——— ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ **————**

УДК 536.71

ФЕНОМЕНОЛОГИЧЕСКАЯ ТЕОРИЯ КРИТИЧЕСКОЙ ТОЧКИ И ФУНДАМЕНТАЛЬНОЕ УРАВНЕНИЕ СОСТОЯНИЯ В ФИЗИЧЕСКИХ ПЕРЕМЕННЫХ

© 2024 г. И.В. Кудрявцева^а, С.В. Рыков^{а, *}

^aУниверситет ИТМО, Санкт-Петербург, 197101, Россия *e-mail: togg1@yandex.ru
Поступила в редакцию 20.01.2024 г.
После доработки 22.02.2024 г.
Принята к публикации 26.02.2024 г.

На основе линейной модели Скофилда—Литстера—Хо (ЛМ) получено представление масштабной гипотезы (МГ), по своей структуре аналогичное представлению МГ, следующему из феноменологической теории критической точки Мигдала и позволяющее в соответствии с требованиями масштабной теории построить уравнение состояния в физических переменных. В качестве масштабного множителя в предложенной модели критической точки, как и в модели критической точки Берестова, использована изохорная теплоемкость, приведенная к абсолютной температуре (C_{ν}/T) . Показано, что в рамках предложенной модели МГ на основе гипотезы Бенедека могут быть строго рассчитаны масштабные функции свободной энергии Гельмгольца в переменных плотность-температура, которые по своим характеристикам не уступают соответствующим масштабным функциям ЛМ. В отличие от масштабных функций, рассчитанных на основе представлений МГ Мигдала, масштабные функции свободной энергии, рассчитанные в рамках предложенной модели критической точки, не содержат интегралов от дифференциальных биномов. В рамках нового представления МГ предложено единое фундаментальное уравнение состояния, которое апробировано на примере описания равновесных свойств метана в диапазоне: по температуре $90.6941-620~\mathrm{K}$; по давлению до $600~\mathrm{M}\Pi$ а.

Ключевые слова: фундаментальное уравнение состояния, масштабная гипотеза, феноменологическая теория критической точки, линейная модель, гипотеза Бенедека, метан

DOI: 10.31857/S0044453724110069, **EDN:** EZUYCP

ВВЕДЕНИЕ

При описании критической области важную роль играют непараметрические уравнения состояния, удовлетворяющие масштабной гипотезе [1], масштабные функции которых рассчитаны непосредственно в физических переменных: плотность, ρ , и температура, T, [2–15], а не в параметрической форме [16-18]. Однако в отличие от линейной модели Скофилда-Литстера-Хо (ЛМ) [19], которая используется в [16–17], получила физическое обоснование в рамках є-разложения и подтверждается результатами микроскопических расчетов [17], масштабные функции непараметрических уравнений разработаны, в основном, вне рамок физических моделей критической точки (КТ). Поэтому задача поиска методов расчета физически обоснованных масштабных функций в переменных $\rho - T$ является до сих пор актуальной [15].

В работе [20] показана принципиальная возможность решить данную задачу на основе

феноменологической теории критической точки Мигдала [21]. Однако при этом в масштабные функции энтальпии, S, изохорной, C_{ν} , и изобарной, C_{p} , теплоемкостей, коэффициента изотермической сжимаемости, K_{T} , входят интегралы от дифференциальных биномов. Такие масштабные функции нашли применение при описании окрестности КТ и для построения комбинированных уравнений состояния (КУС) ряда индивидуальных веществ, в частности, метана, ⁴Не и шестифтористой серы [12, 15, 22]. Для описания широкой области параметров состояния жидкости и газа, включая окрестность КТ, широкое распространение получили масштабные функции свободной энергии a(x), предложенные в работах [4—6]:

$$a_{\rm l}(x) = A_{\rm l}(x+x_{\rm l})^{2-\alpha} + B_{\rm l}(x+x_{\rm l})^{\gamma} + C_{\rm l}, \quad (1)$$

$$a_2(x) = A_1[(x+x_1)^{2-\alpha} - x_1 / x_2(x+x_2)^{2-\alpha}] + B_1(x+x_3)^{\gamma} + C_1.$$
 (2)

Здесь $x = \tau/|\Delta \rho|^{1/\beta}$ — масштабная переменная; α , β и γ — критические индексы; $\tau = T/T_c - 1$; $\Delta \rho = \rho/\rho_c - 1$; T_c , ρ_c — критические температура и плотность

Обусловлено это тем, что в сингулярные составляющие термодинамических функций входят только функция a(x) и ее производные, следовательно, в случае использования (1) и (2) в структуре уравнения состояния (УС) термодинамические функции, рассчитанные на основе такого УС, имеют простую структуру, и как показано в [23], хорошие расчетные характеристики. Функции (1) и (2) также как и масштабные функции, разработанные в [20, 24], используются при построении масштабных и фундаментальных уравнений индивидуальных веществ [8, 9, 11, 13, 14, 25].

Цель данной работы — это построение единого фундаментального уравнения состояния (ЕФУС), которое в асимптотической окрестности КТ удовлетворяет требованиям масштабной теории (МТ) [26] и переходит в масштабное уравнение Вайдома; имеет физически обоснованную структуру; с малой неопределенностью, соответствующей неопределенности экспериментальных данных, передает равновесные свойства в широкой области параметров состояния; удовлетворяет требованиям, обычно предъявляемым к уравнениям состояния вириального вида [27].

ВЫБОР МАСШТАБНОЙ ФУНКЦИИ

Обратим внимание на тот факт, что сингулярная составляющая энтропии, ΔS , рассчитанная на основе ЛМ [19]:

$$\Delta \mu = ar^{\beta \delta} \theta (1 - \theta^2), \, \Delta \rho = kr^{\beta} \theta, \, \tau = r(1 - b^2 \theta^2), \, (3)$$

описывается в координатах r— θ известным выражением:

$$\Delta S(\rho, T) = \frac{ak}{2\alpha b^{2} (1 - \alpha)} \gamma(\gamma - 1) r^{1 - \alpha} \times \left[1 - \frac{(1 - 2\beta)(1 - \alpha)}{\gamma - 1} b^{2} \theta^{2} \right].$$
(4)

Здесь $\Delta\mu = \rho_c / p_c [\mu(\rho,T) - \mu_0(\rho_c,T)]; \quad \mu - \text{химический потенциал; } p_c - \text{критическое давление; } \mu_0(\rho_c,T) - \text{регулярная функция; } b^2 = (1-2\beta/\gamma) / / (1-2\beta); \quad k = (1-b^2)^\beta / x_0^\beta; \quad x_0 - \text{значение } x \text{ на линии насыщения } [6]; \quad a - \text{постоянная; } \Delta S = (\rho T_c / / p_c) [S(\rho,T) - S_0(\rho,T)]; \quad \delta = 1 + \gamma/\beta - \text{критический индекс}$

Воспользуемся равенствами (3) и, учитывая, что в рамках ЛМ изохорная теплоемкость является функцией "расстояния", r, получим зависимость:

$$C_{\nu}^{*}/T = Br^{-\alpha}, B = ak/(2\alpha b^{2})\gamma(\gamma - 1), \qquad (5)$$

где
$$C_v^* = (\rho T_c/p_c)C_v$$
.

Подставим r из (5) в (4) и найдем $\Delta S(\rho, T)$ как функцию C_{ν}^{*}/T и $\Delta \rho$:

$$\Delta S \cdot \left(\frac{C_{\nu}^{*}}{T}\right)^{(1-\alpha)/\alpha} =$$

$$= \frac{B^{1/\alpha}}{1-\alpha} - \frac{(1-2\beta)}{(\gamma-1)} \frac{b^{2}}{k^{2}} B^{(1-2\beta)/\alpha} (\Delta \rho)^{2} \left(\frac{C_{\nu}^{*}}{T}\right)^{2\beta/\alpha}.$$
(6)

Теперь, согласно (6), масштабную гипотезу можно представить в виде:

$$\Delta S \cdot (C_{\nu}^{*} / T)^{(1-\alpha)/\alpha} = \varphi_{0} + \varphi_{2} \cdot m^{2},$$

$$m = \Delta \rho \cdot (C_{\nu}^{*} / T)^{\beta/\alpha},$$
(7)

где
$$\phi_0 = B^{1/\alpha} / (1-\alpha)$$
; $\phi_2 = (2\beta-1)b^2 B^{(1-2\beta)/\alpha} / (\gamma-1)/k^2$.

В [28] Берестовым предложено представление масштабной гипотезы, в котором также используется зависимость $\Delta S(\rho, T)$ от комплекса C_{ν}^{*}/T :

$$\Delta S \cdot (C_{v}^{*} / T)^{(1-\alpha)/\alpha} = \varphi_{0} + \varphi_{2} \cdot m,$$

$$m = \tau \cdot (C_{v}^{*} / T)^{1/\alpha}.$$
(8)

Обратим внимание на то, что полученное на основе ЛМ представление масштабной гипотезы в виде (7) является в термодинамическом смысле обоснованным в той же мере, что и представления масштабной гипотезы в виде зависимостей (8). Покажем, что модель (7), в отличие от модели (8), дает возможность получить физически обоснованное непараметрическое УС, не содержащее интегралов от дифференциальных биномов. Воспользуемся экспериментально подтвержденной гипотезой Бенедека [29], согласно которой поведение C_{ν} на критической и околокритических изохорах в окрестности КТ описывается степенной зависимостью:

$$C_{v}^{*}/T = A[(T - T_{ns}(\rho))/T_{c}]^{-\alpha},$$
 (9)

где $T_{ps}(\rho)$ — линия псевдокритических точек, положение которой на термодинамической поверхности определяется системой равенств $(\partial T/\partial s)_{\rho}=0$ и $(\partial p/\partial \rho)_T^{-1}=0$ [30]. Исключение составляет только КТ, в которой $(\partial T/\partial s)_{\rho}=0$ и $(\partial p/\partial \rho)_T=0$.

Учтем, что $T_{ps}(\rho)$ в окрестности КТ имеет вид [31]:

$$T_{ns}(\rho) = T_c(1 - x_1 |\Delta \rho|^{1/\beta}).$$
 (10)

Подставим (10) в (9) и, переходя к переменной x, получим:

$$C_{\nu}^{*} / T = A \left| \Delta \rho \right|^{-\alpha/\beta} \left(x + x_{1} \right)^{-\alpha}. \tag{11}$$

В результате придем к следующему выражению для энтропии:

$$\Delta S = |\Delta \rho|^{(1-\alpha)/\beta} [\phi_0 A^{(\alpha-1)/\alpha} (x + x_1)^{1-\alpha} + \phi_2 A^{(1-\gamma)/\alpha} (x + x_1)^{\gamma-1}].$$
(12)

Воспользуемся термодинамическим равенством $S = -(\partial F/\partial T)_{\rm p}$ и получим известное УС для свободной энергии Гельмгольца F:

$$(\rho / p_c)\Delta F(\rho, T) = |\Delta \rho|^{\delta + 1} a(x), \tag{13}$$

где a(x) — масштабная функция свободной энергии:

$$a(x) = -\varphi_0 (2 - \alpha)^{-1} A^{(\alpha - 1)/\alpha} (x + x_1)^{2 - \alpha} - - \varphi_2 \gamma^{-1} A^{(\gamma - 1)/\alpha} (x + x_1)^{\gamma} + C,$$
(14)

которая, если ввести обозначения $A_1 = -\phi_0(2 - \alpha)^{-1}A^{(\alpha-1)/\alpha}$ и $B_1 = -\phi_2\gamma^{-1}A^{(\gamma-1)/\alpha}$, тождественна функции (1).

Рассмотрим теперь модель (8). Подставим (11) в (8) и в результате получим:

$$\Delta S = |\Delta \rho|^{(1-\alpha)/\beta} [\phi_0 A^{(\alpha-1)/\alpha} (x + x_1)^{1-\alpha} + \phi_2 A x (x + x_1)^{-\alpha}] = |\Delta \rho|^{(1-\alpha)/\beta} a_s(x).$$
(15)

Из (15), учитывая, что $a_s(x) = -a'(x)$, найдем функцию a(x):

$$a(x) = -\phi_0 A^{(\alpha - 1)/\alpha} (2 - \alpha)^{-1} (x + x_1)^{2 - \alpha} - - \phi_2 A \int x (x + x_1)^{-\alpha} dx + C.$$
 (16)

Из анализа масштабной функции $h(x)=(\delta+1)a(x)+(x/\beta)a_s(x)$ химического потенциала μ , рассчитанной на основе функций $a_s(x)$ (15) и a(x) (16) следует, что имеет место предельный переход $h(x\to\infty)\sim x^{2-\alpha}+x^{1-\alpha}+x^{-\alpha}+\dots$, что противоречит МТ [26], так как согласно МТ функция h(x) должна удовлетворять условию $h(x\to\infty)\sim x^\gamma+\dots$ (ЛМ (3) и функции (1), (2) и (14) этому условию удовлетворяют).

Теперь обратим внимание на то, что если в представлениях масштабной гипотезы в виде (7) или (8) произвести замену C_{ν} на любую другую термодинамическую функцию X_i , имеющую особенность в КТ с критическим показателем ϕ_i и, согласно гипотезе Бенедека [29], удовлетворяющую степенной зависимости (см. (10)):

$$X_i(\rho, T) = A_i \left| \Delta \rho \right|^{-\phi_i / \beta} (x + x_i)^{-\phi_i}, \tag{17}$$

то масштабные функции (14) и (16) будут к такому преобразованию инвариантны. Покажем это на примере модели (7). Приведем (7) к виду:

$$\Delta S \cdot X_i^{(1-\alpha)/\phi_i} = \varphi_0 + \varphi_2 \cdot m^2, m = \Delta \rho \cdot X_i^{\beta/\phi_i}.(18)$$

Подставим зависимость (17) в равенства (18) и получим функцию:

$$a_i(x) = A_i(x + x_i)^{2-\alpha} + B_i(x + x_i)^{\gamma} + C_i,$$
 (19)

имеющую такую же структуру, как и масштабная функция (14).

Данный результат позволяет сделать следующее обобщение. Пусть $X_1 = C_v$; $X_2 = K_T$, $X_3 = C_p$ и, следовательно, $\phi_1 = \alpha$; $\phi_2 = \phi_3 = \gamma$. Тогда суммируя по индексу i правые части выражения (19), получим:

$$a(x) = \sum_{i=1}^{3} A_i (x + x_i)^{2-\alpha} + B_i (x + x_i)^{\gamma} + C_i.$$
 (20)

Введем новую переменную $\xi=x/x_0$, положим $A_3=0,\ B=\sum_{i=1}^3 B_i,\ C=\sum_{i=1}^3 C_i$, и, найдем значения $A_1,\ A_2,\ B$ и C из равенств:

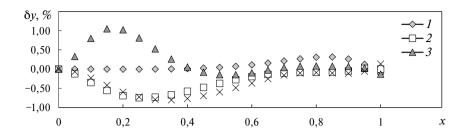
$$h(x = -x_0) = 0, h(x \to \infty) = h_l(\theta = 0),$$

 $f(x \to \infty) = f_l(\theta = 0).$ (21)

Здесь h, f — масштабные функции μ и C_{ν} , рассчитанные на основе функции (20); h_l и f_l — масштабные функции ЛМ, рассчитанные на основе (3) и (5).

В результате, с учетом требования $h(x \to \infty) \sim x^{\gamma} + ...$, приведем (20) к виду:

$$a(\xi) = Ax_0^{2-\alpha} [(\xi + \xi_1)^{2-\alpha} - \xi_1 / \xi_2 (\xi + \xi_2)^{2-\alpha}] + Bx_0^{\gamma} (\xi + \xi_3)^{\gamma} + C,$$
(22)


где $\xi_i = x_i / x_0$; $A = -k\gamma(\gamma - 1) / (2\alpha\alpha_1b^2\epsilon_0)$, $\epsilon_0 = 1 - \xi_1 / \xi_2$; C — постоянная, находится из уравнения $(2-\alpha)a(\xi=-1)+a'(\xi=-1)=0$; $\alpha_1=(2-\alpha)(1-\alpha)$, B=1/(2k).

Подставим масштабные функции, найденные на основе (22) и ЛМ, в равенства:

$$f(x)\Big|_{x=-x_0} = f_l(x)\Big|_{x=-x_0}, f(x)\Big|_{x=0} = f_l(x)\Big|_{x=0}, h(x)\Big|_{x=0} = h_l(x)\Big|_{x=0},$$
(23)

и, после ряда алгебраических преобразований, получим систему уравнений для расчета ξ_i :

$$\frac{-(\delta+1)(b^{2}-1)^{\beta}\gamma_{1}}{(1-\epsilon)2\alpha b^{2}\alpha_{1}}(\xi_{1}^{2-\alpha}-\xi_{10}^{2-\alpha}-\xi_{10}^{1-\alpha}-\xi_{10}^{1-\alpha}-\xi_{10}^{2-\alpha}-\xi_{20}^{2-\alpha}-\xi_{20}^{2-\alpha})) + \frac{\delta+1}{2(b^{2}-1)^{\beta}}\times$$
(24)

Рис. 1. Отклонения $\delta y = (y_l - y)/y_l$ 100, % масштабных функций y(x) от соответствующих функций $y_l(x)$ ЛМ: 1 - y = f(x); 2 - y = h(x); $3 - y = f_x(x)$; 4 - y = h'(x).

$$\frac{1}{(1-\varepsilon)\alpha b^{2}} (\xi_{1}^{-\alpha} - \varepsilon \xi_{2}^{-\alpha}) - \frac{1}{(b^{2}-1)^{2\beta}} \xi_{3}^{\gamma-2} =
= \frac{1}{\alpha b^{2}} \left(\frac{(b^{2}-1)^{\beta}}{b} \right)^{\alpha/\beta},$$
(25)

$$\frac{1}{(1-\varepsilon)\alpha b^2} (\xi_{10}^{-\alpha} - \varepsilon \xi_{20}^{-\alpha}) - \frac{1}{(b^2 - 1)^{2\beta}} \xi_{30}^{\gamma - 2} =
= \frac{1}{\alpha b^2} ((b^2 - 1)^{\beta})^{\alpha/\beta},$$
(26)

где
$$\gamma_1 = \gamma(\gamma - 1)$$
, $\xi_{i0} = \xi_i - 1$, $i = 1...3$, $\varepsilon = \xi_1 / \xi_2$.

При значениях критических индексов (модель Изинга) $\beta=0.3255, \gamma=1.239,$ из уравнений (24)—(26) следует: $\xi_1=2.80724765, \quad \xi_2=14.47173023, \quad \xi_3=5.73246814.$

Относительные отклонения (рис. 1) масштабных функций, рассчитанных на основе (22), от соответствующих функций ЛМ существенно меньше, чем в случае масштабной функции h(x) в [10, 12, 15, 22]. Так, максимальные относительные отклонения, $\Delta f_{\rm max}$, масштабных функций изохорной теплоемкости [10, 12, 15, 22] и ЛМ равно $\Delta f_{\rm max} = 21\%$ [20], тогда как в случае (22) имеем $\Delta f_{\rm max} = 0.35\%$ (рис. 1).

ВЫБОР СТРУКТУРЫ ЕФУС

Введем в ΔS (18) кроссоверную функцию $\phi(\omega)$:

$$\Delta S = (\rho T_c / p_c) [S(\rho, T) - S_0(\rho, T)] / \phi(\omega), \quad (27)$$

где $\phi(\omega)$ — регулярная функция; $\omega = \rho/\rho_c$.

В работе [32] показано, что на основе (27) с помощью известного термодинамического соотношения $F = -\int S \, dT$ можно построить фундаментальное уравнение состояния:

$$F(\rho, T) = F_{reg}(\rho, T) + RT_c \phi(\omega) |\Delta \rho|^{\delta + 1} a(\xi), \quad (28)$$

где $F_{\text{reg}}(\rho, T)$ — регулярная функция; R — газовая постоянная.

В качестве $a(\xi)$ выберем масштабную функцию (22), которая, как видим, рассчитана на основе (17), (18) и (27) при $\phi(\omega) \equiv 1$. В соответствии с рекомендациями [11] функция $F_{\text{reg}}(\rho, T)$ выбирается в (29) таким образом, чтобы выполнялись требования: переход к уравнению состояния вириального вида в области малых плотностей и ряд условий в критической точке:

$$p(\rho_c, T_c) = p_c, \ (\partial p_{reg}^n / \partial \rho^n)_T \Big|_{T = T_c, \rho = \rho_c} = 0,$$

$$n = \overline{1, \dots, 4}, (\partial p / \partial \rho)_T \Big|_{\rho = \rho_c, T \to T_c} \sim o(\tau),$$
 (29)

где o — символ Ландау.

Этим требованиям удовлетворяет F_{reg} [33]:

$$F_{reg}(\rho,T) = F^{0}(\rho,T) + RT\omega y_{2} + RT\omega(Z_{c} - 0.2)y_{6} + RT\omega\tau_{1} \Big[D_{1}(\omega - 3) + D_{2}(\omega^{2} - 2\omega) \Big] +$$

$$+RT\omega D_{3}(y_{4} - y_{6}) + RT\omega \sum_{i=0}^{20} \sum_{j=0}^{7} (C_{i,j}\tau_{1}^{j}\Delta\rho^{i}),$$
(30)

где $F^0(\rho,T)$ — идеально-газовая составляющая F; $Z_c=p_c/(R\rho_cT_c)10^3;$ $\tau_1=T_c/T-1;$ $y_2=(-15.4+5.8\Delta\rho-2.2\Delta\rho^2+0.6\Delta\rho^3)/12;$ $y_4=5-4\Delta\rho+3\Delta\rho^2+2\Delta\rho^3+\Delta\rho^4;$ $y_6=4-3\Delta\rho+2\Delta\rho^2-\Delta\rho^3+\Delta\rho^5.$

Для ряда веществ точность расчетов по ЕФУС (28) можно повысить, если кроссоверная функция ф зависит как от ρ , так и от T [34]. Поэтому в случае метана мы в качестве кроссоверной функции используем зависимость:

$$\phi = \exp(-a_{\rho}(\Delta \rho)^2 / \omega^{b_{\rho}}) \cdot t^{-2}, \tag{31}$$

где a_{ρ} и b_{ρ} — постоянные; $t = T/T_c$.

Согласно (28), (30), (31) ЕФУС в рамках предложенного подхода имеет вид:

$$F(\rho,T) = F^{0}(\rho,T) + RT\omega y_{2} + RT\omega(Z_{c} - 0.2)y_{6} + RT\omega\tau_{1}[D_{1}(\omega - 3) + D_{2}(\omega^{2} - 2\omega)] + RT\omega D_{3}(y_{4} - y_{6}) + RT\omega\sum_{i=0}^{20}\sum_{j=0}^{7}(C_{i,j}\tau_{1}^{j}\Delta\rho^{i}) + uR^{-a_{p}(\Delta\rho)^{2}\omega^{-b_{p}}}t^{-2}|\Delta\rho|^{\delta+1}a(\xi).$$

$$(32)$$

Наш анализ показал, что при $T \to T_c$ и $\rho \to \rho_c$ выражение для химического потенциала, μ , рассчитанное на основе (32), переходит в уравнение Вайдома [35]:

$$\Delta \mu = \Delta \rho |\Delta \rho|^{\delta - 1} h(x), \tag{33}$$

где $h(x) = (\delta + 1)a(x) - (x / \beta)a'(x)$, a(x) — масштабная функция (22).

С целью оценить рабочую область (32) мы разработали ЕФУС метана — вещества, для которого имеется обширная опытная информация о термических, калорических свойствах и скорости звука, [36—79] и разработано ФУС [80], а также кроссоверные и комбинированные УС, учитывающие особенности КТ [81—84].

ЕФУС МЕТАНА

Идеально-газовую составляющую метана, $F^0(\rho, T)$, мы выбрали в соответствии с рекомендациями [80]:

$$F^{0}(\rho,T) = RT[\ln \rho + a_{1}^{0} + a_{2}^{0}t^{-1} + 3.0016\ln t^{-1} + \sum_{i=1}^{5} V_{i} \ln(1 - \exp(-U_{i} / T))],$$
(34)

где $a_1^0=4.81789114;$ $a_2^0=-6.3227263;$ $V_1=0.008449;$ $V_2=4.6942;$ $V_3=3.4865;$ $V_4=1.6572;$ $V_5=1.4115;$ $U_1=648;$ $U_2=1957;$ $U_3=3895;$ $U_4=5705;$ t=T / T_c . Значения a_1^0 и a_2^0 определены исходя из $H_0=0$ кДж/кг и $S_0=0$ кДж/(кг K) при T=298.15 К и p=1 атм в состоянии идеального газа.

Выражения для давления $p(\rho, T)$ рассчитано на основе ЕФУС (28) по известной термодинамической формуле $p = \rho^2 (\partial F/\partial \rho)_T$:

$$p(\rho,T) = \rho RT \left[1 + \frac{dy_2}{d\omega} \omega^2 + y_2 \omega + D_1 \omega \tau_1 (2\omega - 3) + \right.$$

$$+ D_3 \left(\frac{dy_4}{d\omega} \omega^2 + y_4 \omega - \frac{dy_6}{d\omega} \omega^2 - y_6 \omega \right) +$$

$$+ \left(\frac{dy_6}{d\omega} \omega^2 + y_6 \omega \right) (Z_c - 0.2) + D_2 \omega^2 \tau_1 (3\omega - 4) +$$

$$+ \omega \sum_{i=0}^{20} \sum_{j=0}^{7} C_{i,j} \tau_1^{j} \Delta \rho^{i-1} (i\omega + \Delta \rho) \right] + u\rho RT_c t^{-2} \omega \times$$

$$\times \left[\frac{d\phi_0}{d\omega} |\Delta \rho|^{\delta+1} a(\xi) + (\delta + 1) sign(\Delta \rho) \phi_0 |\Delta \rho|^{\delta} a(\xi) +$$

$$+ \phi_0 |\Delta \rho|^{\delta+1} \frac{\partial \xi}{\partial \omega} \frac{da(\xi)}{dx} \right],$$
(35)

где $\phi_0 = \exp(-a_{\rho}(\Delta \rho)^2 \omega^{-b_{\rho}})$; $d\phi_0 / d\omega = a_{\rho} \Delta \rho \phi_0 (b_{\rho} \Delta \rho - 2\omega) / \omega^{b_{\rho}+1}$.

Формулы для расчета в рамках предложенного подхода имеют простую структуру. Например, выражение для теплоемкости C_{ν} , рассчитанное с привлечением (32) и известной формулы, $C_{\nu}(\rho,T) = -T(\partial^2 F/\partial T^2)_{\rho}$, и имеет вид:

$$C_{\nu}(\rho,T) = C_{\nu}^{0}(T) - R\omega t^{-2} \times \times \sum_{i=0}^{20} \sum_{j=0}^{7} C_{i,j} j(j-1) \tau_{l}^{j-2} \Delta \rho^{i} - URT_{c}T\phi_{0} |\Delta \rho|^{\delta+1} \left[6 \frac{T_{c}^{2}}{T^{4}} a(\xi) - 4 \frac{T_{c}^{2}}{T^{3}} \left(\frac{\partial \xi}{\partial T} \right)_{\rho} \times \frac{da(\xi)}{d\xi} + t^{-2} \left(\frac{\partial \xi}{\partial T} \right)_{\rho}^{2} \frac{d^{2}a(\xi)}{d\xi^{2}} \right],$$

$$(36)$$

где $(\partial \xi / \partial T)_{\rho}^2 = 1 / (x_0 T_c |\Delta \rho|^{1/\beta}); \ C_{\nu}^0(T) = -T(\partial^2 F^0(\rho,T) / \partial T^2)_{\rho} - R$ — идеально-газовая изохорная теплоемкость или

$$C_{\nu}^{0}(T) = R\{3.0016 + \sum_{i=1}^{5} [V_{i}(U_{i}/T)^{2} \exp(-U_{i}/T)/(1 - \exp(-U_{i}/T))^{2}]\}.$$
(37)

Коэффициенты ЕФУС (32) определены нами на базе экспериментальной информации [36—53]. В результате для коэффициентов и параметров уравнений (32), (35), (36) получены следующие значения: $T_c = 190.564~\rm K$; $p_c = 4.5992~\rm M\Pi a$; $\rho_c = 162.662~\rm kг/m^3$; $R = R_{id}/m$; $R_{id} = 8.3144598~\rm Дж/(моль~\rm K)$; $m = 16.0428~\rm r/моль$;

		j					
($C_{i,j}$	0	1	2			
	0	0	0	1.262445212411			
	1	0	0	-0.74989807422			
	2	0	0	-2.60741029682			
	3	0	-1.381298206492	3.579241087052			
	4	0	-1.111748045148	-0.153841162111			
	5	0	2.585045940775	-2.88316304394			
	6	-0.181265809594	-0.613092067142	1.891061137699			
	7	-0.0055720918765	-1.98315553543	0.211510054055			
	8	0.464887158919	1.630818208019	-0.653043700639			
	9	-0.345345851835	0.926229834724	0.248143222733			
i	10	-0.341098267329	-1.735766875551	-0.030695658595			
	11	0.510417053207	0.02460966483	0			
	12	-0.020953758854	1.331784510888	0			
	13	-0.295595755375	-0.928659996217	0			
	14	0.168592555648	-0.026766219183	0			
	15	0.025525875072	0.408114486839	0			
	16	-0.069227033539	-0.291356604723	0			
	17	0.035342738982	0.109304555404	0			
	18	-0.0091040064341	-0.024225789429	0			
	19	0.001228238336	0.0030062097512	0			
	20	-0.000069192143813	-0.00016168653966	0			

Таблица 1. Коэффициенты ЕФУС (32)

 $\begin{array}{l} D_1 = 0.557286559345 \ ; \qquad D_2 = 0.877816773236 \ ; \\ D_3 = -4.898109944523 \cdot 10^{-3}; u = 3.035056; \beta = 0.3255, \\ \gamma = 1.239; \alpha = 2 - (\beta \delta + \beta); \delta = 1 + \gamma/\beta; x_0 = 0.32001; \\ x_1 = 0.89834732; \ x_2 = 4.63109839; \ x_3 = 1.83444713; \\ C = -2.99915711: a_p = 2.78; b_p = 0.482. \end{array}$

Значения коэффициентов $C_{i,j}$ представлены в табл. 1, 2 и 3.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

С целью проверки точности ЕФУС (32) использован ряд статистических характеристик: среднее квадратическое отклонение (СКО), абсолютное среднее отклонение, (AAD), систематическое отклонение (BIAS), стандартное отклонение (SDV) [13]:

$$CKO = \sqrt{\frac{\sum (\delta Y_i)^2}{N(N-1)}}\%, AAD = \frac{\sum |\delta Y_i|\%}{N},$$

$$BIAS = \frac{\sum \delta Y_i\%}{N}, SDV = \sqrt{\frac{\sum (\delta Y_i - BIAS)^2}{N-1}}\%. (38)$$

Здесь $\delta Y_i = 100 \Delta Y_i \ / \ Y_{exp}^{(i)}, \%$, $\Delta Y_i = Y_{exp}^{(i)} - Y_{calc}^{(i)}$, $Y_{exp}^{(i)}$ — значение свойства, Y, из [36—65], $Y_{calc}^{(i)}$ — свойство Y, найденное по ЕФУС при тех же значениях плотности и температуры, что и $Y_{exp}^{(i)}$. Результаты расчетов по (38) приведены в табл. 4—7.

ЕФУС (32) описывает основной массив экспериментальной информации о плотности с неопределенностью, сравнимой с ФУС [85]. Например, на линии фазового равновесия опытные данные [46] в диапазоне температур от тройной точки T_{tr} до $T_t/T_c \le T/T_c \le 0.98$ описываются с $\text{AAD}_{p_s}^{[85]} = 0.083\%$, $\text{AAD}_{p_s}^{(32)} = 0.012\%$, $\text{AAD}_{p^-}^{[85]} = 0.13\%$, $\text{AAD}_{p^-}^{(32)} = 0.098\%$, $\text{AAD}_{p^+}^{[85]} = 0.0404\%$, $\text{AAD}_{p^-}^{(32)} = 0.0295\%$. Здесь p_s — давление

насыщенного пара, ρ^- — плотность насыщенного пара, ρ^+ — плотность насыщенной жидкости. Приняты обозначения, X_z^y : X — статистическая характеристика, нижний индекс — свойство, верхний индекс — уравнение состояния, по которому рассчитывается значение X. При T / T_c > 0.98 ЕФУС (32) описывает линию фазового равновесия с точностью, сравнимой с кроссоверным уравнением

$C_{i,j}$		j					
		3	4	5			
	0	1.59622163003	-0.811233879714	-0.975407566098			
	1	-0.471424781553	1.566473137063	0.996055933144			
	2	-4.738013656418	-0.636865827123	0.859156209908			
	3	4.795608522848	-1.106789986999	-1.131436381148			
	4	2.713791679518	1.975207707748	0.070967820061			
i	5	-6.361148755513	-1.421895338031	0.241227550767			
	6	2.253311579407	0.024722512615	-0.065031394364			
	7	1.652232965788	0.75558122408	0			
	8	-1.654005327456	-0.557812205341	0			
	9	0.526188776069	0.172535118474	0			
	10	-0.060057227469	-0.020444736935	0			

Таблица 2. Коэффициенты ЕФУС (32)

Таблица 3. Коэффициенты ЕФУС (32)

$C_{i,j}$		j			
		6	7		
	0	-0.403355859892	0		
	1	0.121149938775	0		
	2	0.303287871467	0.055906512576		
i	3	-0.141575293422	-0.063831275412		
	4	-0.028098276823	0.019728473694		
	5	0.01386966814	0		

Киселева [82] (CREOS97). Об этом свидетельствуют значения AAD, рассчитанные для опытных данных [46] из диапазона $T/T_c>0.98$ на основе УС [82], ЕФУС (32): $\mathrm{AAD}_{p_s}^{[82]}=0.012\%$ и $\mathrm{AAD}_{p_s}^{(32)}=0.0084\%$, $\mathrm{AAD}_{\rho^-}^{[82]}=1.1\%$ и $\mathrm{AAD}_{\rho^-}^{(32)}=1.1\%$, $\mathrm{AAD}_{\rho^+}^{[82]}=0.53\%$ и $\mathrm{AAD}_{\rho^-}^{(32)}=0.62\%$. При расчете p_s , ρ^- и ρ^+ по (32) мы использовали рекомендации [13, 14] и уравнение линии упругости в форме [86, 87], апробированной при описании наиболее точных данных о p_s этана и SF_6 :

$$p_{s} = p_{c}e^{-\frac{0}{t}\tau^{2}} \times \left(1 + a_{1}\tau + a_{2}|\tau|^{2-\alpha} + a_{3}|\tau|^{2-\alpha+\Delta} + \sum_{i=4}^{8} a_{i}\tau^{i}\right),$$
(39)

где $T_c=190.564$ K, $p_c=4.5992$ МПа, $\alpha=0.11$, $\Delta=0.61$; $a_0=6.3$; $a_1=6.012$; $a_2=17.705418$;

 $\begin{array}{ll} a_3 = -17.217894 \, ; & a_4 = 7.718209 \, ; & a_5 = 10.343284 \, ; \\ a_6 = 35.305941 ; \, a_7 = 60.665671 ; \, a_8 = 35.750449 \, . \end{array}$

Рабочая область ФУС [85] ограничена по давлению 100 МПа, поэтому при давлениях до 1000 МПа мы провели сравнение с ФУС [80]. Опытные данные [42, 48] (рис. 2, маркеры 4 и 7) ФУС [80] и (32) описывают: а) данные [42] по давлению с $AAD_p^{[80]} = 0.21\%$, $CKO_p^{[80]} = 0.073\%$, $AAD_p^{(32)} = 0.21\%$, $CKO_p^{(32)} = 0.059\%$, и по плотности с $AAD_p^{[80]} = 0.042\%$, $CKO_p^{[80]} = 0.015\%$ и $AAD_p^{(32)} = 0.044\%$, $CKO_p^{(32)} = 0.012\%$; б) данные [48] по давлению с $AAD_p^{[80]} = 0.27\%$, $CKO_p^{[80]} = 0.077\%$, $AAD_p^{(32)} = 0.27\%$, $CKO_p^{(32)} = 0.072\%$, и по плотности с $AAD_p^{[80]} = 0.056\%$, $CKO_p^{[80]} = 0.016\%$ и $AAD_p^{(32)} = 0.058\%$, $CKO_p^{(32)} = 0.015\%$. Полученные результаты свидетельствуют — ФУС [80] и (32) в области температур 240—520 К и давлений 100—1000 МПа описывают опытные данные [42, 48] с одинаковой точностью.

Данные о плотности метана описываются ЕФУС (32) с существенно меньшей неопределенностью, чем уравнение КУС [15, 84] (рис. 2 и 3). Это касается как области давлений 8—30 МПа (рис. 2, маркеры 10) и температур 100-520 К (рис. 3). Особенно это заметно в интервале 240-520 К, где отклонения, $\delta \rho = 100(\rho_{exp}^{[37]} - \rho_{calc}^{[15,84]}) / \rho_{exp}^{[37]}$,%, расчетных значений, $\rho_{calc}^{[15,84]}$, по КУС от данных [37] достигают 23% (рис. 3, маркеры I), тогда как все значения, $\delta \rho = 100(\rho_{exp}^{[37]} - \rho_{calc}^{(32)}) / \rho_{exp}^{[37]}$,%, рассчитанные на основе ЕФУС (32), находятся в пределах $\pm 0.45\%$.

Опытные данные о C_v метана [36, 51, 52] описываются с неопределенностью, $\delta C_v = 100(C_{v,exp} - C_{v,calc}) / C_{v,exp}$, в целом, соответствующей

[38] 53 0.027 0.16 -0.093 0.1 [39] 654 0.0053 0.11 -0.011 0.1 [40] 264 0.036 0.2 -0.041 0.5 [41] 175 0.013 0.13 -0.045 0.1 [42] 18 0.059 0.21 0.18 0.1 [43] 20 0.039 0.14 -0.0077 0.1 [44] 169 0.0095 0.096 0.041 0.1 [45] 35 0.022 0.11 -0.018 0.1 [47] ***** 147 0.005 0.045 -0.029 0.0 [47] ***** 86 0.015 0.099 -0.013 0.1 [48] 19 0.072 0.27 -0.24 0. [49] 51 0.017 0.077 0.024 0.1 [50] 47 0.012 0.049 -0.0015 0.0 [51] **** 41	Литература	N	CKO, %	AAD, %	BIAS, %	SDV, %
[39] 654 0.0053 0.11 -0.011 0.1 [40] 264 0.036 0.2 -0.041 0.5 [41] 175 0.013 0.13 -0.045 0.1 [42] 18 0.059 0.21 0.18 0.1 [43] 20 0.039 0.14 -0.0077 0.1 [44] 169 0.0095 0.096 0.041 0.1 [45] 35 0.022 0.11 -0.018 0.1 [47] ***** 147 0.005 0.045 -0.029 0.0 [47] ***** 86 0.015 0.099 -0.013 0.1 [48] 19 0.072 0.27 -0.24 0. [49] 51 0.017 0.077 0.024 0.1 [50] 47 0.012 0.049 -0.0015 0.0 [51] ** 127 0.015 0.13 -0.11 0.1 [51] ***** 41	[37]	159	0.014	0.13	0.011	0.17
[40] 264 0.036 0.2 -0.041 0.5 [41] 175 0.013 0.13 -0.045 0.1 [42] 18 0.059 0.21 0.18 0.1 [43] 20 0.039 0.14 -0.0077 0.1 [44] 169 0.0095 0.096 0.041 0.1 [45] 35 0.022 0.11 -0.018 0.1 [47] ***** 147 0.005 0.045 -0.029 0.0 [47] ***** 86 0.015 0.099 -0.013 0.1 [48] 19 0.072 0.27 -0.24 0. [49] 51 0.017 0.077 0.024 0.1 [50] 47 0.012 0.049 -0.0015 0.0 [51] ** 127 0.015 0.13 -0.11 0.1 [51] ***** 41 0.021 0.11 -0.01 0.0 [51] ***** 40	[38]	53	0.027	0.16	-0.093	0.17
[41] 175 0.013 0.13 -0.045 0.1 [42] 18 0.059 0.21 0.18 0.1 [43] 20 0.039 0.14 -0.0077 0.1 [44] 169 0.0095 0.096 0.041 0.1 [45] 35 0.022 0.11 -0.018 0.1 [47] ***** 147 0.005 0.045 -0.029 0.0 [47] ***** 86 0.015 0.099 -0.013 0.1 [48] 19 0.072 0.27 -0.24 0. [49] 51 0.017 0.077 0.024 0.1 [50] 47 0.012 0.049 -0.0015 0.0 [51] ** 127 0.015 0.13 -0.11 0.1 [51] ***** 41 0.021 0.11 -0.01 0.0 [51] ***** 60 0.011 0.06 -0.044 0.0 [52] 29	[39]	654	0.0053	0.11	-0.011	0.13
[42] 18 0.059 0.21 0.18 0.1 [43] 20 0.039 0.14 -0.0077 0.1 [44] 169 0.0095 0.096 0.041 0.1 [45] 35 0.022 0.11 -0.018 0.1 [47] ***** 147 0.005 0.045 -0.029 0.0 [47] ***** 86 0.015 0.099 -0.013 0.1 [48] 19 0.072 0.27 -0.24 0. [49] 51 0.017 0.077 0.024 0.1 [50] 47 0.012 0.049 -0.0015 0.0 [51] ** 127 0.015 0.13 -0.11 0.1 [51] ***** 41 0.021 0.11 -0.011 0.0 [51] ***** 60 0.011 0.06 -0.044 0.0 [52] 29 0.14 0.66 0.28 0.6 [36] * 283	[40]	264	0.036	0.2	-0.041	0.58
[43] 20 0.039 0.14 -0.0077 0.1 [44] 169 0.0095 0.096 0.041 0.1 [45] 35 0.022 0.11 -0.018 0.1 [47] ***** 147 0.005 0.045 -0.029 0.0 [47] ***** 86 0.015 0.099 -0.013 0.1 [48] 19 0.072 0.27 -0.24 0. [49] 51 0.017 0.077 0.024 0.1 [50] 47 0.012 0.049 -0.0015 0.0 [51] ** 127 0.015 0.13 -0.11 0.1 [51] **** 41 0.021 0.11 -0.11 0.0 [51] ***** 60 0.011 0.06 -0.044 0.0 [52] 29 0.14 0.66 0.28 0.6 [36] * 283 0.098 0.97 -0.8 1. [53] 32	[41]	175	0.013	0.13	-0.045	0.17
[44] 169 0.0095 0.096 0.041 0.1 [45] 35 0.022 0.11 -0.018 0.1 [47] ***** 147 0.005 0.045 -0.029 0.0 [47] ***** 86 0.015 0.099 -0.013 0.1 [48] 19 0.072 0.27 -0.24 0. [49] 51 0.017 0.077 0.024 0.1 [50] 47 0.012 0.049 -0.0015 0.0 [51] ** 127 0.015 0.13 -0.11 0.1 [51] **** 41 0.021 0.11 -0.11 0.0 [51] ***** 60 0.011 0.06 -0.044 0.0 [52] 29 0.14 0.66 0.28 0.6 [36] * 283 0.098 0.97 -0.8 1. [53] 32 0.041 0.19 0.083 0.2 [54] 374	[42]	18	0.059	0.21	0.18	0.17
[45] 35 0.022 0.11 -0.018 0.1 [47] **, *** 147 0.005 0.045 -0.029 0.0 [47] **** 86 0.015 0.099 -0.013 0.1 [48] 19 0.072 0.27 -0.24 0. [49] 51 0.017 0.077 0.024 0.1 [50] 47 0.012 0.049 -0.0015 0.0 [51] * 127 0.015 0.13 -0.11 0.1 [51] *** 41 0.021 0.11 -0.11 0.0 [51] ***** 60 0.011 0.06 -0.044 0.0 [52] 29 0.14 0.66 0.28 0.6 [36] * 283 0.098 0.97 -0.8 1. [53] 32 0.041 0.19 0.083 0.2 [54] 374 0.0079 0.13 -0.018 0.1 [55] 118	[43]	20	0.039	0.14	-0.0077	0.17
[47] **.*** 147 0.005 0.045 -0.029 0.0 [47] **** 86 0.015 0.099 -0.013 0.1 [48] 19 0.072 0.27 -0.24 0. [49] 51 0.017 0.077 0.024 0.1 [50] 47 0.012 0.049 -0.0015 0.0 [51] ** 127 0.015 0.13 -0.11 0.1 [51] *** 41 0.021 0.11 -0.011 0.0 [51] ***** 60 0.011 0.06 -0.044 0.0 [52] 29 0.14 0.66 0.28 0.6 [36] * 283 0.098 0.97 -0.8 1. [53] 32 0.041 0.19 0.083 0.2 [54] 374 0.0079 0.13 -0.018 0.1 [55] 118 0.027 0.28 0.27 0.1 [56] 119	[44]	169	0.0095	0.096	0.041	0.12
[47] **** 86 0.015 0.099 -0.013 0.1 [48] 19 0.072 0.27 -0.24 0. [49] 51 0.017 0.077 0.024 0.1 [50] 47 0.012 0.049 -0.0015 0.0 [51] * 127 0.015 0.13 -0.11 0.1 [51] ** 41 0.021 0.11 -0.11 0.0 [51] **** 60 0.011 0.06 -0.044 0.0 [52] 29 0.14 0.66 0.28 0.6 [36] * 283 0.098 0.97 -0.8 1. [53] 32 0.041 0.19 0.083 0.2 [54] 374 0.0079 0.13 -0.018 0.1 [55] 118 0.027 0.28 0.27 0.1 [56] 119 0.22 0.58 0.28 2. [57] 56 0.041 0.27 0.23 0.	[45]	35	0.022	0.11	-0.018	0.13
[48] 19 0.072 0.27 -0.24 0. [49] 51 0.017 0.077 0.024 0.1 [50] 47 0.012 0.049 -0.0015 0.0 [51]** 127 0.015 0.13 -0.11 0.1 [51]**** 41 0.021 0.11 -0.11 0.0 [51]***** 60 0.011 0.06 -0.044 0.0 [52] 29 0.14 0.66 0.28 0.6 [36]* 283 0.098 0.97 -0.8 1. [53] 32 0.041 0.19 0.083 0.2 [54] 374 0.0079 0.13 -0.018 0.1 [55] 118 0.027 0.28 0.27 0.1 [56] 119 0.22 0.58 0.28 2. [57] 56 0.041 0.27 0.23 0.	[47] **, ***	147	0.005	0.045	-0.029	0.053
[49] 51 0.017 0.077 0.024 0.1 [50] 47 0.012 0.049 -0.0015 0.0 [51]** 127 0.015 0.13 -0.11 0.1 [51]**** 41 0.021 0.11 -0.11 0.0 [51]***** 60 0.011 0.06 -0.044 0.0 [52] 29 0.14 0.66 0.28 0.6 [36]* 283 0.098 0.97 -0.8 1. [53] 32 0.041 0.19 0.083 0.2 [54] 374 0.0079 0.13 -0.018 0.1 [55] 118 0.027 0.28 0.27 0.1 [56] 119 0.22 0.58 0.28 2 [57] 56 0.041 0.27 0.23 0	[47] ****	86	0.015	0.099	-0.013	0.14
[50] 47 0.012 0.049 -0.0015 0.0 [51]* 127 0.015 0.13 -0.11 0.1 [51]*** 41 0.021 0.11 -0.11 0.0 [51]**** 60 0.011 0.06 -0.044 0.0 [52] 29 0.14 0.66 0.28 0.6 [36]* 283 0.098 0.97 -0.8 1. [53] 32 0.041 0.19 0.083 0.2 [54] 374 0.0079 0.13 -0.018 0.1 [55] 118 0.027 0.28 0.27 0.1 [56] 119 0.22 0.58 0.28 2. [57] 56 0.041 0.27 0.23 0.	[48]	19	0.072	0.27	-0.24	0.2
[51] * 127 0.015 0.13 -0.11 0.1 [51] *** 41 0.021 0.11 -0.11 0.0 [51] **** 60 0.011 0.06 -0.044 0.0 [52] 29 0.14 0.66 0.28 0.6 [36] * 283 0.098 0.97 -0.8 1. [53] 32 0.041 0.19 0.083 0.2 [54] 374 0.0079 0.13 -0.018 0.1 [55] 118 0.027 0.28 0.27 0.1 [56] 119 0.22 0.58 0.28 2. [57] 56 0.041 0.27 0.23 0.	[49]	51	0.017	0.077	0.024	0.12
[51] ** 41 0.021 0.11 -0.11 0.0 [51] **** 60 0.011 0.06 -0.044 0.0 [52] 29 0.14 0.66 0.28 0.6 [36] * 283 0.098 0.97 -0.8 1. [53] 32 0.041 0.19 0.083 0.2 [54] 374 0.0079 0.13 -0.018 0.1 [55] 118 0.027 0.28 0.27 0.1 [56] 119 0.22 0.58 0.28 2. [57] 56 0.041 0.27 0.23 0.	[50]	47	0.012	0.049	-0.0015	0.081
[51] **** 60 0.011 0.06 -0.044 0.0 [52] 29 0.14 0.66 0.28 0.6 [36] * 283 0.098 0.97 -0.8 1. [53] 32 0.041 0.19 0.083 0.2 [54] 374 0.0079 0.13 -0.018 0.1 [55] 118 0.027 0.28 0.27 0.1 [56] 119 0.22 0.58 0.28 2. [57] 56 0.041 0.27 0.23 0.	[51] *	127	0.015	0.13	-0.11	0.12
[52] 29 0.14 0.66 0.28 0.6 [36] * 283 0.098 0.97 -0.8 1. [53] 32 0.041 0.19 0.083 0.2 [54] 374 0.0079 0.13 -0.018 0.1 [55] 118 0.027 0.28 0.27 0.1 [56] 119 0.22 0.58 0.28 2. [57] 56 0.041 0.27 0.23 0.	[51] **	41	0.021	0.11	-0.11	0.074
[36] * 283 0.098 0.97 -0.8 1. [53] 32 0.041 0.19 0.083 0.2 [54] 374 0.0079 0.13 -0.018 0.1 [55] 118 0.027 0.28 0.27 0.1 [56] 119 0.22 0.58 0.28 2. [57] 56 0.041 0.27 0.23 0.	[51] ****	60	0.011	0.06	-0.044	0.068
[53] 32 0.041 0.19 0.083 0.2 [54] 374 0.0079 0.13 -0.018 0.1 [55] 118 0.027 0.28 0.27 0.1 [56] 119 0.22 0.58 0.28 2. [57] 56 0.041 0.27 0.23 0.	[52]	29	0.14	0.66	0.28	0.68
[54] 374 0.0079 0.13 -0.018 0.1 [55] 118 0.027 0.28 0.27 0.1 [56] 119 0.22 0.58 0.28 2. [57] 56 0.041 0.27 0.23 0.	[36] *	283	0.098	0.97	-0.8	1.4
[55] 118 0.027 0.28 0.27 0.1 [56] 119 0.22 0.58 0.28 2. [57] 56 0.041 0.27 0.23 0.	[53]	32	0.041	0.19	0.083	0.21
[56] 119 0.22 0.58 0.28 2. [57] 56 0.041 0.27 0.23 0.	[54]	374	0.0079	0.13	-0.018	0.15
[57] 56 0.041 0.27 0.23 0.	[55]	118	0.027	0.28	0.27	0.13
	[56]	119	0.22	0.58	0.28	2.3
[58] 40 0.084 0.37 0.32	[57]	56	0.041	0.27	0.23	0.2
[30] 40 0.004 0.37 -0.33 0.4	[58]	40	0.084	0.37	-0.33	0.42

Таблица 4. Статистические оценки расчета p по ЕФУС (32), (35)

экспериментальной неопределенности этих данных (рис. 4).

Исключение оставляют только данные о C_{v} , относящиеся к окрестности критической точки. Существенные расхождения между данными [51] и [59] (рис. 4) свидетельствуют о том, что C_{y} в указанной области нуждается в уточнении. Вместе с тем, ЕФУС (32) описывает все данные о C_v [36] с неопределенностью $|\delta C_{\nu}| \le 4.2\%$, включая данные, относящиеся к асимптотической окрестности КТ. Поскольку вблизи КТ данные о C_{y} [59] существенно завышены (до 40%), а данные [51] занижены (до 30%) относительно [36] и (36) (рис. 4), по-видимому, на данный момент ЕФУС (32) передает все данные о C_v [36, 51, 52, 59] наиболее адекватным образом.

Значения, рассчитанные по уравнению Киселева [82] (CREOS97), значительно завышены относительно данных Gammon и Douslin [51] вблизи КТ (рис. 5). Например, при ρ = 163.075 $\kappa \Gamma/M^3$, T = 190.57 K в случае CREOS97 и (36) и м е е м $\delta C_{v} = 100(C_{v,exp}^{[51]} - C_{v,calc}^{[82]}) / C_{v,exp}^{[51]} = 35\%$ и $\delta C_{v} = 100(C_{v,exp}^{[51]} - C_{v,calc}^{(36)}) / C_{v,exp}^{[51]} = 15.1\%$ (рис. 5). Это объясняется тем, что кроссоверное уравнение CREOS97 на критической изохоре с малой неопределенностью передает только данные о C_{ν} Анисимова и др. [59] ($\delta C_v \le 5\%$) и не согласуется с [51] (рис. 5, линия 12, маркеры 7 и 11).

Статистические характеристики (табл. 7), рассчитанные для C_p [60-65] на основе (32) и ФУС [80], свидетельствуют о точности ЕФУС, которая не уступает ФУС при описании C_p . Например, данные

^{*} Данные в регулярной области.

^{**} Данные вблизи паровой ветви линии насыщения.

^{***} Данные вблизи жидкостной ветви линии насыщения.

^{****} Данные в окрестности критической точки.

Таблица 5. Статистические оценки расчета ρ по ΕΦУС (32), (35)

Литература	N	CKO, %	AAD, %	BIAS, %	SDV, %
[37]	159	0.013	0.12	0.0057	0.16
[38]	53	0.031	0.18	0.11	0.2
[39]	654	0.0055	0.11	0.0068	0.14
[40]	264	0.031	0.26	-0.0076	0.5
[41]	175	0.015	0.15	0.052	0.2
[42]	18	0.012	0.044	-0.037	0.035
[43]	20	0.041	0.15	0.0099	0.18
[44]	169	0.01	0.1	-0.042	0.13
[45]	35	0.022	0.11	0.011	0.13
[47]**,***	147	0.065	0.71	0.52	0.59
[47] ****	86	0.17	0.83	-0.2	1.6
[48]	19	0.015	0.058	0.051	0.042
[49]	51	0.015	0.07	-0.017	0.11
[50]	47	0.013	0.052	0.00098	0.088
[51] *	127	0.15	1.1	0.21	1.6
[51] **	41	0.15	0.7	0.7	0.65
[51] ****	60	0.35	2.1	0.087	2.7
[52]	29	0.29	1.1	-1.1	1.1
[36] *	283	0.03	0.22	-0.056	0.5
[53]	32	0.046	0.21	-0.089	0.24
[54]	374	0.0076	0.12	0.015	0.15
[55]	118	0.028	0.29	-0.28	0.13
[56]	119	0.28	0.67	-0.36	3.1
[57]	56	0.043	0.28	-0.24	0.21
[58]	40	0.075	0.35	0.3	0.36

^{*} Данные в регулярной области.

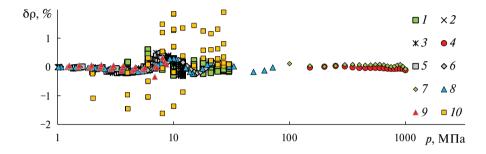
Таблица 6. Статистические оценки расчета C_{ν} по ЕФУС (32), (36)

Литература	N	CKO, %	AAD, %	BIAS, %	SDV,%
[51] *	124	0.42	2.5	-0.72	4.6
[51] **	41	0.65	3.6	0.56	4.1
[51] ***	28	1.3	4.3	-2	6.7
[52]	29	0.55	1.7	-0.55	2.9
[36] ***	65	0.32	1.9	-1.1	2.3
[36] *	283	0.086	1.2	0.96	1.1
[59]	136	1.2	10	9.6	11

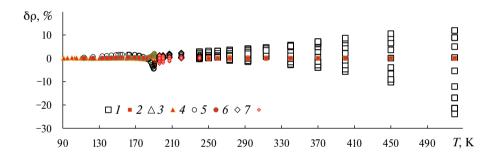
^{*} Данные в регулярной области.

^{**} Данные вблизи паровой ветви линии насыщения.

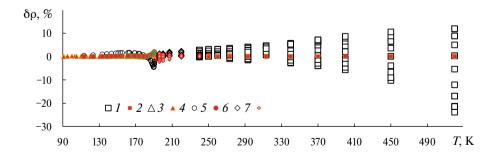
^{***} Данные вблизи жидкостной ветви линии насыщения.

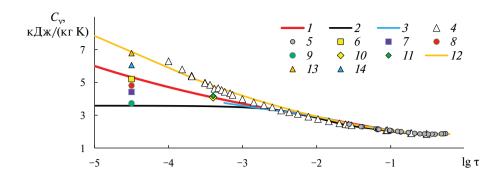

^{****} Данные в окрестности критической точки.

^{**} Данные вблизи паровой ветви линии насыщения.


^{***} Данные вблизи жидкостной ветви линии насыщения.

Литература	N	CKO, %	AAD, %	BIAS, %	SDV, %
[60]	13	0.13	0.42	-0.2	0.43
[61]	63	0.14	0.84	0.57	0.98
[62]	54	0.54	1.8	0.73	3.9
[63]	21	0.25	0.92	-0.23	1.1
[64]	400	0.084	0.89	-0.024	1.7
[65]	42	0.15	0.52	-0.31	0.91


Таблица 7. Статистические оценки расчета C_n по ЕФУС (32)


Рис. 2. Отклонения $\delta p = (\rho_{\rm exp} - \rho_{\rm calc})/\rho_{\rm exp}$ 100, %, плотности, $\rho_{\rm calc}$, рассчитанные по ЕФУС и КУС, от опытных данных: I = [37], 2 = [38], 3 = [41], 4 = [42], 5 = [44], 6 = [45], 7 = [48], 8 = [49], 9 = [50], 10 = [37]. Расчет δp по: I = 9 = [47] (32), 10 = [47] (32), 10 = [47] (33), 10 = [47] (34).

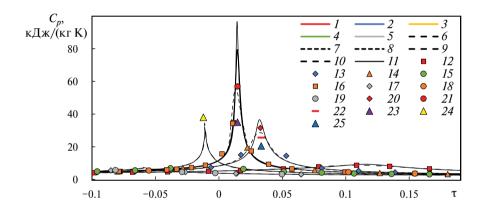
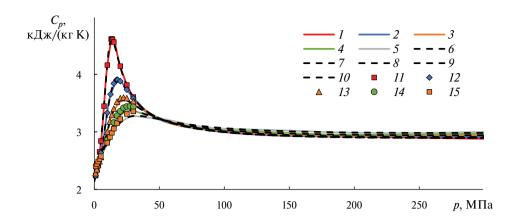

Рис. 3. Отклонения, $\delta \rho = 100(\rho_{exp} - \rho_{calc})/\rho_{exp}$, %, значений ρ_{calc} , вычисленных по ЕФУС (32) и КУС [15, 84], от экспериментальных значений плотности, ρ_{exp} , [37, 40, 46, 51] (соответствуют значениям плотности, ρ_{calc} , вычисленным по ЕФУС и КУС: *1, 2* – [37]; *3, 4* – [46]; *5, 6* – [51]; *7, 8* – [40]): *2, 4, 6, 8* – ЕФУС (32); *1, 3, 5, 7* – КУС [15, 84].

Рис. 4. Относительные отклонения $\delta C_{\nu} = 100(C_{\nu, \rm exp} - C_{\nu, \rm calc})/C_{\nu, \rm exp}$, %, рассчитанные по ЕФУС (32), (36), от экспериментальных данных: I = [59]; 2 = [51], регулярная область; 3 = [51], насыщенный пар; 4 = [51], насыщения жидкость; 5 = [52]; 6 = [36], насыщенная жидкость; 7 = [36], регулярная область.

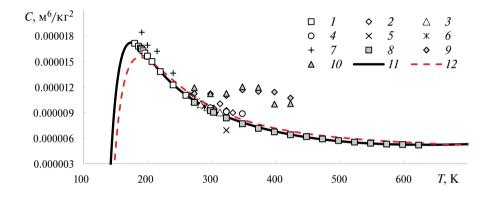
Рис. 5. Зависимости C_{ν} от температуры; I — расчет (36), изохора ρ = 160.7 кг/м³; 2 — расчет [80], изохора ρ = 160.7 кг/м³; 3 — расчет [5, 84], изохора ρ = 163.2 кг/м³; 4 — [59], ρ = 160.7 кг/м³ и T_c = 190.663 K; 5 — [36], ρ = 163.0 кг/м³; 6 — (36), ρ = 163.075 кг/м³, T = 190.57 K; T — [51], T = 163.075 кг/м³, T = 190.57 K; T — [51], T — [

Рис. 6. Поведение C_p метана на изобарах. Расчет: I — ЕФУС (32), 8.274 МПа; 2 — ЕФУС (32), 5.516 МПа; 3 — ЕФУС (32), 5 МПа; 4 — ЕФУС (32), 4.3 МПа; 5 — ЕФУС (32), 3.2 МПа; 6 — ФУС [80], 8.274 МПа; 7 — ФУС [80], 5.516 МПа; 8 — ФУС [80], 5 МПа; 9 — ФУС [80], 4.3 МПа; 10 — ФУС [80], 3.2 МПа; 11 — СREOS97 [82], 5 МПа. Эксперимент: 12 — [64], 8.274 МПа; 13 — [64], 5.516 МПа; 14 — [64], 5 МПа; 15 — [64], 4.3 МПа; 16 — [62], 5 МПа; 17 — [62], 3.2 МПа; 18 — [63], 5 МПа; 19 — [63], 3.2 МПа. Значения C_p^{max} : 20 — CREOS97 [82], 5.516 МПа; 21 — [18], 5 МПа; 22 — [18], 5.516 МПа; 23 — [15, 84], 5 МПа; 24 — [15, 84], 5.516 МПа; 25 — [15, 84], 4.3 МПа.

[60-65] на основе ФУС [80] описываются, соответственно, с AAD: 0.45, 0.61, 1.4, 1.1, 0.79 и 0.51%. Эти значения AAD и информация из табл. 7 подтверждают сделанный вывод о точности $E\Phi$ УС (32).


Максимумы изобарной теплоемкости, C_p^{max} , в случае ЕФУС (32), [80], CREOS97 [82], [18] и КУС [15, 84] на ближайших к критической точке, p = 5.516 МПа, p = 5 МПа, для (32) и CREOS97 расположены выше, чем C_p^{max} [80] и [18], которые на изобаре p = 5 МПа практически совпадают (рис. 6, линия 7, маркер 21). Максимумы C_p КУС [15, 84] меньше максимумов, рассчитанных по ФУС Setzmann и Wagner [80], которое не удовлетворяет требованиям МТ. Последний результат подтверждает вывод авторов [25, 33, 34] о том, что КУС [10, 12, 15, 84] не удовлетворяет некоторым требованиям МТ, например на критической изохоре

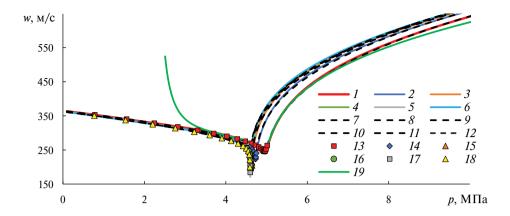
описывает $C_p(\rho=\rho_c,\tau\to +0)\sim \tau^{-1}$, а согласно МТ должно быть $C_p(\rho=\rho_c,\tau\to +0)\sim \tau^{-\gamma}$. Как указано в [33], это обусловлено тем, что в рамках [10, 12, 15, 84] не выполняются требования (29). Вместо (29) КУС [10, 12, 15, 84] удовлетворяет в критической точке только равенствам $p(\rho_c,T_c)=p_c$, $(\partial p^n_{reg}\ /\ \partial \rho^n)_T\Big|_{T=T_c,\rho=\rho_c}=0, n\in\{1,2,3\}.$


Отметим также хорошее согласие ЕФУС (32) при расчете C_p с опытными данными [61], а также с ФУС [80] в широком интервале давлений (рис. 7).

Анализ ЕФУС (32) показал, что с высокой точностью передается не только второй, но и третий вириальный коэффициент (рис. 8).

ЕФУС (32) описывает данные о w [51] в соответствии с их экспериментальной неопределенностью (рис. 9, маркеры 13-18), согласуется с результатами

Рис. 7. Поведение C_p метана на изотермах. Расчет: I - ЕФУС (32), 250 K; 2 - ЕФУС (32), 275 K; 3 - ЕФУС (32), 300 K; 4 - ЕФУС (32), 325 K; 5 - ЕФУС (32), 350 K; 6 - ФУС [80], 250 K; 7 - ФУС [80], 275 K; 8 - ФУС [80], 300 K; 9 - ФУС [80], 325 K; 10 - ФУС [80], 350 K. Эксперимент [61]: 11 - 250 K; 12 - 275 K; 13 - 300 K; 14 - 325 K; 15 - 350 K.


Рис. 8. Зависимости третьего вириального коэффициента от температуры. Опытные данные: 1 - [40], 2 - [43], 3 - [44], 4 - [50], 5 - [77], 6 - [53], 7 - [78], 8 - [54], 9 - [56], 10 - [57]. Расчетные данные: 11 - ЕФУС (32), 12 - [80].

расчета w по ФУС [80] (рис. 9, линии 7—12) и информацией, полученной в окрестности КТ на основе кроссоверного уравнения [82] (CREOS97), учитывающего асимметрию реальной жидкости относительно критической изохоры (рис. 9, линия 19).

выводы

Предложен метод построения фундаментального уравнения состояния в рамках нового представления масштабной гипотезы критической точки. На основе рассмотренного подхода разработана масштабная функция свободной энергии в переменных плотность-температура, нелинейные параметры которой рассчитаны только с привлечением критических индексов. Показано, что масштабные функции химического потенциала, изохорной теплоемкости и коэффициента изотермической сжимаемости, используемые в данном походе, имеют расчетные характеристики, соответствующие

характеристикам линейной модели Скофилда-Литстера-Хо. Предложенное ЕФУС относится к единым УС, так как удовлетворяет в асимптотической окрестности критической точки требованиям масштабной теории, а в регулярной части термодинамической поверхности переходит в уравнение состояния вириального вида. В рамках предложенного подхода разработано ЕФУС метана. Анализ ЕФУС, проведенный на основе: разнородных экспериментальных данных; кроссоверного УС Киселева, учитывающего асимметрию реальной жидкости относительно критической изохоры (CREOS97); ФУС Setzmann и Wagner (1991); ФУС Span и Wagner (2003); КУС Безверхого и Дутовой (2023), подтвердил хорошие расчетные характеристик предложенного ЕФУС. Рабочая область предложенного ЕФУС составила: по давлению до 600 МПа, по температуре от 90.6941 до 620 К. При описании критической области предложенное ЕФУС не уступает УС Киселева (CREOS97), и существенно превосходит КУС Безверхого и Дутовой. В регулярной области параметров состояния

Рис. 9. Скорости звука w метана. Расчет: I-6- ЕФУС (32), 7-12- ФУС [80]. Экспериментальные данные: I3-18- [51]; I9- расчет по CREOS97 [82]. Изотермы: I, I, I9-193.062 K; I, I9-191.462 K; I, I9-190.862 K; I, I9-190.642 K; I, I9-190.572 K; I, I9-190.512 K.

по ряду характеристик ЕФУС сравним с ФУС Setzmann и Wagner. Например, эти уравнения с одинаковой точностью описывают: a) $p-\rho-T$ данные в области высоких давлений; б) изобарную теплоемкость: в) второй вириальный коэффициент. Третий вириальный коэффициент ЕФУС описывает более точно, чем ФУС Setzmann и Wagner. ЕФУС также с меньшей неопределенностью передает $p_s - \rho^{\pm} - T$ -данные Kleinrahm и Wagner в интервале от тройной точки до $0.98T_c$, чем Φ УС Span и Wagner, а при $T > 0.98T_c$ передает эти данные с той же точностью, что и кроссоверное УС Киселева. Дальнейшее развитие предложенного подхода к построению ЕФУС, связано с учетом асимметрии реальной жидкости, которое выполнено, например, в рамках кроссоверного УС Киселева.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Widom B.* // J. Chem. Phys. 1965. V. 43, № 11. P. 255.
- 2. *Абдулагатов И.М., Алибеков Б.Г.* // Журн.физ. химии. 1980. Т. 54. № 6. С. 1400.
- 3. *Амирханов И.И. Абдулагатов И.М. Алибеков Б.Г.* // Там же. 1981. Т. 55. № 2. С. 341.
- 4. *Лысенков В.Ф.*, *Шустров А.В.* // Инженернофизический журнал. 1984. Т. 47. № 4. С. 602.
- 5. *Рыков В.А.* // Журн. физ. химии. 1984. Т. 58.№ 11. C. 2852.
- 6. Рыков В.А. // Там же. 1985. Т. 59. № 9. С. 2354.
- Rykov V.A. // J. Eng. Phys. Thermophys. 1985. V. 48. P. 476.
- 8. Kozlov A.D., Lysenkov V.F., Popov P.V., Rykov V.A. // J. Eng. Phys. Thermophys. 1992. V. 62. P. 611.
- 9. Lysenkov V.F., Kozlov A.D., Popov P.V., Yakovleva M.V. // J. Eng. Phys. Thermophys. 1994. V. 66. P. 286.

- 10. *Безверхий П.П., Мартынец В.Г., Бондарев В.Н.* // Журн. физ. химии. 2014. Т. 88. № 4. С. 574.
- 11. Rykov V.A., Kudryavtseva I.V., Rykov S.V., Ustyuzhanin E.E. // J. Phys.: Conf. Ser. 2018. V. 946. P. 012118.
- 12. *Безверхий П.П., Мартынец В.Г., Каплун А.Б., Ме-шалкин А.Б.* // Теплофизика высоких температур. 2017. Т. 55. № 5. С. 706.
- 13. *Колобаев В.А., Рыков С.В., Кудрявцева И.В., и др. //* Измерительная техника. 2021. № 2. С. 9.
- 14. *Рыков С.В.*, *Попов П.В.*, *Кудрявцева И.В.*, *Рыков В.А.* // Там же. 2023. № 10. С. 32.
- 15. *Безверхий П.П., Дутова О.С.* // Теплофизика высоких температур. 2023. Т. 61. С. 358.
- 16. *Sengers J.V., Leveit Sengers J.M.H.* // Int. J. Thermophys. 1984. V. 5. P. 195.
- 17. *Киселев С.Б.* Масштабное уравнение состояния индивидуальных веществ и бинарных растворов в широкой окрестности критических точек // Обзоры по теплофизическим свойствам веществ. М.: Изд-во ИВТАН,1989. № 2(76). 150 с.
- 18. *Kiselev S.B.*, *Ely J.F.* // Fluid Phase Equilibr. 2004. V. 222–223. P. 149.
- 19. *Schofield P., Litster I.D., Ho I.T.* // Phys. Rev. Lett. 1969. V. 23. № 19. P. 1098.
- 20. *Кудрявцева И.В., Рыков С.В.* // Журн. физ. химии. 2016. Т. 90. № 7. С. 1119.
- 21. *Мигдал А.А.* // Журн. эксперим. и теорет. физики. 1972. Т. 62. № 4. С. 1559.
- 22. Безверхий П.П., Мартынец В.Г., Матизен Э.В. // Там же. 2004. Т. 126. С. 1146.
- 23. *Рыков С.В., Багаутдинова А.Ш., Кудрявцева И.В., Рыков В.А.* // Вестн. междунар. академии холода. 2008. № 3. С. 30.
- 24. *Рыков С.В., Свердлов А.В., Рыков В.А., и др.* Там же. 2020. № 3. С. 83.

- 25. Rykov S.V., Rykov V.A., Kudryavtseva I.V., et al.// Math. Montis. 2020. V. 47. P. 124.
- 26. *Ma Sh.* Modern Theory of Critical Phenomena (Benjamin, Reading, MA, 1976).
- 27. Алтунин В.В. Теплофизические свойства двуокисида углерода. М.: Изд-во стандартов, 1975. 546 с.
- 28. *Берестов А.Т.* Исследование уравнения состояния в широкой окрестности критической точки // Дис. ... канд. физ.-мат. наук. М.: 1978. 104 с.
- 29. *Benedek G.B.* In polarisation matie et payonnement, livre de Jubile en l'honneur du proffesor A. Kastler, Paris, Presses Universitaires de Paris, 1968. p. 71. (In France).
- 30. *Рыков В.А.* // Журн. физ. химии. 1985. Т. 59, № 10. C. 2605.
- 31. *Рыков С.В., Кудрявцева И.В.* // Фундаментальные исследования. 2014. № 9 (8). С. 1687.
- Рыков С.В. // Научно-технический вестник Поволжья. 2014. № 1. С. 33.
- 33. *Kudryavtseva I.V., Rykov V.A., Rykov S.V.* // J. Phys.: Conf. Ser. 2019. V. 1385. P. 012009.
- 34. *Rykov V.A., Rykov S.V., Kudryavtseva I.V., Sverd-lov A.V.* // J. Phys.: Conf. Ser. 2017. V.891. P. 012334.
- 35. Widom B.J. // Chem. Phys. 1965. V. 43. P. 255.
- Younglove B.A. // J. Res. Natl. Bur. Stand., Sect. A. 1974. V. 78A. P. 401.
- 37. *Klimeck J., Kleinrahm R., Wagner W.* // J. Chem. Thermodyn. 2001. V. 33. P. 251.
- 38. Nowak P., Kleinrahm R., Wagner W. Supplementary measurements of the (p, ρ, T) relation of methane in the homogeneous region at temperatures from 273.15 K to 323.15 K and pressures up to 12 MPa. Lehrstuhl fur Thermodynamik, Ruhr-Universitat Bochum. 1998.
- 39. Achtermann H.J., Hong J., Wagner W., Pruss A. // J. Chem. Eng. Data. 1992. V. 37. P. 414.
- 40. *Handel G., Kleinrahm R., Wagner W.* // J. Chem. Thermodyn. 1992. V. 24. P. 685.
- 41. *Pieperbeck N., Kleinrahm R., Wagner W., Jaeschke M.* // J. Chem. Thermodyn. 1991. V. 23. P. 175.
- 42. *Kortbeek P.J., Schouten J.A.* // Int. J. Thermophys. 1990. V. 11. P. 455.
- 43. *McElroy P.J.*, *Battino R.*, *Dowd M.K.* // J. Chem. Thermodyn. 1989. V. 12. P. 1287.
- 44. *Kleinrahm R., Duschek W., Wagner W. //* Ibid. 1988. V. 20. P. 621.
- 45. Achtermann H.J., Bose T.K., Rogener H., St-Arnaud J.M. // Int. J. Thermophys. 1986. V. 7. P. 709.
- Kleinrahm R., Wagner W. // J. Chem. Thermodyn. 1986. V. 18. P. 739.
- 47. Kleinrahm R., Duschek W., Wagner W. // Ibid. 1986. V. 18. P. 1103.
- 48. *Kortbeek P.J.*, *Biswas S.N.*, *Trappeniers N.J.* // Physica B+C. 1986. V. 139–140. P. 109.

- 49. *Mollerup J.* // J. Chem. Thermodyn. 1985. V. 17. P. 489.
- 50. *Mihara Sh.*, *Sagara H.*, *Arai Y.*, *Saito Sh.* // J. Chem. Eng. Jpn. 1977. V. 10. P. 395.
- Gammon B.E., Douslin D.R. // J. Chem. Phys. 1976.
 V. 64. P. 203.
- Roder H.M. // J. Res. Natl. Bur. Stand., Sect. A. 1976. V. 80A. P. 739.
- 53. *McMath Jr H.G.*, *Edmister W.*C. // AIChE J. 1969. V. 15. P. 370.
- 54. Douslin D.R., Harrison R.H., Moore R.T., MuCullough J.P. // J. Chem. Eng. Data. 1964. V. 9. P. 358.
- 55. Schamp Jr. H.W., Mason E.A., Richardson A.C.B., Altman A. // Phys. Fluids. 1958. V. 1. P. 329.
- Michels A., Nederbragt G.W. // Physica. 1936. V. 3. P. 569.
- Michels A., Nederbragt G.W. // Ibid. 1935. V. 2. P. 1000.
- 58. *Keyes F.G., Smith L.B., Joubert D.B.* // J. Math. Phys. 1922. V. 1. P. 191.
- 59. Anisimov M.A., Beketov V.G., Voronov V.P., et al. // Thermophysical Properties of Substances and Materials. Standard Publ. Moscow. 1982. Iss. 16. P. 124.
- 60. *Syed T.H.*, *Hughes Th.J.*, *Marsh K.N.*, *May E.F.* // J. Chem. Eng. Data. 2012. V. 57. P. 3573.
- 61. *Ernst G., Keil B., Wirbser H., Jaeschke M.* // J. Chem. Thermodyn. 2001. V. 33. P. 601.
- 62. Van Kasteren P.H.G., Zeldenrust H. // Ind. Engng Chem. Fundam. 1979. V. 18. P. 333.
- 63. *Van Kasteren P.H.G.*, *Zeldenrust H.* // Ibid. 1979. V. 18. P. 339.
- 64. *Jones M.L., Mage D.T., Faulkner R.C., Katz D.L.* // Chem. Engng Prog. Symp. Ser. 1963. V. 59. № 44. P. 52.
- Budenholzer R.A., Sage B.H., Lacey W.N. // Ind. Eng. Chem. 1939. V. 31. P. 369.
- 66. *Eucken A., Lüde K.V.* // Zeitschrift für Physikalische Chemie. 1929. V. 5BB. P. 413.
- 67. Millar R.W. // J. Am. Chem. Soc. 1923. V. 45. P. 874.
- 68. Cardamone M.J., Saito T.T., Eastman D.P.R., Rank D.H. // J. Opt. Soc. Am. 1970. V. 60. P. 1264.
- 69. Singer J.R. // J. Chem. Phys. 1969. V. 51. P. 4729.
- 70. Van Itterbeek A., Thoen J., Cops A., Van Dael W. // Physica. 1967. V. 35. P. 162.
- 71. *Van Itterbeek A., Verhaegen L.* // Proc. Phys. Soc. 1949. V. B62. P. 800.
- 72. Quigley T.H. // Phys. Rev. 1945. V. 67. P. 298.
- 73. *Dixon H.B., Campbell C., Parker A.* // Proc. R. Soc. A. 1921. V. 100. P. 1.
- 74. *Kerl K., Häusler H.* // Ber. Bunsen-Ges. Phys. Chem. 1984. V. 88. P. 992.
- 75. *Bellm J., Reineke W., Schäfer K., Schramm B.I.* // Ber. Bunsen-Ges. Phys. Chem. 1974. V. 78. P. 282.

- Strein V.K., Lichtenthaler R.N., Schramm B., Schäfer K. // Ber. Bunsen-Ges. Phys. Che. 1971. V. 75. P. 1308.
- 77. Lee R.C., Edmister W.C. // AIChE J. 1970. V. 16. P. 1047.
- 78. *Hoover A.E., Nagata I., Leland Jr. Th.W., Kobayashi R.* // J. Chem. Phys. 1968. V. 48. P. 2633.
- Beattie J.A., Stockmayer W.H. // Ibid. 1942. V. 10. P. 473.
- Setzmann U., Wagner W. // J. Phys. Chem. Ref. Data. 1991. V. 20. P. 1061.
- 81. *Григорьев Б.А., Герасимов А.А., Григорьев Е.Б.* // Оборонный комплекс научно-техническому прогрессу России. 2010. № 3. С. 52.

- 82. *Kiselev S.B.* // Fluid Phase Equilibr. 1997. V. 128 (1—2). P. 1.
- 83. *Kiselev S.B., Friend D.G.* // Fluid Phase Equilibr. 1999. V. 155. P. 33.
- 84. *Bezverkhii P.P., Dutova O.S.* // Thermophys. Aeromech. 2023. V. 30. P. 137.
- 85. *Span R., Wagner W.* // Int. J. Thermophys. 2003. V. 24. P. 41.
- 86. *Рыков С.В., Кудрявцева И.В., Рыков С.А.* // Журн. физ. химии. 2023. Т. 97. № 11. С. 1561.
- 87. *Кудрявцева И.В., Рыков С.В., Рыков В.А., Устюжанин Е.Е.* // Теплофизика высоких температур. 2023. Т. 61. С. 514.