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1. INTRODUCTION

The diversity of phenomena in magnetically ordered 
and dielectrically ordered media has been attracting 
researchers’ attention over the past decades. One 
example of theoretical research is the famous Landau-
Lifshitz-Gilbert equation for the evolution of magnetic 
moment in magnetically ordered media, the concept of 
which was proposed by Landau and Lifshitz in 1935. Of 
particular interest is the simultaneous manifestation of 
magnetic and dielectric ordering that occurs in media 
called multiferroics. Moreover, these phenomena can 
coexist relatively independently (type I multiferroics) or 
exhibit interconnection (type II) [1]. In this paper, we 
consider type II multiferroics, in which the polarization 
of the crystal cell is formed proportionally to the vector 
product of the spins of its constituent magnetic ions.

Usually, three mechanisms of polarization 
emergence in type II multiferroics are distinguished 
[2], for each of which a relationship between the 
electric dipole moment of the crystal cell and the 
spins of its magnetic ions was proposed [2]. The 
features of the crystal lattice structure for the 
formation of multiferroics can also be found in [2]. 
For our case under consideration, the relationship 
between the dipole moment and spins of magnetic 
ions was derived in [3] based on the spin-current 
model. We use it below to derive a macroscopic 
expression for polarization, which coincides with the 
result of [4], where polarization was obtained from 
symmetry considerations applied to thermodynamic 
potentials. We also consider the justification of the 
spin-current model from the perspective of the 
quantum hydrodynamics method [5–9], which is the 
main research method in this work. Using effective 
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spin current in the spin field evolution equation, 
caused by exchange interaction, allows not only 
to reproduce the result of [4] but also to establish 
a connection between the coefficient determining 
the cell dipole moment and the exchange integral. 
Moreover, a generalization of the result from [4] is 
provided, taking into account the contribution of 
quantum spin current associated with the Bohm 
potential. Such generalization also helps to clarify 
the applicability range of the result obtained in 
[4]. Our proposed approach to justifying the form 
of polarization and, one might say, to justifying 
the spin-current model, allows establishing the 
proportionality coefficient between spin current and 
polarization.

The results described above serve as preliminary 
steps before deriving the polarization evolution 
equation, for which a set of possible interactions 
can be included in the initial Hamiltonian in the 
microscopic non-stationary Schrödinger-Pauli 
equation. However, in this work, we limit ourselves 
to considering Coulomb exchange interaction 
in the form of the Heisenberg Hamiltonian 
H JH
� � �= 1 2− ⋅S S , where S1  and S2  are the spins 
of two interacting particles (in our case, ions), and 
J is the exchange integral related to the overlap of 
electron wave functions.

In most cases, when analyzing magnetic 
phenomena, the analysis is limited to using the 
magnetization of the medium, which is proportional 
to spin density (for a system of magnetic particles 
of the same type). However, such a simplified 
representation is valid only for particles with spin 
1/2 [10]. When considering atoms/ions with large 
spin, which is true for most magnetics forming 
magnetically ordered states (ferromagnetic phases, 
antiferromagnetic phases, etc.), quantum average 
values of products of spin operator projections of 
a single particle yield new physical quantities. The 
simplest example is the nematic tensor, proportional 
to the quantum average of the spin operators’ 
anticommutator [11, 12]. When examining individual 
domains of a ferromagnet, we see a system of parallel 
spins. In this case, the nematic tensor can be, at 
least approximately, expressed through a single non-
zero spin projection. However, when disturbance 
propagates, the picture becomes more complex, 
and the degree of inaccuracy in the approximate 
transition from the nematic tensor to the combination 
of spin projections increases and requires systematic 

evaluation. A similar situation arises in the domain 
wall region. In this paper, we focus on discussing 
the nematic tensor because it enters the evolution 
equation of electric polarization. Therefore, below we 
derive the evolution equation of the nematic tensor 
along with the evolution equation of spin density 
and the evolution equation of polarization. Note 
that the exchange interaction for a system of ions 
with spin greater than 1/2 is not limited to the term 
H JH
� � �= 1 2− ⋅S S , and at least for particles with spin 

S = 1 gives biquadratic exchange H JH
� � � �

2 1 2
2= ( )− ⋅S S . 

Its contribution to the Landau-Lifshitz equation and 
the necessity of using the nematic tensor are discussed 
in work [13]. However, in this paper, we focus on the 
contribution of exchange interaction described by the 
Heisenberg Hamiltonian H JH

� � �= 1 2− ⋅S S .
The article is organized as follows. Section  2 

examines the fundamentals of the quantum 
hydrodynamics method and uses the momentum 
balance equation for approximate justification of 
the spin-current polarization model. Section 3 
investigates the relationship between microscopic 
electric dipole moment and macroscopic electric 
dipole moment density. Section 4 derives the 
polarization evolution equation under the influence 
of exchange interaction described by the Heisenberg 
Hamiltonian. The evolution equation derivation is 
performed based on microscopic theory. Section 5 
presents a brief discussion of the obtained results.

2. QUANTUM HYDRODYNAMICS METHOD – ​
MOMENTUM BALANCE EQUATION, 

EQUILIBRIUM STATE, JUSTIFICATION 
OF POLARIZATION STRUCTURE

The simplest definition in quantum theory of 
material fields is the particle number concentration 
(we only consider magnetic ions, but a more general 
model allows accounting for concentration of 
particles of different type – ​non-magnetic ions)

	 n t R t R t dRS
i

i S( , ) = ( , ) ( ) ( , ) .r r r∫ ∑ −Ψ Ψ† δ � (1)

The evolution of concentration leads to the 
continuity equation, in which particle flux density 
appears j, coinciding with momentum density for non-
relativistic systems. In this work, we partially consider 
spin-orbital interaction for analyzing the spin-current 
model, i.e., we account for relativistic effects. Here 
it is important to distinguish between particle flux 
density and particle momentum density. The structure 
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of particle flux density was used in work [14] to justify 
the spin-current model. In this work, we consider the 
evolution equation of momentum density and force 
balance in it to reinterpret the result of work [14] within 
the quantum hydrodynamics method.

Following the logic of concentration definition 
(1), we define momentum density

p r r r( , ) = ( ( , ) ( ) ( , )t R t R tS
i

i i S∫ ∑ − +Ψ Ψ† δ p

	 +H.c.) ,dR � (2)

and spin density

S r r r( , ) = ( , ) ( ) ( ( , )) ,t R t R t dRS
i

i i S∫ ∑ − ×Ψ Ψ† δ s � (3)

where H.c. is used to denote the Hermitian conjugate 
term.

2.1. Momentum and Spin Balance Equations

The main purpose of this work is to examine the 
influence of exchange interaction on the evolution 
of electrical polarization in type II multiferroics. 
However, we will begin with a preliminary analysis 
of polarization definition. For this, let us consider 
the evolution of momentum and spin density of 
the medium. We will take into account several 
other interactions, namely, spin-orbital interaction, 
Dzyaloshinskii-Moriya interaction, and electric 
dipole moment energy in an external electric field. 
Eventually, we will use the microscopic many-
particle Schrödinger-Pauli equation

	 i R t H R tt� �¶ Ψ Ψ( , ) = ( , ) � (4)

with the interaction Hamiltonian of the form

H
mc

i

N

i i i i i
� � � �=

1
2

( [ ])
=1
∑ − ⋅ − ⋅ × −






d E E p∝

	 − ⋅ − ⋅ + ⋅ ×



( )








≠

∑∝    

i i
j
j i

N

ij i j ij i jUB s s D s s1
2 =1,

. � (5)

Here N is the total number of particles/ions, 
Ψ( , )R t  is the wave function of the particle system, 
R N= { ,..., }1r r ,  di  is the electric dipole moment 
operator, which is defined through ion displacement, 
its further connection with ion spins [2] will be 

determined during the analysis of the obtained evolution 
equations of macroscopic functions, p� ��i i= − ∇  is 
the momentum operator of the i-th particle,   is the 
reduced Planck constant, mi is the particle mass, c is 
the speed of light in vacuum, Ei and Bi are the electric 
field strength and magnetic field induction acting on the 
i-th particle/ion, si  is the dimensional spin operator, m̂i 
is the magnetic moment operator, proportional to the 
spin operator m̂i = giŝi through the gyromagnetic ratio 
gi ij i jU U, = ( )r r-  is the scalar coefficient of exchange 
Coulomb interaction in the Heisenberg Hamiltonian 
(exchange integral D D r r Dij i j ji= ( ) =- -  is the 
vector coefficient of Dzyaloshinskii-Moriya exchange 
spin-orbital interaction. Further in the work, the mean 
field approximation is used, where the many-particle 
wave function of the ion system is approximated by the 
product of functions.

The Hamiltonian (5) contains five terms 
corresponding to different interactions, namely 
(in  the order of terms in the Hamiltonian): the 
potential energy of dipole moments in an external 
electric field, spin-orbital interaction corresponding 
to the effect of electric field on magnetic moments 
of ions [15] (see sections 33 and 83), potential 
energy of magnetic moment in an external magnetic 
field, exchange Coulomb interaction in the form 
of Heisenberg Hamiltonian, and Dzyaloshinskii-
Moriya exchange spin-orbital interaction. A more 
detailed description allows accounting for the electric 
field created by the system’s dipoles and acting on 
dipole moments along with the external electric 
field. It can also be noted that the electric field in 
spin-orbital interaction can be caused by electric 
dipole moments of the medium. Including exchange 
interaction in the Hamiltonian for the Schrödinger 
equation is not an example of a fundamental 
microscopic approach. In this work, we consider 
materials with strongly pronounced magnetic and 
dielectric properties. These properties are formed in 
groups of ions located at crystal lattice sites. Thus, 
some interactions leading to the formation of an ion 
or crystal lattice are not explicitly taken into account. 
The exchange part of the electromagnetic interaction 
of valence electrons is indirectly accounted for by 
corresponding terms in the Hamiltonian, which 
reflects the transition to the scale of distances and 
energies at which ions and their compositions are 

“elementary” objects of our theory.

mi

mi
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Following the quantum hydrodynamics method, 
we obtain the corresponding momentum balance 
equation

∂ ∇ + ∇ + ∇ +t ug S S S B P Ep = 0
β β β β β βµ

	 + ∇ +
γ

εβγδ δγ β
2

( ) ,
mc

J E DMF � (6)

where

g U r du0 = ( )ò r

is the exchange interaction constant, arising as an 
integral characteristic of the interaction between 
pairs of neighboring particles, it can be expressed 
through the exchange integral, for a specific 
model form of the exchange integral [16], J δγ  is 
the spin current tensor, Pb  is the electric dipole 
moment density (formula presented below), FDM  
is the Dzyaloshinskii-Moriya interaction force 
density, and the spin evolution equation

	 ∂ + + +t u DM SOgS S B S S T T=
2

[ , ]
1
6

[ , ] ,
γ


∆ � (7)

where D is the Laplace operator, g r U r du = ( )2ò r  is 
the second exchange interaction constant, being the 
second “moment” of the exchange integral, while 
constant g u0  can be called the zero “moment” of 
the exchange integral, TDM  is the Dzyaloshinskii-
Moriya interaction torque density,

T
c

E J JSO SO
α αβγ βµν µ γν

β
αβγ

ε ε= − −∂


is the spin-orbit interaction torque density. It 
contains the total spin current J γν  and the 
relativistic part of the spin current due to spin-
orbit interaction, which for a particle with spin 
S = 1 2/  has the form

J
mc

nESO
αβ αβγ γµ

ε=
4

.


For particles with large spin, the spin current is 
expressed through the nematic tensor παβ  (defined 
below by formula (29)):

J mc ESO
αβ βµν αν µγ ε π= ( ) ./

A special case of the spin evolution equation is the 
Landau-Lifshitz-Gilbert equation. Equations (6) and 
(7) are derived from the Schrödinger-Pauli equation 

with Hamiltonian (5). Consequently, equations (6) 
and (7) contain the same interactions as Hamiltonian 
(5). Note that the contribution of the Heisenberg 
Hamiltonian is evidently the second term on the right 
side of equation (7), which can be represented as the 
divergence of the spin current tensor [17]:

(1 6) =/ g S Suε
αβγ β γ∆

 = ((1 6) ) = ,∂ ∂ −∂δ
αβγ β

δ
γ

δ
αδε/ g S S Ju HH

where index HH emphasizes that the spin current is 
associated with the Heisenberg Hamiltonian.

In work [18], an example of the coefficient D ij  
for perovskites is provided. In perovskites, the 
following picture of interaction between the nearest 
magnetic ions emerges. Exchange interaction occurs 
through superexchange via a ligand, which is a non-
magnetic ion (for example, an oxygen ion) located 
between magnetic ions but away from the direct line 
connecting these ions. This mechanism leads to the 
following structure of the Dzyaloshinsky coefficient:

D rij ij ´d,

where d  is the displacement vector of the ligand 
from the center of the segment connecting the 
magnetic ions. Additionally, we need to introduce 
a proportionality coefficient that accounts for the 
decrease in interaction with increasing distance 
between magnetic ions rij . As a result, we obtain

D rij ij ijr= ( ) ,β δ´

where the proportionality coefficient b( )rij  depends 
only on the magnitude of the distance between ions.

For the presented model of the Dzyaloshinsky 
coefficient in perovskites, we arrive at the following 
expressions for the density of the Dzyaloshinsky-
Moriya interaction force:

	 F g S SDM D
σ αλµσ ν βµν βγδ α γ λ δδ ε ε=

1
2

( ),
4
 ¶ ¶ � (8)

where

g D


4 = ( ( )
1 ( )

)
αλµσ α λ µσ µ σξ ξ β ξ δ ξ ξ

ξ
β ξ
ξ∫ +

∂
∂

is the unreduced form of the interaction constant, 
and for the torque density

	 T g S S S SDM
µ

β
ν µδν β δ β αδν α δ µδ ε ε=

1
3

( ),2( ) − ∂ + ∂ �(9)
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where

g d2( )
2 3= ( ) .β ξ β ξ ξò

The first term in the torque (9) can be transformed 
in the form of spin current divergence.

As a result, we get

T J g S SDM DM
µ

β
µβ

β
ν αδν α δ µδ ε=

1
3

,2( )−∂ + ∂

where

	 J gDM
µβ

β
ν µβνδ ε=

1
3

1
2

.2( )
2S  � 10)

Let’s once again focus on the structure of the 
Dzyaloshinskii-Moriya interaction force density (8), 
for which we write the final expression in vector form:

    F S S S SDM g=
1
3

(( ) ( ) ( ) ( )),( )β δ δ⋅ ∇ ∇ ⋅ − ⋅∇ ∇ ⋅ � (11)

where

g d( )
2= ( ) .β ξ β ξ ξò

The Dzyaloshinskii-Moriya vector, like the 
exchange integral, is a function of distance that can 
be replaced with a specific value when considering a 
fixed distance between atoms in a crystal. Exchange 
(primarily Coulomb) interaction is the mechanism of 
interaction between neutral atoms, as the interaction 
of valence electrons (electrons from outer shells). It 
also contributes to the interaction of ions. In gases, the 
distance between atoms varies significantly. However, 
the interaction manifests at small distances (compared 
to the average distance between atoms). This leads 
to the fact that in macroscopic equations, short-
range interaction is described by a set of interaction 
constants (mainly by one constant – ​the integral of 
effective interaction potential, in exchange interaction 
associated with the overlap of valence electron wave 
functions of nearby atoms and therefore significantly 
dependent on distance). From this perspective, the 
Heisenberg exchange integral and the Dzyaloshinskii-
Moriya vector are integrable functions of the distance 
between interacting atoms. In crystals, when neglecting 
thermal vibrations of atoms/ions around the equilibrium 
position, there is a fixed distance between atoms/ions. 
When considering such systems, we can choose a 
specific form of spatial dependence of the considered 
functions in the form of a narrow “step”:

U r U r a a a r( ) = ( ) ( ),0θ θ δ− + −

where θ  is the Heaviside function, U 0  is the value 
of the exchange integral in the considered crystal, 
a  is the average distance between atoms, da  is the 
amplitude of thermal vibrations.

Note that if we obtain the integral only from the 
Dzyaloshinskii-Moriya vector (as a function of rij ),  
it will turn to zero. However, when expanding wave 
functions and the delta function, additional factors 
containing rij  arise, so that some expressions become 
non-zero.

2.2. Equilibrium State and Spin-Current Model

A multiferroic is a system with magnetic and 
dielectric ordering. As a consequence, there exist 
macroscopic equilibrium electric and magnetic 
fields inside the system. Therefore, it is necessary to 
consider the equilibrium state of the system with non-
zero field values. From equation (6), it is evident that 
for the considered interactions, non-zero field values 
are possible in the presence of field inhomogeneity, 
as all terms in the right-hand side contain spatial 
derivatives of fields. The third and fourth terms in 
the right-hand side are proportional to ÑEb . This 
provides an opportunity for the formation of a 
balance of these forces in the equilibrium state with 
various types of electric field inhomogeneity. This 
leads to the formation of equilibrium polarization 
due to spin-orbital interaction:

P
mc

Jµ µαβ αβγ
ε=

2
.

Note that here we used the self-consistent part 
of the spin-orbital interaction corresponding to the 
part of the many-particle wave function consisting 
of the product of single-particle wave functions of 
individual magnetic ions.

The combination of the first and second terms 
in the right-hand side of the momentum balance 
equation (6) gives an equilibrium magnetic field 
proportional to the spin density B g Su

β β γ= 0- /  and 
caused by exchange Coulomb interaction.

The force density of the Dzyaloshinskii-Moriya 
interaction for an odd Dzyaloshinskii coefficient 
has a structure different from other terms in the 
momentum balance equation. Moreover, it contains 
two spatial derivatives, which indicates a relatively 
small contribution compared to other terms.
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Analysis of the equilibrium state based on the 
momentum balance equation (6) allowed us to 
obtain a relationship between polarization and spin 
current. Obviously, the obtained relationship is a 
special case of force balance, and in general, other 
interactions may contribute to this relationship. The 
next question that arises in the development of the 
spin-current model is the expression for spin current 
caused by various effects. We take expressions for 
spin currents from the spin evolution equation. As 
shown by the analysis above, the contribution of 
exchange Coulomb interaction, taken in the form 
of the Heisenberg Hamiltonian in the spin evolution 
equation, can be represented as a divergence of spin 
current. This gives us one of the partial spin currents. 
The contribution of the Dzyaloshinskii-Moriya 
interaction can also be represented as a divergence 
of spin current, but under conditions that are also 
formulated above.

2.3. Macroscopic polarization  
within the spin-current model

Let’s consider the application of the spin-current 
model to two types of partial spin currents. For the 
spin current caused by the Heisenberg Hamiltonian, 
we obtain the following expression for macroscopic 
polarization:

P
mc

JHH HH
µ µαβ αβγ

ε=
2

=

	 =
12

( ).
γ β

β
µ µ

β
β

mc
g S S S Su ∂ − ∂ � (12)

This corresponds to the result obtained by 
M. Mostovoy [4] (see also work [19], p. 533). For 
the spin current caused by the Dzyaloshinskii-
Moriya interaction, we also find an expression for 
macroscopic polarization:

	 P
mc

J
mc

gDM DM
µ µαβ αβ

β
µγ

ε
γ

δ=
2

=
12

.2( )
2- S  �(13)

We use these expressions below when analyzing 
the microscopic structure of the electric dipole 
moment considered in the literature [2].

Equations (9) and (10) lead to expression (13). The 
main contribution to polarization does not depend 
on spatial derivatives. In this case, the presence of 
d  gives a non-zero spin current J DM

αβ ,  which gives 
a non-zero value of the spin-orbital interaction force 
(the fourth term in the right-hand side of equation 

(6)). And the balance of this force with the third 
term, proportional to polarization P  (where P  is 
proportional to d), gives a consistent equilibrium 
condition. From formula (13), it follows that in 
such equilibrium, there exists a relationship between 
the medium polarization P  and spin density in the 
presented form. Expression (13) corresponds to the 
electric dipole moment operator for collinear spins 
presented in work [2] (see Figs. 2a–2c).

Depending on the structure and symmetry of crystals, 
different mechanisms of polarization formation are 
realized. It is shown that the displacement of charge 
density can occur due to spin-orbital interaction. The 
latter manifests itself in the presence of spin current in the 
system of ions forming an inhomogeneous electric field. 
If the spin current due to Coulomb exchange interaction 
predominates, then we arrive at formula (12). Expression 
(12) coincides with the expression for polarization 
(23), which was used in literature for magnetically 
ordered structures with noncollinear spins realized in 
perovskites of type RMnO3, where R Tb Dy= ,  [20]. 
Formula (13) arises for M–X–M-structure, where M 
represents magnetic ions, X represents a ligand ion. 
This structure is realized in rare-earth perovskite-type 
manganites (or orthorhombic manganites) RMnO3 at 
R Ho Er Tm Yb= , , ,  [21, 22]. Another multiferroic is 
the family of mixed-valence manganese oxides RMnO3, 
where R = Y, Tb, Ho, Er or Tm [23]. The magnetic 
structure in such substances is antiferromagnetic in the 
ab plane, forming a collinear spin order of magnetic 
ions Mn4

+  and Mn3
+ .

2.4. Spin current and Bohm potential

Accounting for small oscillations of ions in 
the vicinity of equilibrium position would require 
considering the kinetic energy of ions in the initial 
Hamiltonian (5). This would also lead to terms 
describing particle flows, which are absent in this case 
when considering crystals, and systematic exclusion 
of flows from equations would complicate the given 
equations. However, the consideration of kinetic energy 
also manifests in the emergence of quantum effects, 
particularly in the appearance of the quantum Bohm 
potential, which contributes to the spin current in the 
spin evolution equation [24] (see equation (9)):

	 J
m

S
S
nBohm

αβ αµν µ β
νγ

ε=
2

( ).− ∂
 � (14)
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If we consider the quasi-classical dynamics of 
polarization, then the partial currents obtained and 
used above should exceed the spin current caused by 
the Bohm potential.

Furthermore, the Bohm potential is associated 
with the quantum motion of particles, which can 
lead to deformations and the formation of an electric 
dipole moment. Let us calculate it within the 
framework of the spin-current model:

P
mc

JBohm Bohm
µ µαβ αβγ

ε=
2

=

	 =
4

2

2

γ µ β
β

β β
µ

m c
S

S
n

S
S
n

∂










− ∂



























. �  (15)

Let us compare the polarizations (12) and (15). 
They have a similar structure, but expression (15) 
contains concentration derivatives. Let us consider 
the constant concentration regime and obtain an 
estimate for the constant gu  (without considering 
the sign): g mu � �g/2 .

2.5. Discussion of the spin-current model based 
on the probability current structure

For the considered Hamiltonian, the continuity 
equation ∂ +∇ ⋅t n j = 0  leads to the particle current 
density j of the following form:

j r r j= ( ( , ) ( ) ( , )∫ ∑ − +Ψ ΨS
i

i i SR t R t† δ 

	 +H.c.) ,dR � (16)

where

	 j s  

i
i

i
i

i i
m m c

=
1

2 2
p E+ ×















∝
. � (17)

To give a more familiar form to the particle 
current operator, we included the momentum 
operator pi ,  which may arise from the kinetic 
energy operator in the original Hamiltonian, but 
it is not considered in our case. Moreover, in work 
[14], the momentum contribution is also discarded 
since ions are considered whose motion is negligibly 
small. Additionally, the particle/probability current 
is defined ambiguously, and we can add the curl of an 
arbitrary vector to definition (16), which will lead to a 
change in the structure of operator (17) (see [14, 25]). 
Usually, the curl of spin density/magnetization is 
added to the probability current definition

� �j j S= ( 2 ) ,+ / rotms

where s is the spin of the considered ions. The balance 
between the spin curl and the term caused by spin-
orbit interaction provides the relationship between the 
electric field strength and spin density, and the further 
connection between polarization and spin density:

P S S S ( ( )) ,2× ∇× /

see [14]. We also write a simplified form of this 
formula without vector products

P S S S S [( 2 ( ) ]2 2∇ − ⋅∇/ /

for further comparison with the results of microscopic 
structure analysis of the electric dipole moment [2].

3. ON THE MICROSCOPIC 
DETERMINATION OF MULTIFERROIC 

POLARIZATION

In the previous section, we presented an analysis of 
the polarization structure associated with spin-orbital 
interaction. This provides partial justification for the 
spin-current model and the possibility for its further 
generalization. Furthermore, such analysis provides 
macroscopic expressions for polarization formed by 
different types of exchange interaction (within the 
spin-current model). This allows us to reconstruct 
the microscopic structure of polarization leading 
to the obtained macroscopic expressions. However, 
these microscopic structures are already known in 
the literature [2], and we can choose the one we 
need to transition to the macroscopic expression and 
compare it with the one obtained above.

Let’s consider the spins of two magnetic ions si  
and s j  and, following the works, write the expression 
for the electric dipole moment of the crystal unit cell

	 d r s sij ij ij i j= [ [ ]],a ´ ´ � (18)

where we use the relative distance between particles 
rij i j= | |,r r-  in this case magnetic ions. Further, 
let’s transition to the operator form of this equality

	 d  

ij ij ij i j= [ [ ]]a r s s´ ´  � (19)

for developing a quantum model of type II 
multiferroics polarization. Let’s note for certainty the 
commutation properties of spin operators

	 [ , ] = ,s s i si j ij i
� � � �α β αβγ γ

δ ε � (20)

m
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where a, b, g are tensor indices taking values of 
Cartesian coordinates x, y, z. In this work, we imply 
summation over repeated indices (Greek letters). 
The symbol i is used for the imaginary unit i2 = 1- ,  
dij – three-dimensional Kronecker symbol, εαβγ  is 
the three-dimensional Levi-Civita symbol.

From formula (18), it is evident that we are 
considering ions with non-parallel spins in systems 
with spiral magnetization structures [18]. However, 
there are non-trivial examples of systems with parallel 
spins [26], which are not described by this model.

The main element of consideration is the electric 
dipole moment of the crystal cell. Therefore, in 
definition (19), we transition from a pair of ions to 
a cell with number i. To account for the fact that the 
dipole moment is created by ion i in conjunction with 
the neighboring ion, we introduce coefficient aij ijr( ) , 
which rapidly decreases with increasing distance, and 
arrive at the following modification of definition (19):

	 d  

i

j i
ij ij ij i jr= ( )[ [ ]],

≠
∑ × ×a r s s � (21)

where, for example, a aij ij ijr( ) =  at r aeff< ,   
aij ijr( ) = 0  at r aeff>  coefficient aij(rij) can be 
represented as a step function in three-dimensional 
space.

Above, when deriving the momentum balance 
equation (6), we used the definition of polarization 
through the electric dipole moment operator di :

     P r r r d( , ) = ( , ) ( )( ( , )) .t R t R t dRS
i

i i S∫ ∑ −Ψ Ψ† δ  � (22)

The initial “bare” electric dipole moment di  is 
associated with ion displacement di i iq= r ,  where 
qi  is the ion charge. Further, we will consider the 
evolution of polarization (22) with operator (21). 
Before moving on to the polarization evolution 
equation, let’s examine the relationship between 
macroscopic polarization P  and spin density 
associated with operator (21). Let’s take into account 
the rapid decay of function aij ijr( )  with increasing 
distance rij  (following the method described in [27]). 
To account for this property, let’s introduce the center 
of mass variables of the particle pair R r rij i j= ( ) 2+ /  
and their relative distance r r rij i j= - . Let’s express 
the coordinates of the particles under consideration 
through new coordinates r R ri ij ij= (1 2)+ /  and 
r R rj ij ij= (1 2)- / .  Let’s make the corresponding 

substitution in the delta function δ(r − ri) and in the 
wave function Ψ Ψ( , ) = (..., ,..., ,..., )R t ti jr r ,  which 
are included in the definition of polarization (22). 
Then, let’s perform the expansion in terms of relative 
motion coordinates rij . In the lowest non-zero order 
of expansion from (22), with substitution of (21), we 
find

	 P r S S S S( , ) =
1
3

[( ) ( )],( )t g a ⋅ ∇ − ∇ ⋅ 	 (23)

where

g d( )
2= ( )α ξ α ξ ξò .

Up to a proportionality coefficient, the obtained 
expression coincides with the result of M. Mostovoy [4] 
(see also [19], p. 533), which was derived by him using 
symmetry considerations for polarization, magnetization, 
and thermodynamic potentials. Comparing the 
coefficients in formula (23) and formula (2) of work 
[4], we obtain

g e( )
2= 3 ,α γχ µ

where χe  is the dielectric susceptibility in the absence 
of magnetism, g is the undetermined proportionality 
coefficient used in work [4] for constructing the 
thermodynamic potential (see formula (1) of work [4]).

Let’s continue comparing formula (23) with the 
results discussed above. We can see that the result 
of work [14], presented by us in section 2.4, does 
not correspond to work [4] and our result based 
on formula (21). However, the application of the 
spin-current model with partial spin current due 
to the Heisenberg exchange interaction gives us an 
expression for PHH  (see section 2.3), which coincides 
with formula (23) up to a proportionality coefficient. 
Moreover, the coefficient in PHH  and is related to 
the exchange integral included in the Heisenberg 
Hamiltonian and is proportional to gu. This allows us 
to interpret the function aij ijr( )  in (18) and operator 
(21). As a result, we obtain the following relation at 
1

12
(3 / ) = ( )γ αmc g gu :

	 α
γ

ij ij ijr
mc

U r( ) =
1

12
3

( ). � (24)

In works [3, 18], it is stated that exchange Coulomb 
interaction leads to the formation of polarization 
with parallel spins, while the structure of type (18) 
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corresponds to the Dzyaloshinskii-Moriya interaction. 
Our analysis shows that considering the exchange Coulomb 
interaction between ions in the form of the Heisenberg 
Hamiltonian leads to the structure of the electric dipole 
moment defined by expression (18). Furthermore, 
our analysis allows us to analytically calculate the 
proportionality coefficient that determines the dipole 
moment in formula (18).

3.1. On physical mechanisms leading to 
the  formation of spin polarization structure

For comparison, let’s consider the polarization 
structure arising in a system of parallel spins, 
following review [2] (see Fig. 2, case 1): d�i ∼  
~p ( ).1s s 

i i⋅ +  This leads to the following macroscopic 
polarization: P gα α= ,0

2
ΠS  where g 0 =Π

α = ( ) .òΠα r d r  
Analyzing case (13), in the mode of ligand ion 
displacement perpendicular to the spin polarization 
direction, we obtain P gα α= 0

2
ΠS  and with 

additional condition g g0 2( )= (1 6) .Π
α

β
αδ- /  From 

the microscopic description perspective, we can 
conclude that Πij ij ij ijr r rα αβ δ( ) = ( ) .2

The presented analysis allows us to reinterpret Fig. 2 
in review [2] (the first two cases). Paper [2] states that 
the electric dipole moment d s s� � �

i i i∼ ≠( )1⋅ +  is caused 
by symmetric exchange interaction, or, in other words, 
by the Coulomb exchange interaction represented by 
the Heisenberg Hamiltonian. Paper [2] also states that 
the electric dipole moment

d r s s�
i ij ij i j∼ a [ [ ]]´ ´

is caused by antisymmetric exchange interaction, i.e., 
the Dzyaloshinskii-Moriya interaction. Our analysis, 
based particularly on equations (12) and (13), leads 
to an opposite interpretation of the nature of these 
dipole moment operators. Note that the spin-current 
model is usually tied to explaining the structure

?
d r s s�

i ij ij i j∼ a [ [ ]].´ ´

This is evident even from Fig. 2f in paper [2]. The 
connection between the polarization structure and 
the interaction leading to its formation is not quite 
clear in paper [2]. One might assume that there is 
a qualitative interpretation based on comparing 
spin structures in the Heisenberg Hamiltonian 
(or  Dzyaloshinskii-Moriya) and in the electric 
dipole moment. If both structures contain scalar 
products of spins, they have a common mechanism, 

i.e., symmetric Heisenberg exchange. Otherwise, if 
both structures contain vector products of spins, the 
common mechanism is the Dzyaloshinskii-Moriya 
interaction. But the analogy described here is not 
correct. Manipulation with spin operators often 
leads to the emergence of a commutator, which 
transforms the scalar product of spin operators into 
a vector product and vice versa. What needs to be 
monitored as an invariant in qualitative analysis 
is the mathematical or tensor structure of the 
interaction coefficient in the original Hamiltonian. 
In the Heisenberg Hamiltonian, this is a scalar 
quantity – ​the exchange integral. Therefore, one can 
expect that the corresponding polarization will be 
related to spin operators through a scalar coefficient 
(see a in formula (18)). The Dzyaloshinskii-Moriya 
Hamiltonian contains the Dzyaloshinskii vector 
constant. Therefore, one can expect that polarization 
will be related to spin operators through a vector 
coefficient d s s� � �

i i i∼ ≠( )1⋅ + .  Here, as we have shown, 
the coefficient is not the Dzyaloshinskii constant 
itself, but the ligand displacement vector that enters 
into the Dzyaloshinskii constant [18] D rij ij ´d.  
The described discrepancy between the mechanism 
and interpretation may be the reason for criticism of 
the spin-current model [28]. However, the reasons 
for this noted inconsistency may be deeper.

4. POLARIZATION EVOLUTION EQUATION

The analysis presented above shows that different 
types of electric dipole moment of a multiferroic 
cell can be obtained based on the quantum 
hydrodynamics method. Despite the emphasis on 
the evolution of macroscopic functions, the quantum 
hydrodynamics method contains a connection with 
microscopic description. Based on the obtained 
definition of the electric dipole moment for the 
regime when it is proportional to the vector product of 
spins (18) (previously known from works [2, 3]), and 
its transformation to form (21), we proceed to derive 
the evolution equation for multiferroic polarization. 
Let us specify the form of the Hamiltonian used for 
the proposed derivation:

	 H U r
i

N

j
j i

N

ij i j
� � �=

1
2

( )( ),
=1 =1,

− ⋅∑∑
≠

s s � (25)

where rij i j=| |r r- .

p

p
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Further, according to the quantum hydrodynamics 
method, we differentiate the polarization definition 
(22) with operator (21) with respect to time and 
use the time-dependent Schrödinger equation to 
transform the obtained expression to the form

¶t tP r( , ) =

	 = ( , ) ( )[ , ] ( , ) .
i

R t H R t dR
i

i i�
� �∫ ∑ −Ψ Ψ† δ r r d � (26)

Let us represent the commutator appearing in 
formula (26) as

[ , ] =
1
2

(2 2
2 2

H d i U r s si

j i
ij ij ij i j j i

� � � � � � �α αβγ β γ γ
α ε− − +





≠
∑ s s




+ − + ×
≠ ≠
∑ ∑{ , } { , } )

,

s s s s s s rj j i i i j

n i j j i
ij ij

    

γ σ σ γ σ σ αβγ βα ε

× − + −(( ) (s s s s s s U s s s s s sn j i n j i ni n j i n j i
           

γ σ σ σ σ γ σ γ σ γ σ σσ
) ) ,U nj }

� (27)

where

{ , } = 2 =s s s s s si i i i i i i
     

α β αβ α β β α
π? +

is the anticommutator of spin operators, proportional 
to the nematic tensor operator παβi .

Let’s use the property of rapid decrease of 
functions U ij  and aij  with increasing distance 
between particles. For this, we introduce the 
coordinates of the center of mass and relative 
distance. We have two groups of terms. In one, we 
consider pairs of particles, and in the other – groups 
of three particles. For particle pairs, we have already 
introduced the required coordinates when analyzing 
the polarization structure (23). Let’s present the 
required variables for a system of three particles. 
Let’s write the center of mass coordinate

R r r rijn i j n= ( ) 3,+ + /

as well as two coordinates of relative motion

r r r r r r r rin i n jn j n≡ − ≡ −1 2= , = .

When necessary, we can use the coordinates of 
relative motion of the third pair of particles

r r r rij ≡ −3 1 2= .

Also, let’s present the inverse transformation 
of individual particle coordinates through the 
introduced variables:

r R r ri ijn in jn= (2 3) (1 3) ,+ −/ /

r R r rj ijn in jn= (1 3) (2 3) ,− +/ /

r R r rn ijn in jn= (1 3) (1 3) .- -/ /

Next, we’ll use the property of rapid decay of 
functions U ij  and aij  with increasing distance and 
perform decomposition of all functions in the integral 
expression (delta functions and two wave functions) 
by the relative distance between particles. Let’s note 
the necessary elements of the wave function argument 
structure

Ψ Ψ( , ) = (..., ,..., ,..., ,..., ).R t ti j nr r r

The derivation method is discussed in more detail 
in the Appendix. Note that a similar method is used 
in deriving other equations in the presented work.

The expression obtained in the first order of 
the relative distance between particles leads to the 
following expression for polarization evolution 
(in  zero order, the polarization derivative equals 
zero):

∂ ∂ − ∂ +t uP g S Sα αβγ
α

γ
β

σσ σσ
β

γε π π=
1
3

[( )

	 + ∂ − ∂π πγσ
β

σ σ
β

γσS S ], � (28)

which is valid for atoms/ions with arbitrary spin. 
Equation (28) contains the following interaction 
constant:

g U du( )
2= ( ) ( ) .α ξ ξ α ξ ξò

The calculation method can be found in work [27], 
where it is considered for another type of physical 
systems but contains an analogy in the main stages. 
Furthermore, equation (28) contains the nematic 
tensor παβ.  For ions with spin different from 1/2, 
the anticommutator of spin operators differs from 
the Kronecker symbol. The quantum average of 
this operator gives an independent physical quantity 
called the nematic tensor παβ( , )r t ,  which exists 
alongside spin density:

   π δαβ α β β α
=

1
2

( )[( ) ] .∫ ∑ − +Ψ ΨS
i

i i i i i Ss s s s dR† r r     �(29)

For spin 1/2 the nematic tensor becomes 
proportional to concentration

π δαβ αβ= ( 4) ,2
 / n
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and equation (28) simplifies to

	 ∂ ∂ − ∂t uP g S n n Sα αβγ
α

γ
β β

γε=
6

[ ].
2

( )
 � (30)

Note that when considering Hamiltonian (25), the 
concentration does not change with time according 
to the continuity equation but can be inhomogeneous 
in space.

4.1. Spin Density Evolution Equation

When justifying the spin-current model, we 
considered a Hamiltonian containing several types 
of interactions (5), while the main result of this work 
(28) and (30) was obtained for evolution under the 
Heisenberg Hamiltonian. Here is the corresponding 
spin evolution equation

	 ∂ ∆t ugS S S=
1
6

[ , ], � (31)

where

g U du = ( ) .2ò ξ ξ ξ

Note that the rigorous derivation of the motion 
equation for magnetization/spin density (31) in the 
continuum approximation was performed using the 
quantum hydrodynamics method in work [16].

4.2. Nematic Tensor Evolution Equation

To obtain a closed system of quantum 
hydrodynamics equations, we need to derive the 
evolution equation for the nematic tensor (29) under 
the exchange interaction (25):

	 ∂ +t ug Sπ π ε π εαβ αγ βγσ βγ αγσ σ= [ ] ,0 � (32)

where the coefficient

g U du0 = ( ) .ò ξ ξ

For spin 1/2 we have π δαβ αβ= ( 4) ,2
 / n  the left 

side reduces to ¶t n,  and the right side of equation 
(32) becomes zero in accordance with the continuity 
equation for the considered Hamiltonian.

5. CONCLUSIONS

An evolution equation for electric polarization in 
type II multiferroics is proposed, where the crystal 
cell polarization is formed proportionally to the vector 
product of spins of its magnetic ions. The equation is 

derived using the quantum hydrodynamics method 
as part of a closed system of equations, including 
evolution equations for spin density, nematic tensor, 
and concentration.

Justification of the spin-current model for 
multiferroic polarization is provided based on the 
quantum hydrodynamics method. The force density 
acting from the electric field on the electric dipole 
moment and the spin-orbital interaction force density 
have the same structure, leading to the possibility of 
balance between these forces. This allows introducing 
an effective electric dipole moment density caused 
by spin-orbital interaction and proportional to the 
spin current. Using the spin current from the spin 
evolution equation gives the final macroscopic 
expression. Based on this, one can reconstruct the 
operator corresponding to this type of polarization. 
As a result, we obtain the microscopic expression 
used to derive the polarization evolution equation.

Furthermore, an interpretation of the scalar 
coefficient defining the microscopic electric dipole 
moment through the exchange integral included 
in the Heisenberg Hamiltonian was obtained. This 
conclusion is based on using the spin-current model 
with spin current caused by exchange interaction in 
the Heisenberg Hamiltonian approximation.

6. DATA AVAILABILITY

The question of data availability is not applicable 
to this article, as this purely theoretical study did not 
generate or analyze any new data.
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APPENDIX. ON THE METHOD 
OF DERIVING THE POLARIZATION 

EVOLUTION EQUATION

When averaging the commutator (27) over wave 
functions (26), we perform substitution of spatial 
variables in the i-th, j-th, and n-th arguments when 
considering the function of three coordinates under 
the integral (i-th and j-th when considering the 
function of two coordinates). Variable substitution 
in the delta function is also performed. Further, we 
use the fact that the integrand functions rapidly 
decay with increasing relative distance between 
ions, which corresponds to the nearest-neighbor 
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interaction approximation. This property of 
functions U r( )  and a( )r  gives us the possibility to 
expand the wave function and d-function in terms 
of the relative distance between particles. Let us 
write the corresponding wave function expansion, 
limiting ourselves to the case when the integrand 
functions U r( )  and a( )r  depend on coordinates of 
two particles. This corresponds to the first group of 
terms in commutator (27). Further, we obtain

Ψ Ψ( , ) = (..., ,..., ,..., ) =R t ti jr r

= ( , ) = ...,
1
2

,...,
1
2

,...,Ψ ΨR t tij ij ij ijR r R r+ −






 ≈

≈ +Ψ Ψ( , ) = (..., ,..., ,..., )R t tij ijR R

+
∂
∂

−
∂
∂











1
2

(..., ,..., ,..
,1 ,2

,1 ,2r
R R

R Rij
ij ij

ij ijΨ .., )t +

+
∂

∂
−
∂

∂












×

1

23
,1 ,2

r r
R R

ij ij
ij ij

α β
α α

	 ×
∂

∂
−
∂

∂











R Rij ij
ij ij

,1 ,2
,1 ,2(..., ,..., ,..

β β
Ψ R R .., ),t � (33)

R R Rij ij ij,1 ,2= =

are defined for ions located in the i-th and j-th cells 
respectively. Additional indices 1 and 2 are used to 
specify which argument of the many-particle wave 
function is being differentiated, since as a result 
of Taylor series expansion, we obtained that these 
arguments contain the same variable.

Note the presence of spin indices in the considered 
many-particle wave function (wave spinor)

Ψ Ψ( , ) = ( , ) =R t R tS

= (..., ,..., ,..., ,..., )..., ,..., ,..., ,...Ψ si s j sn i j n tr r r

and the action of spin operators on this wave spinor

s R t s R ti i S
 

α αΨ Ψ( , ) = ( ) ( , ) =

= (..., ,..., ,..., ,...., ,..., ,..., ,...ssi si si s j sn i j n


¢ ¢

α
Ψ r r r ..., ),t

as well as the formula for calculating average values 
taking into account the spinor structure

	 F F dRS
i j i

i ij S= ( )( ) .
,

∫ ∑
≠

−Ψ Ψ† δ r r  � (34)

Changes in the form of arguments in the 
coordinate part of the wave function do not result in 
changes in the form of spin operators’ action.

Separately, we note the result of the expansion of 
d-function:

d d( ) = ( (1 2) )r r r R r− − − ≈i ij ij/

≈ − −
∂
∂

− +d d( )
1
2

( )r R r
r

r Rij ij ij

	 +
∂

∂

∂

∂
− +

1

2
( ) ...

3
r r

r r
ij ij ij
α β

α β
δ r R � (35)

Let’s also present how this expansion manifests in 
the structure of the macroscopic function:

F t F dRS
i j i

i ij S( , ) = ( )( )
,

r r r∫ ∑
≠

− ≈Ψ Ψ† δ 

≈ − −∫ ∑
≠

Ψ ΨS
i j i

ij ij SF dR†

,

( )( )δ r R 

−
∂

∂
− +∫ ∑

≠

1
2

( ) ( )
,r

r F dRS
i j i

ij ij ij Sα
αδΨ Ψ† r R 

+
∂

∂

∂

∂
−∫ ∑

≠

1

2
( ) ( ) ,

3
,r r

r r F dRS
i j i

ij ij ij ij Sα β
α βδΨ Ψ† r R  �(36)

where derivatives with respect to coordinate r can 
be taken outside the integral. Note that formula (36) 
represents a partial result, and the final expression 
for the function expansion F t( , )r  appears when 
considering the expansion of wave functions.

After taking into account the short-range nature 
of interaction, there arises a need for approximate 
consideration of the many-particle wave function to 
obtain a closed mathematical apparatus.

In general, for a many-particle system with 
complex spin configuration, the exact wave function 
cannot be represented as a product of a function 
depending on spatial coordinates and a function 
depending only on spin variables. The general form 
of the function is determined by the superposition of 
such products, with separate groups corresponding 
to different values of the total spin of a pair or triple 
of considered particles. This is especially significant 
for systems with spin-orbital interaction, which is 
considered in Hamiltonian (5). Nevertheless, we 
limit ourselves to representing the wave function 
as a product of single-particle wave functions, 
assuming that a more detailed consideration of 
the wave function structure will give corrections 
to the proposed “main field” approximation. Such 
approximation proved sufficient when deriving the 
contribution of Heisenberg exchange interaction to 
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the Landau-Lifshitz equation [16]. Therefore, this 
approximation is used despite accounting for spin-
orbital interaction, which is a small relativistic effect. 
Note that, as shown above, polarization is caused by 
spin-orbital interaction. However, the evolution of 
polarization and other macroscopic functions occurs 
under the influence of a set of interactions, and spin- 
orbital interaction can be considered small compared 
to them.
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