, we consider
materials with strongly pronounced magnetic and
dielectric properties. These properties are formed in
groups of ions located at crystal lattice sites. Thus,
some interactions leading to the formation of an ion
or crystal lattice are not explicitly taken into account.
The exchange part of the electromagnetic interaction
of valence electrons is indirectly accounted for by
corresponding terms in the Hamiltonian, which
reflects the transition to the scale of distances and
energies at which ions and their compositions are

“elementary” objects of our theory.
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Following the quantum hydrodynamics method,
we obtain the corresponding momentum balance
equation

8,0 = g0, SPVSP + usPveP + PPUEP 4

+ L PRIV EP) + Fpyy,

2mc ©)

where
= f U(r)dr

is the exchange interaction constant, arising as an
integral characteristic of the interaction between
pairs of neighboring particles, it can be expressed
through the exchange integral, for a specific

model form of the exchange integral [16], J¥ is

the spin current tensor, PP is the electric dipole
moment density (formula presented below), Fp,,
is the Dzyaloshinskii-Moriya interaction force
density, and the spin evolution equation

2 1
0,S= %[S,B] + Egu[S,AS] +Tpy +Tso, (7)

where A is the Laplace operator, g, = f r2U (r)dr is
the second exchange interaction constant, being the
second “moment” of the exchange integral, while
constant g,, can be called the zero “moment” of
the exchange integral, Tp,, is the Dzyaloshinskii-
Moriya interaction torque density,
Tg = —-Lewbrghvpuy g9
is the spin-orbit interaction torque density. It
contains the total spin current J" and the
relativistic part of the spin current due to spin-
orbit interaction, which for a particle with spin
=1/2 has the form

wh

By, gy
dmet T

B —_
Iso =
For particles with large spin, the spin current is

expressed through the nematic tensor n*? (defined
below by formula (29)):

T = (y/me)ePnEr,

A special case of the spin evolution equation is the
Landau-Lifshitz-Gilbert equation. Equations (6) and
(7) are derived from the Schrodinger-Pauli equation

ANDREEV, TRUKHANOVA

with Hamiltonian (5). Consequently, equations (6)
and (7) contain the same interactions as Hamiltonian
(5). Note that the contribution of the Heisenberg
Hamiltonian is evidently the second term on the right
side of equation (7), which can be represented as the
divergence of the spin current tensor [17]:

(1/6)g, P SPASY =
= 05((1/6)g,£""1SP9587) = 5§y,

where index HH emphasizes that the spin current is
associated with the Heisenberg Hamiltonian.

In work [18], an example of the coefficient D
for perovskites is provided. In perovskites, the
following picture of interaction between the nearest
magnetic ions emerges. Exchange interaction occurs
through superexchange via a ligand, which is a non-
magnetic ion (for example, an oxygen ion) located
between magnetic ions but away from the direct line
connecting these ions. This mechanism leads to the
following structure of the Dzyaloshinsky coefficient:

D,-j ~ Ty X d,
where § is the displacement vector of the ligand
from the center of the segment connecting the
magnetic ions. Additionally, we need to introduce
a proportionality coefficient that accounts for the
decrease in interaction with increasing distance
between magnetic ions r; . As a result, we obtain

D = B(ry)r; x 3,

where the proportionality coefficient B(r;) depends
only on the magnitude of the distance between ions.

For the presented model of the Dzyaloshinsky
coefficient in perovskites, we arrive at the following
expressions for the density of the Dzyaloshinsky-
Moriya interaction force:

Fy = 38008 eebion(stois®)  (8)
where
£ = [edee + e B0

is the unreduced form of the interaction constant,
and for the torque density

Thy = 382" (-&SPOSP 4 c¥'5%005H), (9)
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where
gap) = JEBEE.

The first term in the torque (9) can be transformed
in the form of spin current divergence.

As a result, we get

= — 0" By + lgz(ﬁ)é‘)vs wdvgagdgh

TIL.;M 3

where

— 1 \Y 1 npvg2
Let’s once again focus on the structure of the

Dzyaloshinskii-Moriya interaction force density (8),

for which we write the final expression in vector form:

e 10)

Fpy, %8(;3)((5 S)V(V-S) —(S-V)V(5-9)), (11)

where

g = [EBEWE

The Dzyaloshinskii-Moriya vector, like the
exchange integral, is a function of distance that can
be replaced with a specific value when considering a
fixed distance between atoms in a crystal. Exchange
(primarily Coulomb) interaction is the mechanism of
interaction between neutral atoms, as the interaction
of valence electrons (electrons from outer shells). It
also contributes to the interaction of ions. In gases, the
distance between atoms varies significantly. However,
the interaction manifests at small distances (compared
to the average distance between atoms). This leads
to the fact that in macroscopic equations, short-
range interaction is described by a set of interaction
constants (mainly by one constant — the integral of
effective interaction potential, in exchange interaction
associated with the overlap of valence electron wave
functions of nearby atoms and therefore significantly
dependent on distance). From this perspective, the
Heisenberg exchange integral and the Dzyaloshinskii-
Moriya vector are integrable functions of the distance
between interacting atoms. In crystals, when neglecting
thermal vibrations of atoms/ions around the equilibrium
position, there is a fixed distance between atoms/ions.
When considering such systems, we can choose a
specific form of spatial dependence of the considered
functions in the form of a narrow “step”:
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U(r)=Uy6(r —a)B(a+da—r),

where 0 is the Heaviside function, U, is the value
of the exchange integral in the considered crystal,
a is the average distance between atoms, da is the
amplitude of thermal vibrations.

Note that if we obtain the integral only from the
Dzyaloshinskii-Moriya vector (as a function of r;),
it will turn to zero. However, when expanding wave
functions and the delta function, additional factors
containing r; arise, so that some expressions become
non-zero.

2.2. Equilibrium State and Spin-Current Model

A multiferroic is a system with magnetic and
dielectric ordering. As a consequence, there exist
macroscopic equilibrium electric and magnetic
fields inside the system. Therefore, it is necessary to
consider the equilibrium state of the system with non-
zero field values. From equation (6), it is evident that
for the considered interactions, non-zero field values
are possible in the presence of field inhomogeneity,
as all terms in the right-hand side contain spatial
derivatives of fields. The third and fourth terms in

the right-hand side are proportional to V EP . This
provides an opportunity for the formation of a
balance of these forces in the equilibrium state with
various types of electric field inhomogeneity. This
leads to the formation of equilibrium polarization
due to spin-orbital interaction:

PH = b SHOLBJOCB.
2mce

Note that here we used the self-consistent part
of the spin-orbital interaction corresponding to the
part of the many-particle wave function consisting
of the product of single-particle wave functions of
individual magnetic ions.

The combination of the first and second terms
in the right-hand side of the momentum balance
equation (6) gives an equilibrium magnetic field

proportional to the spin density B? = —gOuLS"3 /vy and
caused by exchange Coulomb interaction.

The force density of the Dzyaloshinskii-Moriya
interaction for an odd Dzyaloshinskii coefficient
has a structure different from other terms in the
momentum balance equation. Moreover, it contains
two spatial derivatives, which indicates a relatively
small contribution compared to other terms.
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Analysis of the equilibrium state based on the
momentum balance equation (6) allowed us to
obtain a relationship between polarization and spin
current. Obviously, the obtained relationship is a
special case of force balance, and in general, other
interactions may contribute to this relationship. The
next question that arises in the development of the
spin-current model is the expression for spin current
caused by various effects. We take expressions for
spin currents from the spin evolution equation. As
shown by the analysis above, the contribution of
exchange Coulomb interaction, taken in the form
of the Heisenberg Hamiltonian in the spin evolution
equation, can be represented as a divergence of spin
current. This gives us one of the partial spin currents.
The contribution of the Dzyaloshinskii-Moriya
interaction can also be represented as a divergence
of spin current, but under conditions that are also
formulated above.

2.3. Macroscopic polarization
within the spin-current model

Let’s consider the application of the spin-current
model to two types of partial spin currents. For the
spin current caused by the Heisenberg Hamiltonian,
we obtain the following expression for macroscopic
polarization:

_ 7 o _
P;lIH - zmcau B‘]?IEI)-I -
—_ B n_ gu B
g, (570 48" — 540 "), (12)

This corresponds to the result obtained by
M. Mostovoy [4] (see also work [19], p. 533). For
the spin current caused by the Dzyaloshinskii-
Moriya interaction, we also find an expression for
macroscopic polarization:

SWBJ%%I =

= gy MS% (13)

_r
2mce 12me

Pbu
We use these expressions below when analyzing

the microscopic structure of the electric dipole
moment considered in the literature [2].

Equations (9) and (10) lead to expression (13). The
main contribution to polarization does not depend
on spatial derivatives. In this case, the presence of
8 gives a non-zero spin current J ?)L[zjw’ which gives
a non-zero value of the spin-orbital interaction force
(the fourth term in the right-hand side of equation
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(6)). And the balance of this force with the third
term, proportional to polarization P (where P is
proportional to 8), gives a consistent equilibrium
condition. From formula (13), it follows that in
such equilibrium, there exists a relationship between
the medium polarization P and spin density in the
presented form. Expression (13) corresponds to the
electric dipole moment operator for collinear spins
presented in work [2] (see Figs. 2a—2c).

Depending on the structure and symmetry of crystals,
different mechanisms of polarization formation are
realized. It is shown that the displacement of charge
density can occur due to spin-orbital interaction. The
latter manifestsitselfin the presence of spin current in the
system of ions forming an inhomogeneous electric field.
Ifthe spin current due to Coulomb exchange interaction
predominates, then we arrive at formula (12). Expression
(12) coincides with the expression for polarization
(23), which was used in literature for magnetically
ordered structures with noncollinear spins realized in
perovskites of type RMnOj3, where R = Tb,Dy [20].
Formula (13) arises for M—X—M-structure, where M
represents magnetic ions, X represents a ligand ion.
This structure is realized in rare-earth perovskite-type
manganites (or orthorhombic manganites) RMnOj; at

R = Ho,Er,Tm,Yb [21, 22]. Another multiferroic is
the family of mixed-valence manganese oxides RMnOj,
where R =Y, Tb, Ho, Er or Tm [23]. The magnetic
structure in such substances is antiferromagnetic in the
ab plane, forming a collinear spin order of magnetic

ions Mnj; and Mnj .

2.4. Spin current and Bohm potential

Accounting for small oscillations of ions in
the vicinity of equilibrium position would require
considering the kinetic energy of ions in the initial
Hamiltonian (5). This would also lead to terms
describing particle flows, which are absent in this case
when considering crystals, and systematic exclusion
of flows from equations would complicate the given
equations. However, the consideration of kinetic energy
also manifests in the emergence of quantum effects,
particularly in the appearance of the quantum Bohm
potential, which contributes to the spin current in the
spin evolution equation [24] (see equation (9)):

o I SY
Tim = g e™SH P2 (14)

2m
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If we consider the quasi-classical dynamics of
polarization, then the partial currents obtained and
used above should exceed the spin current caused by
the Bohm potential.

Furthermore, the Bohm potential is associated
with the quantum motion of particles, which can
lead to deformations and the formation of an electric
dipole moment. Let us calculate it within the
framework of the spin-current model:

_ v _
Pl';ohm - mguaﬁ']gghm -
2 B u
= ﬁy2 L S_ LG L S_ (15)
4m~c h h

Let us compare the polarizations (12) and (15).
They have a similar structure, but expression (15)
contains concentration derivatives. Let us consider
the constant concentration regime and obtain an
estimate for the constant g, (without considering
the sign): g, > hy/2m.

2.5. Discussion of the spin-current model based
on the probability current structure

For the considered Hamiltonian, the continuity
equation 0,n + V- j = 0 leads to the particle current
density j of the following form:

i = [OPEROYTB —x)i¥s(R.0) +
+H.c.)dR, (16)

where

- 1 (s~ M -
ii :T[pi +m—[Ei xsi] . (17)
1

i€

To give a more familiar form to the particle
current operator, we included the momentum
operator f),., which may arise from the kinetic
energy operator in the original Hamiltonian, but
it is not considered in our case. Moreover, in work
[14], the momentum contribution is also discarded
since ions are considered whose motion is negligibly
small. Additionally, the particle/probability current
is defined ambiguously, and we can add the curl of an
arbitrary vector to definition (16), which will lead to a
change in the structure of operator (17) (see [14, 25]).
Usually, the curl of spin density/magnetization is
added to the probability current definition
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i =i+ (h/2ms)rotS,

where s is the spin of the considered ions. The balance

between the spin curl and the term caused by spin-
orbit interaction provides the relationship between the

electric field strength and spin density, and the further
connection between polarization and spin density:

P ~ (Sx(V xS))/S?,

see [14]. We also write a simplified form of this
formula without vector products

P ~ [(VS?/2 — (S V)S|/S?

for further comparison with the results of microscopic
structure analysis of the electric dipole moment [2].

3. ON THE MICROSCOPIC
DETERMINATION OF MULTIFERROIC
POLARIZATION

In the previous section, we presented an analysis of
the polarization structure associated with spin-orbital
interaction. This provides partial justification for the
spin-current model and the possibility for its further
generalization. Furthermore, such analysis provides
macroscopic expressions for polarization formed by
different types of exchange interaction (within the
spin-current model). This allows us to reconstruct
the microscopic structure of polarization leading
to the obtained macroscopic expressions. However,
these microscopic structures are already known in
the literature [2], and we can choose the one we
need to transition to the macroscopic expression and
compare it with the one obtained above.

Let’s consider the spins of two magnetic ions s;
and s; and, following the works, write the expression
for the electric dipole moment of the crystal unit cell

d; = oylr; (18)

i x[s; xs;11,

where we use the relative distance between particles
ry = I, — 1, in this case magnetic ions. Further,
let’s transition to the operator form of this equality

dj =Otl-j[rij X [Si x S]] (19)
for developing a quantum model of type II
multiferroics polarization. Let’s note for certainty the
commutation properties of spin operators
(57,571 = ihdePs]

(20)
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where o, [, y are tensor indices taking values of

Cartesian coordinates x, y, z. In this work, we imply
summation over repeated indices (Greek letters).

The symbol i is used for the imaginary unit i*> = —1,

8; — three-dimensional Kronecker symbol, e s
the three-dimensional Levi-Civita symbol.

From formula (18), it is evident that we are
considering ions with non-parallel spins in systems
with spiral magnetization structures [18]. However,
there are non-trivial examples of systems with parallel
spins [26], which are not described by this model.

The main element of consideration is the electric
dipole moment of the crystal cell. Therefore, in
definition (19), we transition from a pair of ions to
a cell with number /. To account for the fact that the
dipole moment is created by ion i in conjunction with
the neighboring ion, we introduce coefficient o;(r;),
which rapidly decreases with increasing distance, and
arrive at the following modification of definition (19):

di = o ()l x[8i x8;11, 1)
j=i
where, for example, o;(r;)=o; at r<a,,

a;(r;) =0 at r>a, coefficient a;(r;) can be
represented as a step function in three-dimensional
space.

Above, when deriving the momentum balance
equation (6), we used the definition of polarization

through the electric dipole moment operator d;:

P(r,f) = f \pg(R,z)Za(r —1,)(d,;¥(R,1))gdR. (22)

The initial “bare” electric dipole moment d; is

associated with ion displacement d; = q,r;, where
g; is the ion charge. Further, we will consider the
evolution of polarization (22) with operator (21).
Before moving on to the polarization evolution
equation, let’s examine the relationship between
macroscopic polarization P and spin density
associated with operator (21). Let’s take into account
the rapid decay of function a;(r;) with increasing
distance r; (following the method described in [27]).
To account for this property, let’s introduce the center
of mass variables of the particle pair R;; = (r; +r;)/2
and their relative distance r; =r; —r;. Let’s express
the coordinates of the particles under consideration
through new coordinates r; =R +(1/2)r; and
r; =R; —(1/2)r;. Let’s make the corresponding
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substitution in the delta function 8(r — r;) and in the
wave function W¥(R,t) = f CS TR RN ) which
are included in the definition of polarization (22).
Then, let’s perform the expansion in terms of relative
motion coordinates ri - In the lowest non-zero order
of expansion from (22), with substitution of (21), we
find

P(r,f) = %g(a)[(s VS—S(V-S)], (23)

where

8w = [Ea@dE

Up to a proportionality coefficient, the obtained
expression coincides with the result of M. Mostovoy [4]
(see also [19], p. 533), which was derived by him using
symmetry considerations for polarization, magnetization,
and thermodynamic potentials. Comparing the
coefficients in formula (23) and formula (2) of work
[4], we obtain

_ 2
8(a) = 3VXeH,

where y, is the dielectric susceptibility in the absence
of magnetism, y is the undetermined proportionality
coefficient used in work [4] for constructing the
thermodynamic potential (see formula (1) of work [4]).

Let’s continue comparing formula (23) with the
results discussed above. We can see that the result
of work [14], presented by us in section 2.4, does
not correspond to work [4] and our result based
on formula (21). However, the application of the
spin-current model with partial spin current due
to the Heisenberg exchange interaction gives us an
expression for Py (see section 2.3), which coincides
with formula (23) up to a proportionality coefficient.
Moreover, the coefficient in Py and is related to
the exchange integral included in the Heisenberg
Hamiltonian and is proportional to g,. This allows us
to interpret the function a;(r;) in (18) and operator
(21). As a result, we obtain the following relation at

1
5(3\( / mc)gu = g(a):

13

o (ry) = 5 == (ryp). (24)
In works [3, 18], it is stated that exchange Coulomb

interaction leads to the formation of polarization

with parallel spins, while the structure of type (18)
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corresponds to the Dzyaloshinskii-Moriya interaction.
Our analysis shows that considering the exchange Coulomb
interaction between ions in the form of the Heisenberg
Hamiltonian leads to the structure of the electric dipole
moment defined by expression (18). Furthermore,
our analysis allows us to analytically calculate the
proportionality coefficient that determines the dipole
moment in formula (18).

3.1. On physical mechanisms leading to
the formation of spin polarization structure

For comparison, let’s consider the polarization
structure arising in a system of parallel spins,
followmg review [2] (see Fig. 2, case 1): d; ~
~T (sz s,+1) This leads to the following macroscopic
polarization: P* = gOHS , where g(p fH (r)dr.
Analyzing case (13), in the mode of ligand ion
displacement perpendicular to the spin polarization
direction, we obtain P* =gl S* and with
additional condition gy = —(1/6)g2(ﬁ)8°‘. From
the microscopic description perspective, we can
conclude that IT (r;) = r;B(r,-j)S“.

The presented analysis allows us to reinterpret Fig. 2
in review [2] (the first two cases). Paper [2] states that
the electric dipole moment d; ~ m(s; - s;j11) is caused
by symmetric exchange interaction, or, in other words,
by the Coulomb exchange interaction represented by

the Heisenberg Hamiltonian. Paper [2] also states that
the electric dipole moment

d; ~ o[ x[s; xs;]]

is caused by antisymmetric exchange interaction, i.e.,
the Dzyaloshinskii-Moriya interaction. Our analysis,
based particularly on equations (12) and (13), leads
to an opposite interpretation of the nature of these
dipole moment operators. Note that the spin-current

model is usually tied to explaining the structure

/

d, ~ o [sl-xsj]].

lj

This is evident even from Fig. 2fin paper [2]. The
connection between the polarization structure and
the interaction leading to its formation is not quite
clear in paper [2]. One might assume that there is
a qualitative interpretation based on comparing
spin structures in the Heisenberg Hamiltonian
(or Dzyaloshinskii-Moriya) and in the electric
dipole moment. If both structures contain scalar
products of spins, they have a common mechanism,
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i.e., symmetric Heisenberg exchange. Otherwise, if
both structures contain vector products of spins, the
common mechanism is the Dzyaloshinskii-Moriya
interaction. But the analogy described here is not
correct. Manipulation with spin operators often
leads to the emergence of a commutator, which
transforms the scalar product of spin operators into
a vector product and vice versa. What needs to be
monitored as an invariant in qualitative analysis
is the mathematical or tensor structure of the
interaction coefficient in the original Hamiltonian.
In the Heisenberg Hamiltonian, this is a scalar
quantity — the exchange integral. Therefore, one can
expect that the corresponding polarization will be
related to spin operators through a scalar coefficient
(see a in formula (18)). The Dzyaloshinskii-Moriya
Hamiltonian contains the Dzyaloshinskii vector
constant. Therefore, one can expect that polarization
will be related to spin operators through a vector

coefficient d; ~ n(gi . §,~+1). Here, as we have shown,
the coefficient is not the Dzyaloshinskii constant
itself, but the ligand displacement vector that enters
into the Dzyaloshinskii constant [18] D; ~ r; x 3.
The described discrepancy between the mechanism
and interpretation may be the reason for criticism of
the spin-current model [28]. However, the reasons
for this noted inconsistency may be deeper.

4. POLARIZATION EVOLUTION EQUATION

The analysis presented above shows that different
types of electric dipole moment of a multiferroic
cell can be obtained based on the quantum
hydrodynamics method. Despite the emphasis on
the evolution of macroscopic functions, the quantum
hydrodynamics method contains a connection with
microscopic description. Based on the obtained
definition of the electric dipole moment for the
regime when it is proportional to the vector product of
spins (18) (previously known from works [2, 3]), and
its transformation to form (21), we proceed to derive
the evolution equation for multiferroic polarization.
Let us specify the form of the Hamiltonian used for
the proposed derivation:

= ZU< )(si-5)), (25)
1 1j=1,
J=i
where r; =[r; —1; |.
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Further, according to the quantum hydrodynamics
method, we differentiate the polarization definition
(22) with operator (21) with respect to time and
use the time-dependent Schrodinger equation to
transform the obtained expression to the form

0, P(r 1) =

- %f‘PT(R”)Ei:f’(f —1,)[H.d;[¥(R.)dR. (26)

Let us represent the commutator appearing in
formula (26) as

[ﬁ,gl?] = —ih ZUUOL E“Byrﬁ(2sl S; —2sjs, +

J¢l
~Y ~o ~Y ~C.~C
+1{sj,8; )57 — {51,581 bsi)+ > ans“BYr
n=i,jj=i
AYAGA ’Y 'YA ~OC
X((SnSj51 SnS/.S‘t)Um +(SnSJSI —SnSjSI)Unj)}
(27)
where
a~p  ~Bra
{St ,Sz } = 27TOLB = Sz Si +8;i8i

is the anticommutator of spin operators, proportional
to the nematic tensor operator n?f’.

Let’s use the property of rapid decrease of
functions U; and o; with increasing distance
between particles. For this, we introduce the
coordinates of the center of mass and relative
distance. We have two groups of terms. In one, we
consider pairs of particles, and in the other — groups
of three particles. For particle pairs, we have already
introduced the required coordinates when analyzing
the polarization structure (23). Let’s present the
required variables for a system of three particles.
Let’s write the center of mass coordinate

=(r; +r1; +71,)/3,
as well as two coordinates of relative motion

I

w =0 =1, —T,, T, =0

i =T; —T,.

J
When necessary, we can use the coordinates of
relative motion of the third pair of particles

I =T3 =0 —Iy.

Also, let’s present the inverse transformation
of individual particle coordinates through the
introduced variables:

ANDREEV, TRUKHANOVA

l.l = szn =+ (2/3)]'1 (1/3) jn>s
r; =Ry, —(1/3)r;, +2/3)r,
t, =Ry, — (138, — /31,

Next, we’ll use the property of rapid decay of
functions U; and a; with increasing distance and
perform decomposition of all functions in the integral
expression (delta functions and two wave functions)
by the relative distance between particles. Let’s note
the necessary elements of the wave function argument
structure

Y(R,t) = ‘I’(...,r,-,...,rj,...,rn,...,t).

The derivation method is discussed in more detail
in the Appendix. Note that a similar method is used
in deriving other equations in the presented work.

The expression obtained in the first order of
the relative distance between particles leads to the
following expression for polarization evolution
(in zero order, the polarization derivative equals
Zero):

8tPa = %Saﬁygu(a)[syaﬁncc — TCO-GaBSY +

£ RI%0,8° — S°0,m°], (28)
which is valid for atoms/ions with arbitrary spin.
Equation (28) contains the following interaction

constant:
Zuw) = EU @ (@)dE.

The calculation method can be found in work [27],
where it is considered for another type of physical
systems but contains an analogy in the main stages.
Furthermore, equation (28) contains the nematic

tensor n*®. For ions with spin different from 1/2,
the anticommutator of spin operators differs from
the Kronecker symbol. The quantum average of
this operator gives an independent physical quantity

called the nematic tensor n*?(r,), which exists
alongside spin density:

= LS8 (6T 5]+ T5T ywlsaR. (29)

For spin 1/2 the nematic tensor becomes
proportional to concentration
7 = (n?/4)5%n,
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and equation (28) simplifies to

52
9,P* = ?a“ﬁyguw)[syaﬁn —ndpS'].  (30)

Note that when considering Hamiltonian (25), the
concentration does not change with time according
to the continuity equation but can be inhomogeneous
in space.

4.1. Spin Density Evolution Equation

When justifying the spin-current model, we
considered a Hamiltonian containing several types
of interactions (5), while the main result of this work
(28) and (30) was obtained for evolution under the
Heisenberg Hamiltonian. Here is the corresponding
spin evolution equation

1

0,8 = Egu[S,AS], (€20)

where
g, = [EU®dE

Note that the rigorous derivation of the motion
equation for magnetization/spin density (31) in the
continuum approximation was performed using the
quantum hydrodynamics method in work [16].

4.2. Nematic Tensor Evolution Equation

To obtain a closed system of quantum
hydrodynamics equations, we need to derive the
evolution equation for the nematic tensor (29) under
the exchange interaction (25):

0,1 = go, [n¥eP1® 4 aPre¥e180 (32)

where the coefficient

gou = [U®NE,

For spin 1/2 we have n®® = (12 /4)5%*n, the left
side reduces to 9,n, and the right side of equation
(32) becomes zero in accordance with the continuity
equation for the considered Hamiltonian.

5. CONCLUSIONS

An evolution equation for electric polarization in
type II multiferroics is proposed, where the crystal
cell polarization is formed proportionally to the vector
product of spins of its magnetic ions. The equation is
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derived using the quantum hydrodynamics method
as part of a closed system of equations, including
evolution equations for spin density, nematic tensor,
and concentration.

Justification of the spin-current model for
multiferroic polarization is provided based on the
quantum hydrodynamics method. The force density
acting from the electric field on the electric dipole
moment and the spin-orbital interaction force density
have the same structure, leading to the possibility of
balance between these forces. This allows introducing
an effective electric dipole moment density caused
by spin-orbital interaction and proportional to the
spin current. Using the spin current from the spin
evolution equation gives the final macroscopic
expression. Based on this, one can reconstruct the
operator corresponding to this type of polarization.
As a result, we obtain the microscopic expression
used to derive the polarization evolution equation.

Furthermore, an interpretation of the scalar
coefficient defining the microscopic electric dipole
moment through the exchange integral included
in the Heisenberg Hamiltonian was obtained. This
conclusion is based on using the spin-current model
with spin current caused by exchange interaction in
the Heisenberg Hamiltonian approximation.

6. DATA AVAILABILITY

The question of data availability is not applicable
to this article, as this purely theoretical study did not
generate or analyze any new data.
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APPENDIX. ON THE METHOD
OF DERIVING THE POLARIZATION
EVOLUTION EQUATION

When averaging the commutator (27) over wave
functions (26), we perform substitution of spatial
variables in the i-th, j-th, and n-th arguments when
considering the function of three coordinates under
the integral (i-th and j-th when considering the
function of two coordinates). Variable substitution
in the delta function is also performed. Further, we
use the fact that the integrand functions rapidly
decay with increasing relative distance between
ions, which corresponds to the nearest-neighbor
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interaction approximation. This property of
functions U (r) and o(r) gives us the possibility to
expand the wave function and d-function in terms
of the relative distance between particles. Let us
write the corresponding wave function expansion,
limiting ourselves to the case when the integrand
functions U (r) and a(r) depend on coordinates of
two particles. This corresponds to the first group of
terms in commutator (27). Further, we obtain

Y(R,t) = ‘P(...,rl-,...,rj,...,t) =

_ _ 1 1
= YR, =¥ [ Ry + 575k, —Er,-j,...,t]m
~ WR) = W, R oo R o) +
1 0 0
=T | ==——— = |VY(...,R; ,...,R i 5,...,f
+2rlj (9R,-j,1 aRU,z] ( LR /B EARRE Ay /AR )+
i
ij
2 ORE,  ORY,
0 0
X lP(""Rij,l" ij,20 t) (33)
oRP, ORD,
Rji=R;, =Ry

are defined for ions located in the i-th and j-th cells
respectively. Additional indices 1 and 2 are used to
specify which argument of the many-particle wave
function is being differentiated, since as a result
of Taylor series expansion, we obtained that these
arguments contain the same variable.

Note the presence of spin indices in the considered
many-particle wave function (wave spinor)

Y(R,1) = ¥Yg(R,1) =

=W s eI Tyt

i jrna nr
and the action of spin operators on this wave spinor

~a o
s;i P(R,) = (s; P)g(R,1) =

~o
= sslsl,‘{’ .,Si/,m’sj,_”,sn’m(...,ri,...,rj,...,rn,...

7t)9

as well as the formula for calculating average values
taking into account the spinor structure

F = f\P} S 8(r — 1)(F ¥)gdR.

i,j=i

(34)

Changes in the form of arguments in the
coordinate part of the wave function do not result in
changes in the form of spin operators’ action.
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Separately, we note the result of the expansion of
d-function:

d(r—r) = 5(Y—R,J —(1/2)ry) ~
~ R 0 R
NS(]’ 1]) 1]8 ( - lj)+
1 0
T rg ”Bar " —58(r —Ry) + .. (35)

Let’s also present how this expansion manifests in
the structure of the macroscopic function:

F(r,t) = f\yg S8(r —1;)(Fj'¥)sdR ~

i,j=i
zf‘PgZS(r VE ;P)gdR —
i,j=i
E> 8 —Ry) r(Fy¥)gdR +
i,j=i

1
238r orP

f\{ﬁ S8 — Ry) rfrf (Fy¥)sdR, (36)

ij=i

where derivatives with respect to coordinate r can
be taken outside the integral. Note that formula (36)
represents a partial result, and the final expression
for the function expansion F(r,f) appears when
considering the expansion of wave functions.

After taking into account the short-range nature
of interaction, there arises a need for approximate
consideration of the many-particle wave function to
obtain a closed mathematical apparatus.

In general, for a many-particle system with
complex spin configuration, the exact wave function
cannot be represented as a product of a function
depending on spatial coordinates and a function
depending only on spin variables. The general form
of the function is determined by the superposition of
such products, with separate groups corresponding
to different values of the total spin of a pair or triple
of considered particles. This is especially significant
for systems with spin-orbital interaction, which is
considered in Hamiltonian (5). Nevertheless, we
limit ourselves to representing the wave function
as a product of single-particle wave functions,
assuming that a more detailed consideration of
the wave function structure will give corrections
to the proposed “main field” approximation. Such
approximation proved sufficient when deriving the
contribution of Heisenberg exchange interaction to
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the Landau-Lifshitz equation [16]. Therefore, this
approximation is used despite accounting for spin-
orbital interaction, which is a small relativistic effect.
Note that, as shown above, polarization is caused by
spin-orbital interaction. However, the evolution of
polarization and other macroscopic functions occurs
under the influence of a set of interactions, and spin-
orbital interaction can be considered small compared
to them.
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