FREQUENCY DEPENDENCE OF VACANCY MOVEMENT HYSTERESIS IN A CLOSED MEMRISTOR BASED ON AN EXACTLY SOLVABLE MODEL OF CONTROLLED NONLINEAR DIFFUSION
- 作者: Boylo I.V.1, Metlov K.L.1
-
隶属关系:
- Galkin Donetsk Institute for Physics and Engineering
- 期: 卷 166, 编号 6 (2024)
- 页面: 858-867
- 栏目: ELECTRONIC PROPERTIES OF SOLIDS
- URL: https://journal-vniispk.ru/0044-4510/article/view/274800
- DOI: https://doi.org/10.31857/S0044451024120095
- ID: 274800
如何引用文章
详细
The frequency dependence of vacancy movement hysteresis in a memristor closed on both sides under the influence of periodic electric current flowing through the memristor is considered. Based on an exactly solvable nonlinear model, an equation for hysteresis loops during the passage of rectangular current pulses with a duty cycle of 2 is obtained. The efficiency of vacancy charge transfer by current compared to their free diffusion is evaluated. It is shown that maximum efficiency is achieved at a specific memristor switching period, which depends on the amplitude of the applied current. Analytical asymptotics of this dependence and memristor resistance depending on the amplitude and period of the current passing through the memristor are obtained.
作者简介
I. Boylo
Galkin Donetsk Institute for Physics and Engineering
Email: boylo@donfti.ru
俄罗斯联邦, Donetsk, 283048
K. Metlov
Galkin Donetsk Institute for Physics and Engineering
编辑信件的主要联系方式.
Email: metlov@donfti.ru
俄罗斯联邦, Donetsk, 283048
参考
- L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).
- M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins et al., Nature 521, 61 (2015).
- M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins et al., Sci. Rep. 6, 21331 (2016).
- R. Berdan, E. Vasilaki, A. Khiat et al., Sci. Rep. 6, 18639 (2016).
- V. Saxena, X. Wu, and K. Zhu, in Proc. IEEE International Symposium on Circuits and Systems, ISCAS 2018, 27-30 May 2018, Florence, Italy, doi: 10.1109/ISCAS.2018.8351766.
- F. Liu and C. Liu, in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), doi: 10.1109/dac.2018.8465849.
- T. Ahmed, S. Walia, E. L. H. Mayes et al., Sci. Rep. 9, 15404 (2019).
- S. Deswal, A. Kumar, and A. Kumar, AIP Adv. 9, 095022 (2019).
- G. Yuan, X. Ma, C. Ding et al., in 2019 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), doi: 10.1109/islped.2019.8824944.
- N. Wu, A. Vincent, D. Strukov et al., Memristor hardware-friendly reinforcement learning, arXiv:cs.ET/2001.06930.
- R. Waser and A. Masakazu, Nat. Mater. 6, 833 (2007).
- D. B. Strukov, G. S. Snider, D. R. Stewart et al., Nature 453, 80 (2008).
- A. Sawa, Mater. Today 11, 28 (2008).
- D. Ielmini and H. S. P. Wong, Nat. Electron. 1, 333 (2018).
- L. Chua and S. M. Kang, Proc. IEEE 64, 209 (1976).
- Y. N. Joglekar and S. J. Wolf, Eur. J. Phys. 30, 661 (2009).
- E. Linn, A. Siemon, R. Waser et al., IEEE Trans. Circuits Syst. I 61, 2402 (2014).
- J. B. Roldan, E. Miranda, D. Maldonado et al., Adv. Intell. Syst. 5, 2200338 (2023).
- D. B. Strukov and R. S. Williams, Appl. Phys. A 94, 515 (2009).
- M. J. Rozenberg, M. J. Sanchez, R. Weht et al., Phys. Rev. B 81, 115101 (2010).
- N. Ghenzi, M. J. Sanchez, F. Gomez-Marlasca et al., J. Appl. Phys. 107, 093719 (2010).
- S. Larentis, F. Nardi, S. Balatti et al., IEEE Trans. Electron Devices 59, 2468 (2012).
- S. Kim, S. Choi, and W. Lu, ACS Nano 8, 2369 (2014).
- A. Marchewka, R. Waser, and S. Menzel, in 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), p. 145, doi: 10.1109/sispad.2016.7605168.
- A. Marchewka, B. Roesgen, K. Skaja et al., Adv. Electron. Mater. 2, 1500233 (2016).
- I. V. Boylo, Phys. Stat. Sol. (b) 254, 1600698 (2017).
- N. V. Agudov, A. V. Safonov, A. V. Krichigin et al., J. Stat. Mech. 2020, 024003 (2020).
- N. Agudov, A. Dubkov, A. Safonov et al., Chaos Solitons Fractals 150, 111131 (2021).
- I. V. Boylo and K. L. Metlov, Roy. Soc. Open Sci. 8, 210677 (2021).
- A. Mikhaylov, D. Guseinov, A. Belov et al., Chaos Solitons Fractals 144, 110723 (2021).
- S. Tang, F. Tesler, F. G. Marlasca et al., Phys. Rev. X 6, 011028 (2016).
补充文件
