——— ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ **——**

УДК 544.31

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ТИТАНАТА ГАДОЛИНИЯ Gd₂Ti₂O₇

© 2024 г. П. Г. Гагарин^a, *, А. В. Гуськов a , В. Н. Гуськов a , А. В. Хорошилов a , К. С. Гавричев a

^аФедеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н. С. Курнакова

*e-mail: gagarin@igic.ras.ru
Поступила в редакцию 16.02.2024 г.
После доработки 16.02.2024 г.
Принята к публикации 29.02.2024 г.

Измерена изобарная теплоемкость титаната гадолиния $Gd_2Ti_2O_7$ со структурой пирохлора в области температур 2—1825 К. По согласованным и сглаженным значениям теплоемкости рассчитаны термодинамические функции (энтропия, изменение энтальпии, приведенная энергия Гиббса). Оценена энергия Гиббса образования $Gd_2Ti_2O_7$ из оксидов в области высоких температур.

Ключевые слова: титанаты РЗЭ, теплоемкость, термодинамика, фазовый переход, термическое расширение

DOI: 10.31857/S0044453724110058, EDN: EZVCQE

ВВЕДЕНИЕ

Интерес к титанатам редкоземельных элементов обусловлен их применением при создании новых высокотемпературных материалов, которые характеризуются такими свойствами как ионная проводимость [1], прозрачность в видимом диапазоне [2], радиационная стойкость [3], низкая теплопроводность [4], высокая диэлектрическая проницаемость и т.д. Кроме возможности практического использования, имеется и интерес к особенностям магнитного поведения этих веществ. В последние годы был выполнен большой объем теоретических и экспериментальных исследований, посвященных изучению антиферромагнитных материалов с высокой геометрической фрустрацией [напр., 5]. Основным мотивом интереса к таким веществам является предположение о том, что высокая степень фрустрации может вызвать достаточно большие квантовые спиновые флуктуации при очень низких температурах и привести к появлению новых экзотических квантово-механических основных магнитных состояний, таких как двумерные основные состояния, "спиновая нематика" или полностью неупорядоченные состояния без нарушенной спиновой или решеточной симметрии [6,7]. Особый интерес вызывают сильно фрустрированные антиферромагнетики с трехмерной решеткой пирохлора, состоящей из тетраэдров с общими вершинами [8-10]. Естественно, что свойства $Gd_2Ti_2O_7$, имеющего структуру пирохлора [11] и являющегося фрустрированным магнетиком, привлекли значительное внимание. Магнитные превращения проявляются на температурной зависимости теплоемкости

в виде достаточно узкого эффекта, о чем свидетельствуют имеющиеся в литературе сведения о теплоемкости $Gd_2Ti_2O_7$ в области самых низких температур, которые, однако, достаточно противоречивы. В работе [12] при измерении теплоемкости поликристаллического образца от 0.6 К зафиксированы два максимума при 0.97 и 2 К, хотя сами авторы предложили описать экспериментальные данные как один магнитный переход. На основании результатов изучения магнитной восприимчивости и теплоемкости авторы [12] заключили, что титанат гадолиния со структурой пирохлора является фрустрированным диэлектриком. Результаты измерений магнитной восприимчивости при переменном и постоянном токе, а также данные по удельной теплоемкости свидетельствуют о том, что при 0.97 K в $Gd_2Ti_2O_7$ со структурой пирохлора происходит переход в дальнее упорядоченное состояние спинов, в отличие от состояния спинового стекла или спиновой жидкости, которое наблюдается у некоторых других пирохлоров. По данным этой статьи общая магнитная энтропия составляет 33.8 Дж/ (К моль), что близко к модельному значению для системы S=7/2 ($S_{\text{mag}}=2R\ln(8)=34.6\ \text{Дж/(K·моль)}$. В работе [13] при изучении кристаллического и порошкообразных образцов обнаружено, что теплоемкость в нулевом магнитном поле имеет два максимума при температурах 0.73 и 1 К с значениями теплоемкости в максимуме 10.0 и 11.2 Дж/(К·моль) соответственно. Авторы подтвердили магнитную природу перехода и указали, что энтропия перехода близка к Rln8 для иона Gd^{3+} . Существенно, что интервал протекания магнитного превращения,

приведенный в [12] и [13] различается (рис. S1). Следует отметить, что теплоемкость в этих работах представлена только в графическом виде и была оцифрована нами для сравнения с полученными в настоящей работе данными по теплоемкости в области самых низких температур.

Данных по изучению теплоемкости титаната гадолиния в области температур 30—350 К в литературе не обнаружено.

В области высоких температур выполнены измерения энтальпии и теплоемкости титаната гадолиния. Энтальпийный инкремент был измерен методом калориметрии сброса (дроп-калориметрии) в области 584.6—1484.8 К [14]. Неопределенность полученных величин энтальпии не превышала 4%. Авторы описали экспериментальные данные с помошью зависимости

$$H(T) - H(T_a) = a \times (T - T_a) + + b/2 \times (T^2 - T_a^2) - c \times 1/(T - T_a),$$
(1)

где T_a — начальная температура в K, а T — температура в измерительном блоке. Дифференцированием этого уравнения получена зависимость для теплоемкости титаната гадолиния в области 298.15—1500 K

$$C_p(T) = 263.6646 + 15.5991 \times 10^{-3} \times$$

$$\times T - 48.0162 \times 10^5 / T^2.$$
(2)

На основании сглаженных данных по теплоемкости были рассчитаны энтропия и изменение энтальпии, которые при 298.15 К составили 257.7 Дж/ (К·моль) и 36.344 кДж/моль соответственно.

Теплоемкость $Gd_2Ti_2O_7$ была измерена методом дифференциальной сканирующей калориметрии в области температур $300-1000~\mathrm{K}$ [15]. Температурная зависимость теплоемкости в этой работе представлена уравнением

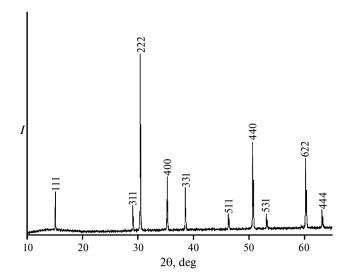
$$C_p = (263.75 \pm 0.49) + (25.6 \pm 0.5) \times 10^{-3} \times$$

$$\times T - (33.04 \pm 0.47) \times 10^5 \times T^{-2}.$$
(3)

Данные по теплоемкости в работах [14] и [15] существенно различаются.

Энтальпия образования титаната гадолиния со структурой пирохлора определена в [16] методом сброса в оксидный расплав и составила $\Delta_{\rm f}H_{\rm ox}(298~{\rm K})=-113.4\pm2.7~{\rm кДж/моль}$ для образования из оксидов и $\Delta_{\rm f}H_{\rm el}(298~{\rm K})=-3822.5\pm4.7~{\rm кДж/мольиз}$ простых веществ. Данные, полученные модельным расчетом в [17] близки к экспериментальным ($-120~{\rm кДж/мольи}-3828~{\rm кДж/моль}$, соответственно). *Аb initio* вычислениями в [18]

получено значение энтальпии образования из оксидов -98 кДж/моль, которое почти на 20% ниже экспериментальной величины.


Целями данного исследования были (1) определение термодинамических функций $Gd_2Ti_2O_7$, рассчитанных из экспериментальных значений теплоемкости в температурном интервале $2-1825~\rm K$ и (2) термодинамическая оценка стабильности титаната гадолиния.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез титаната гадолиния Gd₂Ti₂O₇ выполнили методом обратного осаждения. В качестве исходных соединений использовали TiOSO₄·xH₂O (99.99 мас. %) Sigma-Aldrich, Gd₂O₃ (99.998 мас. %) LANHIT, соляную кислоту (35–38 мас. % HCl, "ос. ч.") и раствор аммиака (25–28 мас. % NH₄OH) производства ООО "Химмед". Для получения максимально близкого к стехиометрическому соотношения металлов применили весовое приготовление растворов с большими, по сравнению с "объемным методом", концентрациями. Полученный раствор со стехиометрическим соотношением гадолиния и титана по каплям приливали в раствор аммиака при интенсивном перемешивании. Осадок отмывали, центрифугировали и высушивали при 90°C в течение 72 ч, после чего проводили ступенчатый отжиг с выдержкой образца на финальной стадии при температуре 1500°C в течение 4 ч для формирования структуры пирохлора.

Полученные образцы идентифицировали рентгенофазовым анализом (РФА) с помощью дифрактометра Bruker D8 Advance (Cu K_{α} , λ =1.5418 Å, Ni-фильтр, LYNXEYE детектор, геометрия на отражение) в интервале углов $2\theta = 10^{\circ} - 80^{\circ}$. Морфологию образцов исследовали с помощью электронного микроскопа Tescan Amber с неиммерсионной колонной BrightBeam и ультравысоким разрешением 1.3 нм при ускоряющем напряжении 1 кВ. Ускоряющее напряжение составляло от 2 кВ до 10 кВ. По данным электронной микроскопии все образцы состояли из кристаллитов размерами >100 нм и не являлись наноразмерными, что подтверждалось анализом дифракционных отражений с помощью соотношения Дебая-Шерера. Состав образца определили методом EDX-спектроскопии. Для оценки равномерности распределения элементов проводили картирование по гадолинию, титану и кислороду.

Измерения теплоемкости титаната гадолиния в области 2—40 К выполнены методом релаксационной калориметрии на установке PPMS-9 (Quantum Design, Inc. [19]) при охлаждении образца. Погрешность при измерении теплоемкости методом релаксационной калориметрии составила $\pm 5\%$. Образцы для измерений теплоемкости этим методом готовили в виде таблеток (диаметр 3 мм,

Рис. 1. Дифрактограмма образца Gd₂Ti₂O₇.

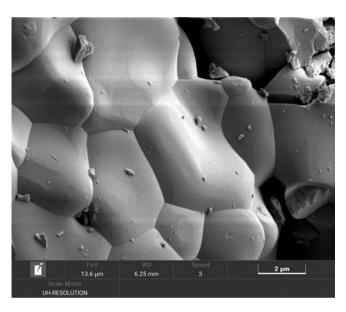


Рис. 2. Вид поверхности образца Gd₂Ti₂O₇.

толщина около 1 мм) прессованием из порошкообразных титаната иттрия и европия с последующим отжигом при 1400° C в течение 4 ч.

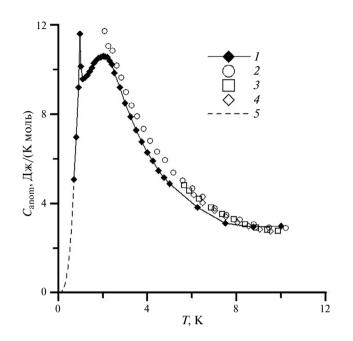
Теплоемкость $Gd_2Ti_2O_7$ измерена методом адиабатической калориметрии в интервале температур 6—329 К с использованием автоматической установки БКТ-3 с блоком Аксамит-9 (ИП Малышев). Измерение температуры образца проводили с помощью Fe-Rh термометра сопротивления (шкала ITS-90). Проверка качества получаемых значений, выполненная по результатам измерения теплоемкости бензойной кислоты марки K-2, показала, что отклонение от литературных данных [20] в области 10-50 K не превышает 2% и уменьшается при более высоких температурах (50-340 K) до 0.25%.

В области температур 315—1825 К измерения теплоемкости проводили в дифференциальном сканирующем калориметре DSC404 F1 Pegasus фирмы NETZSCH-Gerätebau GmbH. Для определения теплоемкости использовали метод отношений с изотермическими сегментами (DIN ISO 11357-4) в платиноролиевых тиглях с крышкой в инертной атмосфере со скоростью нагревания 10 К/мин. Калибровка прибора выполнена по металлическим стандартам. Пределы допускаемых абсолютных погрешностей измерения температуры, удельной теплоты и удельной теплоемкости составляют до 3 К, до 3% и от 1 до 3.5% соответственно. Для проверки качества работы установки выполнили измерения теплоемкости корунда. Более детально методики измерений калориметрическими методами изложены в работе [21].

При расчете мольной теплоемкости использовали значение мольной массы М.м. $(Gd_2Ti_2O_7) = 522.227$ г/моль, вычисленное по данным [22].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Изучение синтезированного образца $\mathrm{Gd_2Ti_2O_7}$ методом РФА (рис. 1), показало, что он имеет структуру пирохлора ($Fd\overline{3}m$) с параметром элементарной ячейки a=10.1926 Å, (V=1058.9 ų), который удовлетворительно коррелирует с приведенными в литературе величинами (10.185(1) Å [11], 10.1846 Å [23], 10.196 Å [24]). Методом РЭМ установлено, что образец состоял из частиц размером более 200 нм (рис. 2).


Анализ состава образца методом EDX-спектроскопии показал отсутствие примесных элементов (рис. S2) и равномерность распределения гадолиния, титана и кислорода по поверхности (рис. S3). Соотношение элементов в синтезированном образце, определенное в 20 точках, близко к стехиометрическому 2:2:7 (табл. 1)

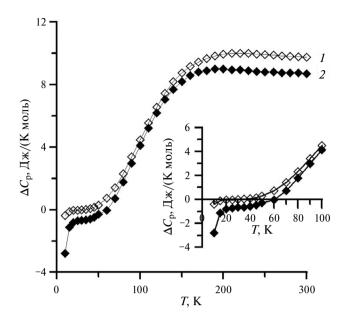
Измерение теплоемкости методом релаксационной калориметрии выполнено в интервале температур 2.08—40.08 К при 41 значении температуры (табл. S1, рис. 3). На рис. 3 видно, что при понижении температуры от 10 К происходит значительное повышение теплоемкости, ранее отмеченное в [12].

Теплоемкость образца титаната гадолиния была измерена методом адиабатической калориметрии в двух сериях в области 5.63—328.67 К и 6.08—329.06 К соответственно (табл. S2, S3). Значения теплоемкости, полученные методом адиабатической калориметрии в двух сериях измерений, удовлетворительно согласуются между собой, а также с данными определенными релаксационной калориметрией и литературными величинами [12] (рис. 3).

Элемент	[G	ъ́d], ат. %	[Ti],	ат. %	[О], ат. %		
	Teop.	Эксп.	Teop.	Эксп.	Teop.	Эксп.	
Значение	18.18	18.38±2.77	18.18	17.43±1.98	63.64	64.19±4.68	

Таблица 1. Состав синтезированного образца титаната гадолиния $Gd_2Ti_2O_7$ (в ат. %)

Рис. 3. Сравнение величин теплоемкости, полученных в [12] и в настоящей работе: I-[12], 2- значения, полученные релаксационной калориметрией, 3, 4- данные, полученные адиабатической калориметрией, 5- экстраполяция к 0 K.


Рис. 4. Разделение аномалии теплоемкости на составляющие: I — данные [12], 2 — теплоемкость аномалии Шоттки (уровни 4 и 22 см $^{-1}$), 3 — магнитная теплоемкость, 4 — экстраполяция к 0 K.

В работе [12] аномалия с двумя максимумами была интерпретирована как один магнитный переход в антиферромагнитное состояние. Нами высказано предположение, что эта аномалия, связанная с электронным вкладом в теплоемкость, может состоять из двух частей — магнитной и аномалии Шоттки. Анализ данных показал, что аномальная теплоемкость Шоттки может быть удовлетворительно описана с использованием двух электронных уровней 4 и 22 см $^{-1}$ (рис. 4). В этом случае энтропия магнитной составляющей близка к 2Rln2 (11.52 Дж/(K:моль)).

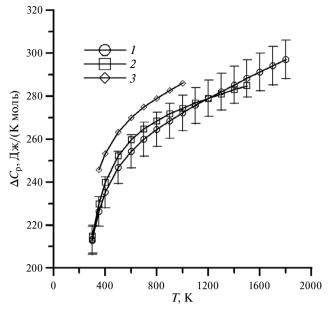
Следует отметить необычный ход температурной зависимости теплоемкости $Gd_2Ti_2O_7$ в области низких температур. В соответствии с "объемной схемой" Веструма [25] решеточные теплоемкости соединений европия, у которого энергия первого уровня более 200 см^{-1} , и гадолиния должны быть очень близки и различие в измеренной теплоемкости таких веществ должно определяться аномалией Шоттки у соединений европия при температурах

выше 50 К и магнитной аномалией у соединений гадолиния ниже 20 К. На рис. 5 показана разность теплоемкости Eu(OH)₃ и Gd(OH)₃, которая подтверждает работоспособность этой схемы. Видно, что кривые разности для гидроксидов и титанатов симбатны, хотя разность для титанатов становится отрицательной уже при 60 К. Однако, это несоответствие с "объемной схемой" Веструма может быть устранено, если предположить, что аномалия Шоттки в титанате гадолиния находится, по сравнению с гидроксидом, в области более высоких температур, и учесть ее вклад в области выше 2 К, показанный на рис. 4.

Высокотемпературная теплоемкость изучена в диапазоне 315—1825 К. Полученная температурная зависимость $C_p(T)$ согласована с данными, определенными методом адиабатической калориметрии в области 300—329 К путем корректировки на $-6.38~\rm Дж/(K\cdot моль)$ (табл. S4). Кривая теплоемкости $\rm Gd_2Ti_2O_7$ в диапазоне высоких температур не имеет видимых аномалий (рис. 6).

Рис. 5. Разность теплоемкости соединений европия и гадолиния: $1-(C_p(\mathrm{Eu}(\mathrm{OH})_3-C_p(\mathrm{Gd}(\mathrm{OH})_3;\ 2-[C_n(\mathrm{Eu}_2\mathrm{Ti}_2\mathrm{O}_7)-C_p(\mathrm{Gd}_2\mathrm{Ti}_2\mathrm{O}_7)]/2.$

Теплоемкость титаната гадолиния в интервале 315—1825 К представлена виде уравнения Майера—Келли [26]:


$$C_p(315 - 1825 \text{ K}) = 248.80 + 0.0276122 \times$$

$$\times T - 3899517/T^2 \quad (R^2 = 0.997603). \tag{4}$$

Отклонение экспериментальных точек от сглаженных по уравнению (4) значений не превышает 1%. Полученная в настоящей работе температурная зависимость теплоемкости титаната гадолиния в области 315—1825 К, согласованная в области комнатных температур с данными адиабатической калориметрии, удовлетворительно коррелирует (в пределах ошибки эксперимента) с данными [14], в то время как значения, приведенные в [15] симбатны, но лежат несколько выше (рис. 6)

Полученные различными методами значения теплоемкости были совместно сглажены с использованием полиномов (интервалы температур 2–6 K и 6–15 K) и программного комплекса CpFit [27, 28] (15–1825 K). Вычислены стандартные величи-

ны энтропии (
$$S^0(T) = \int_0^T C_p / T dT$$
), изменения энтальпии ($H^0(T) = \int_0^T C_p dT$) и приведенной энергии Гиббса ($\Phi^0(T) = S^0(T) - [H^0(T) - H^0(0)/T]$ (табл. 2). Значения энтропии и изменения энтальпии тита-

Рис. 6. Теплоемкость $\mathrm{Gd}_2\mathrm{Ti}_2\mathrm{O}_7$ в области высоких температур: I — настоящая работа, 2 — [14], 3 — [15]. Показан коридор ошибок 3% для данных, полученных в настоящем исследовании.

ната гадолиния при температуре 2 К рассчитаны по оцифрованным величинам теплоемкости из [12].

Оценка энергии Гиббса в области высоких температур

В системе Gd_2O_3 — TiO_2 существуют два соединения с соотношением простых оксидов 1:1 (Gd_2TiO_5) и 1:2 ($Gd_2Ti_2O_7$), причем первый плавится инконгруэнтно ($T_{пл}$ = 2048 K), а второй — конгруэнтно ($T_{пл}$ = 2093 K) [29] (рис. S4). Кроме того, на фазовой диаграмме, приведенной в [29], имеется область твердого раствора в границах составов 33—40 мол% TiO_2 и температур от 1600—1840°C (1873—2113 K), который плавится инконгруэнтно. Для оценки перспектив использования титаната гадолиния в качестве компонента высокотемпературных материалов представляет интерес термодинамическая оценка вероятности протекания прямых реакций образования $Gd_2Ti_2O_7$ из простых оксидов (Gd_2O_3 и TiO_2) и из соседних на диаграмме фаз (Gd_2TiO_5 и TiO_2)

$$2TiO_2 + Gd_2O_3 = Gd_2Ti_2O_7,$$
 (1)

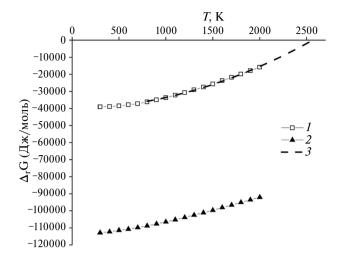
$$TiO_2 + Gd_2TiO_5 = Gd_2Ti_2O_7$$
 (2)

и обратных реакций распада сложного оксида. Необходимые для таких расчетов величины при температуре 298.15 К приведены в [16, 30–36]. Температурные зависимости термодинамических

Таблица 2. Стандартные термодинамические функции Gd₂Ti₂O₇

<i>T</i> , K	<i>С_p</i> , Дж/ (К·моль)	<i>H</i> ^o (<i>T</i>)- <i>H</i> ^o (0), Дж/моль	<i>S</i> °(<i>T</i>), Дж/ (К·моль)	Ф ^{о а} , Дж/ (К·моль)	<i>T</i> , K	C_p , Дж/ (К·моль)	<i>H</i> ^o (<i>T</i>)- <i>H</i> ^o (0), Дж/моль	<i>S</i> °(<i>T</i>), Дж/ (К·моль)	Ф ^{о а} , Дж/ (К·моль)
2	10.63	13.82	11.12	4.21	180	157.5	13950	157.1	79.53
6	4.422	42.26	20.28	13.24	190	164.1	15560	165.8	83.85
7	3.696	46.30	20.91	14.29	200	170.4	17240	174.3	88.16
8	3.179	49.72	21.37	15.15	210	176.2	18970	182.8	92.46
9	2.857	52.72	21.72	15.86	220	181.6	20760	191.1	96.75
10	2.714	55.49	22.01	16.46	230	186.7	22600	199.3	101.0
11	2.737	58.21	22.27	16.98	240	191.4	24490	207.3	105.3
12	2.910	61.02	22.52	17.43	250	195.8	26430	215.2	109.5
13	3.220	64.07	22.76	17.83	260	199.9	28410	223.0	113.7
14	3.650	67.50	23.01	18.19	270	203.7	30420	230.6	117.9
15	4.191	71.41	23.28	18.52	280	207.3	32480	238.1	122.1
20	8.012	101.3	24.98	19.91	290	210.6	34570	245.4	126.2
25	12.83	153.2	27.27	21.14	298.15	213.1±0.1 ^b	36290±20	251.3±0.6	129.6±5
30	17.87	229.9	30.06	22.39	300	213.6	36690	252.6	130.3
35	22.86	331.8	33.19	23.71	350	226.2	47700	286.6	150.3
40	27.77	458.4	36.56	25.10	400	235.3	59260	317.4	169.2
45	32.65	609.5	40.11	26.57	500	247.1	83430	371.3	204.4
50	37.55	784.9	43.81	28.11	600	254.4	108500	417.0	236.1
60	47.51	1210	51.53	31.36	700	259.5	134200	456.6	264.9
70	57.74	1736	59.62	34.82	800	263.8	160400	491.6	291.1
80	68.12	2365	68.01	38.44	900	267.7	187000	522.9	315.1
90	78.47	3098	76.63	42.20	1000	271.4	213900	551.3	337.3
100	88.66	3934	85.42	46.08	1100	275.1 278.6	241300	577.3	358.0
110	98.61	4871	94.34	50.06	1200 1300	2/8.6	268900 297000	601.4 623.8	377.3 395.4
120	108.2	5905	103.3	54.13	1400	282.0	325300	644.9	412.5
130	117.5	7034	112.4	58.26	1500	283.2	354000	664.6	412.3
140	126.4	8254	121.4	62.45	1600	288.2	383000	683.3	444.0
150	134.8	9560	130.4	66.68	1700	291.0	412200	701.1	458.6
160	142.8	10950	130.4	70.95	1800	293.63	441700	717.9	438.6
170	150.4	12420	148.3	75.23	1825	296.1	449100	717.9	472.3
	150.4	12420	140.3	13.23	1823	290.0	449100	/22.0	4/3.9

^a $\Phi^{o}(T) = S^{o}(T) - [H^{o}(T) - H^{o}(0)/T].$


функций в области 298-1800 К получены в настоящей работе и заимствованы из [31, 32, 36]. Оценка энергии Гиббса реакций (1) и (2) приведена на рис. 7. Можно видеть, что энергия Гиббса реакции (1) в области высоких температур имеет большие отрицательные значения, в то время как энергия Гиббса реакции (2) при росте температуры существенно уменьшается по величине, что говорит об уменьшении вероятности реакции образования $Gd_2Ti_2O_7$ из Gd_2TiO_5 и TiO_2 . При экстраполяции

зависимости энергии Гиббса реакции (2) выше 2000 К кривая $\Delta_{\rm r} G(2) = f(T)$ может поменять знак при ~2600 \pm 300 К (~2300 \pm 300°C), что свидетельствует об изменении направления реакции (2).

выводы

По результатам измерения теплоемкости титаната гадолиния в широком интервале температур получена согласованная температурная

^b Соответствует стандартному отклонению.

Рис. 7. Оценка энергии Гиббса в области высоких температур: 1 — реакция (1), 2 — реакция (2), 3 — экстраполяция.

зависимость $C_p(T)$, на основании сглаживания которой рассчитаны энтропия, изменение энтальпии и приведенная энергия Гиббса.

Аномалия теплоемкости в области самых низких температур представлена как сумма магнитной аномалии и аномалии Шоттки, что позволило объяснить ход теплоемкости выше 20 К.

Оценены энергии Гиббса реакций образования $Gd_2Ti_2O_7$ из простых оксидов и из Gd_2TiO_5 и TiO_2 в области высоких температур, на основании которых сделано заключение о стабильности изученного титаната гадолиния со структурой пирохлора.

ФИНАНСИРОВАНИЕ

Настоящее исследование выполнено в рамках государственного задания ИОНХ РАН на выполнение фундаментальных исследований с использованием оборудования ЦКП ФМИ ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Kramer S.A., Tuller H.L. // Solid State Ionics. 1995.
 V. 82. P. 15. https://doi.org/10.1016/0167-2738(95)00156-Z.
- Wang Z., Wang X., Zhou G., et al. https://www.sciencedirect.com/science/article/pii/ S0955221919302420// J. Europ. Ceram. Soc. 2019. V. 39. P. 3229. https://doi.org/10.1016/j.jeurceramsoc.2019.04.018.

- 3. *Lumpkin G.R., Pruneda M., Rios S.*, et al. // J. Solid State Chem. 2007. V. 180. P. 1512. doi:10.1016/j.jssc.2007.01.028.
- 4. *Vassen R., Jarligo M.O., Steinke T., et al.* // Surf. Coat. Technol. 2010. V. 205. P. 938. doi:10.1016/j.surfcoat.2010.08.151
- 5. Schiffer P., Ramirez A.P. // Comments Condens. Matter Phys. 1996. V. 18. P. 21.
- Lecheminant P., Bernu B., Lhuillier C., et al. // Phys. Rev. Lett. 1998. V. 80. P. 2933. https://doi.org/10.1103/PhysRevLett.80.2933
- 7. *Villain J.* // Z. Phys. B. 1979. V. 33. P. 31. https://doi.org/10.1007/BF01325811
- Reimers J.N., Berlinsky A.J., Shi A.-C. // Phys. Rev. B. 1991. V. 43. P. 865. https://doi.org/10.1103/PhysRevB.43.865
- Moessner R., Chalker J.T. // Phys. Rev. Lett. 1998.
 V. 80. P. 2929. https://doi.org/10.1103/PhysRevLett.80.2929
- 10. Farmer J.M., Boatner L.A., Chakoumakos B.C., et al. // J. Alloys Compd. 2014. V. 605. P. 63. http://dx.doi.org/10.1016/j.jallcom.2014.03.153
- Raju N.P., Dion M., Gingras M.J.P., et al. // Phys. Rev. B. 1999. V. 59(22). P. 14489.
- 12. *Ramirez A.P., Shastry B.S., Hayashi A., et al.* // Phys. Rev. Lett. 2002. V. 89(6). P. 067202–1. DOI:10.1103/PhysRevLett.89.067202
- Janssen A., Pöml P., Beneš O., et al. // J. Chem. Thermodyn. 2009. V. 41. P. 1049.
 DOI:10.1016/j.jct.2009.04.011
- Denisova L.T., Chumilina L.G., Ryabov V.V., et al. // Inorg. Mater. 2019. V. 55(5). P. 477.
 DOI: 10.1134/S0020168519050029
- Helean K.B., Ushakov S.V., Brown C.E., et al. // J. Solid State Chem. 2004. V. 177. P. 1858. DOI:10.1016/j.jssc.2004.01.009
- Reznitskii L.A. // Inorg. Mater. 1993. V. 29(9). P. 1310.
- 17. *Kowalski P.M.* // Scripta Mater. 2020. V. 189. P. 7. https://doi.org/10.1016/j.scriptamat.2020.07.048
- Rosen P.F., Woodfield B.F. https://www.sciencedirect.com/science/article/pii/ S002196141930730X// J. Chem. Thermodyn. 2020. V. 141. P. 105974. https://doi.org/10.1016/j.jct.2019.105974
- Sabbah R., Xu-wu A., Chickos J.S., et al. // Thermochim. Acta. 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
- Ryumin M.A., Nikiforova G.E., Tyurin A.V., et al. // Inorg. Mater. 2020. V. 56. P. 97. https://doi.org/0.1134/S0020168520010148
- 21. *М.А. Рюмин, Г.Е. Никифорова, А.В. Тюрин и др. //* Неорган. Материалы. 2020. Т. 56. С. 102.
- 22. *Prohaska T., Irrgeher J., Benefield J., et al.* // Pure Appl. Chem. 2022. V. 94(5). P. 573. https://doi.org/10.1515/pac-2019-0603.

- Clarke D.R. // Surf. Coat. Technol. 2003. V. 163. P. 67. https://doi.org/10.1016/S0257-8972(02)00593-5
- Chernyshev V.A., Petrov V.P., Nikiforov A.E. // Phys. Solid State. 2015. V. 57. No. 5. P. 996.
 DOI: 10.1134/S1063783415050078.
- Westrum E.F., Jr. // J. Chem. Thermodyn. 1983. V.
 P. 305.
 https://doi.org/10.1016/0021-9614(83)90060-5
- Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932.
 V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
- Voronin G.F., Kutsenok I.B. https://pubs.acs.org/doi/10.1021/je400316m// J. Chem. Eng. Data 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
- Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- 29. Waring J.L., Schneider S.J. // J. Res. Natl. Bur. Stand. A. Phys. Chem. 1965. V. 69A(3). P. 255. doi:10.6028/jres.069A.025

- 30. *Smith S.J., Stevens R., Liu Sh., et al.* // Am. Mineral. 2009. V. 94. P. 236. DOI: 10.2138/am.2009.3050
- Kandan R., Prabhakara Reddy B., Panneerselvam G., Nagarajan K. // J. Therm. Anal. Calorim. 2016.
 V. 124. P. 1349.
 DOI 10.1007/s10973-016-5272-6
- 32. *Könings R.J.M., Beneš O., Kovács A., et al.* // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. DOI: 10.1063/1.4825256
- Hayun S., Navrotsky A. // J. Solid State Chem. 2012.
 V. 187. P. 70.
 DOI:10.1016/j.jssc.2011.12.033
- 34. Panneerselvam G., Venkata Krishnan R., Antony M.P., et al. // J. Nucl. Mater. 327 (2004) 220.
- 35. Термические константы веществ. Справочник под ред. В.П. Глушко. Москва 1965–1982. http://www.chem.msu.ru.
- 36. *M.W. Chase, Jr.* NIST-JANAF Thermochemical Tables. 4th ed. American Chemical Society. 1998.