FORMATION OF SEMICONDUCTOR STATE IN OXYSULFOSTIBNITES RSbS2O WITH R = Dy, Ho, Er
- Authors: Baydak S.T.1,2, Lukoyanov A.V.1,2
-
Affiliations:
- Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
- Institute of Physics and Technology, Ural Federal University Named after the First President of Russia B.N. Yeltsin
- Issue: Vol 166, No 3 (2024)
- Pages: 403-408
- Section: Articles
- URL: https://journal-vniispk.ru/0044-4510/article/view/268167
- DOI: https://doi.org/10.31857/S0044451024090104
- ID: 268167
Cite item
Abstract
The features of the formation of the semiconducting state in oxysulfostibnites of the rare earth metals DySbS2O, HoSbS2O and ErSbS2O are investigated. Theoretical calculations performed using the GGA+U method, taking into account electronic correlations in the 4f-shell of rare earth elements. It is demonstrated that three compounds DySbS2O, HoSbS2O and ErSbS2O are semiconductors with a small direct gap of 0.06, 0.10 and 0.09 eV for DySbS2O, HoSbS2O and ErSbS2O, respectively, at a high- symmety point X. For the first time, it was found that for the formation of a band gap in oxysulfostibnites of rare earth metals, it is important both to optimize the crystal structure and to take into account the spin-orbit interaction. Oxysulfostibnites of rare earth metals, like their layered structural analogues oxysulfides, due to their properties can find wide application in biomedicine, photoluminescence and other fields.
About the authors
S. T. Baydak
Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences; Institute of Physics and Technology, Ural Federal University Named after the First President of Russia B.N. Yeltsin
Email: baidak@imp.uran.ru
Russian Federation, 620108, Ekaterinburg; 620002, Ekaterinburg
A. V. Lukoyanov
Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences; Institute of Physics and Technology, Ural Federal University Named after the First President of Russia B.N. Yeltsin
Author for correspondence.
Email: baidak@imp.uran.ru
Russian Federation, 620108, Ekaterinburg; 620002, Ekaterinburg
References
- J. H.L. Voncken, The Rare Earth Elements, Springer Briefs in Earth Sciences (2016).
- V. Balaram, Geosci. Front. 10, 1285 (2019).
- Gadolinium: Compounds, Production and Applications, ed. by C. C. Thompson, Nova Sci. Publ. Inc, UK (2011).
- J. Nayak, S.-C. Wu, N. Kumar, C. Shekhar, S. Singh, J. Fink, E. E. D. Rienks, G. H. Fecher, S. S. P. Parkin, B. Yan, and C. Felser, Nat. Commun. 8, 13942 (2017).
- Z. Li, D.-D. Xu, S.-Y. Ning, H. Su, T. Iitaka, T. To-hyama, and J.-X Zhang, Int. J. Mod. Phys. B 31, 1750217 (2017).
- Y. Wu, Y. Lee, T. Kong, D. Mou, R. Jiang, L. Huang, S.L. Bud’ko, P. C. Canfield, and A. Kaminski, Phys. Rev. B 96, 035134 (2017).
- S. T. Baidak and A. V. Lukoyanov, Materials 16, 242 (2023).
- Yu. V. Knyazev, Yu. I. Kuz’min, S. T. Baidak, and A. V. Lukoyanov, Sol. St. Sci. 136, 107085 (2023).
- L. Chen, Y. Wu, H. Huo, B. Tang, X. Ma, J. Wang, C. Sun, J. Sun, and S. Zhou, ACS Appl. Nano Mater. 5, 8440 (2022).
- B. Ortega-Berlanga, L. Betancourt-Mendiola, C. An-gel-Olarte, L. Hernandez-Adame, S. Rosales-Mendoza, and G. Palestino, Crystals 11, 1094 (2021).
- J. Lian, X. Sun, J.-G. Li, B. Xiao, and K. Duan, Mater. Chem. Phys. 122, 354 (2010).
- C. Larquet and S. Carenco, Inorg. Chem. Front. 8, 179 (2020).
- F. Wang, X. Chen, D. Liu, B. Yang, and Y. Dai, J. Mol. Struct. 1020, 153 (2012).
- X. Wang, J.-G Li, M. S. Molokeev, X. Wang, W. Liu, Q. Zhu, H. Tanaka, K. Suzuta, B.-N. Kim, and Y. Sakka, RSC Adv. 7, 13331 (2017).
- F. Li, M. Jin, Z. Li, X. Wang, Q. Zhu, and J.-G. Li, Appl. Surf. Sci. 609, 155323 (2023).
- О. М. Алиев и В. С. Танрывердиев, Ж. неорг. химии 42, 1918 (1997).
- S. T. Baidak and A. V. Lukoyanov, Int. J. Mol. Sci. 24, 8778 (2023).
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, and I. Dabo, J. Phys.: Condens. Matter 21, 395502 (2009).
- P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, and M. Cococcioni, J. Phys.: Condens. Matter 29, 465901 (2017).
- V. I. Anisimov, F. Aryasetiawan and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).
- J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- M. Topsakal and R. M. Wentzcovitch, Comput. Mater. Sci. 95, 263 (2014).
- K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).
- V. V. Marchenkov, A. V. Lukoyanov, S. T. Baidak, A. N. Perevalova, B. M. Fominykh, S. V. Naumov, and E. B. Marchenkova, Micromachines 14, 1888 (2023).
Supplementary files
