<u> — СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ —</u>

УДК 544.6.018.42-16 +544.163.2

ФАЗООБРАЗОВАНИЕ, ПОЛИМОРФИЗМ, ОПТИЧЕСКИЕ СВОЙСТВА И ПРОВОДИМОСТЬ СОЕДИНЕНИЙ И ТВЕРДЫХ РАСТВОРОВ НА ОСНОВЕ Nd₂WO₆

© 2024 г. Е.Д. Балдин^{а, *}, Н.В. Лысков^{b, c}, В.А. Рассулов^d, А.В. Шляхтина^a

^аФедеральный исследовательский центр химической физики им. Н. Н. Семёнова РАН, Москва, Россия ^bФедеральный исследовательский центр проблем химической физики и медицинской химии РАН, Черноголовка, Россия

^сНациональный исследовательский университет "Высшая школа экономики", Москва, Россия ^dФГБУ "ВИМС им. Н. М. Федоровского", Москва, Россия

> *e-mail: baldin.ed16@physics.msu.ru, baldin@chph.ras.ru Поступила в редакцию 30.01.2024 г. После доработки 19.03.2024 г. Принята к публикации 21.03.2024 г.

Исследовано фазообразование вольфрамата неодима Nd_2WO_6 из механически активированных оксидов в широком температурном интервале: 25–1600°С. Определены условия образования различных полиморфных модификаций: низкотемпературных ромбических β- Nd_2WO_6 и δ- Nd_2WO_6 ($P2_12_12_1$ (№ 19)); высокотемпературной моноклинной Nd_2WO_6 (пр. гр. C12/c1 (№ 15)). Оптические спектры поглощения исследованы для полиморфной керамики номинального состава Nd_2WO_6 . Обнаружены различия в спектрах δ- Nd_2WO_6 и моноклинного Nd_2WO_6 . У обеих модификаций вольфрамата неодима δ- Nd_2WO_6 и моноклинного Nd_2WO_6 наблюдалась протонная составляющая проводимости с энергией активацией 1.05 и 1.06 эВ соответственно. Однако, для Са-содержащего твердого раствора с моноклинной структурой ($Nd_{1-x}Ca_x)_2WO_{6-\delta}$ (x=0.01), у которого общая проводимость возрастает по сравнению с чистым моноклинным Nd_2WO_6 , преобладает дырочная проводимость на воздухе.

 Kn очевые слова: керамика, фазообразование, полиморфизм, механоактивация, проводимость, Nd_2WO_6 **DOI:** 10.31857/S0044453724110114, **EDN:** EZCOBH

ВВЕДЕНИЕ

Диаграммы состояния систем Ln₂O₃-MO₃ (M = Mo, W) содержат значительное количество флюоритоподобных (СаГ₂) и шеелитоподобных (CaWO₄) фаз. Наибольшее число разнообразных фаз (до 12) встречается в системах с оксидом лантана $La_2O_3-MO_3$ (M= Mo, W) [1], и по мере уменьшения ионного радиуса лантаноида количество фаз в системах сокращается [2, 3]. Флюоритоподобные кислород-дефицитные фазы с содержанием $Ln_2O_3 > 50$ мол. % являются в основном ионными (кислород-ионными или протонными), а иногда смешанными (электронно-ионными) проводниками, для которых наблюдается заметный электронный вклад проводимости на воздухе. Шеелитоподобные фазы, характерные для составов, обогащенных MO_3 (M = Mo, W), демонстрируют доминирующую электронную проводимость при высоких парциальных давлениях кислорода, и представляют интерес, прежде всего, как люминесцентные и оптически активные материалы [1, 4, 5].

Синтез вольфраматов и молибдатов РЗЭ проблематичен, что связано с летучестью МоО3 $(T_{\text{возгонки}} = 747^{\circ}\text{C})$ [6] и WO₃ ($T_{\text{возгонки}} = 800^{\circ}\text{C}$) [7], в том числе, и из их соединений. Так, например, известно, что при синтезе молибдатов РЗЭ состава $Ln_{10}Mo_2O_{21}$ (Ln = Gd, Dy, Ho) короткие отжиги при высокой температуре (1600°C, 3 ч) предпочтительнее длительных при более низкой температуре $(1200^{\circ}\text{C}, 40-160 \text{ ч})$, поскольку в последнем случае наблюдаются потери МоО₃. Именно таким образом впервые стабильные, однофазные ромбические молибдаты номинального состава $Ln_{10}Mo_2O_{21}$ (Ln = Gd, Dy, Ho; Ln/Mo = 5:1) были синтезированы в работе [8]. Истинное же соотношение катионов в ромбических фазах, установленное методом масс-спектроскопии с индуктивно связанной плазмой (ИСП-МС), оказалось Ln/Mo $\sim 5.2:1-5.7:1$ (Ln = Gd, Dy, Ho). Высокотемпературный кратковременный отжиг при 1600°C, 3ч приводил к синтезу флюоритов $Ln_{10}Mo_2O_{21}$, состав которых соответствовал исходному с соотношением Ln/Mo = 5:1 [8]. В то же время, для композитов $La_{10}W_2O_{21}/\gamma-La_6W_2O_{15}$, содержащих Nd, отжиг при температурах выше 1450°С приводил к потере WO_3 [9]. При синтезе твердых растворов $La_{28-x}W_{4+x}O_{54+1.5x}[V_0$ $^{\cdot}]_{2-1.5x}$ с высокой протонной проводимостью во избежание потерь WO_3 во время отжига при 1500°С использовали спекание в засыпке [7,10]. Следует отметить, что во избежание потерь WO_3 температура синтеза сложных оксидов $Ln_2(MoO_4)_3$ (Ln = La-Ho), не превышала 1150°С при выдержке 24 ч [4].

Как правило, соединения Ln₂WO₆ могут кристаллизоваться в нескольких модификациях. Так, например, низкотемпературная модификация β-La₂WO₆ принадлежит пространственной группе $P2_12_12_1$ (№ 19) и имеет ромбическую структуру [11]. Сообщалось также в более ранних работах о δ-Ln₂WO₆, тоже ромбической, и принадлежащей пространственной группе $P2_12_12_1$ (№ 19) [12]. Ефремов с соавторами [12] вырастили монокристаллы δ -Ln₂WO₆ (Ln = Nd, Gd, Tb, Dy, Ho) при 850°C. Таким образом, согласно литературным данным, существуют две низкотемпературные ромбические модификации Ln₂WO₆. Высокотемпературная модификация α - $\tilde{L}a_2WO_6$, кристаллизуется в пространственной группе Pm2₁n (№ 31), также ромбической, близкой к шеелиту по структуре [13, 14]. Недавно при использовании (001)-ориентированной подложки из монокристалла SrTiO₃, методом импульсного лазерного напыления получена тонкая пленка α -Nd₂WO₆, которая имела ту же структуру, что и α -La₂WO₆ ($Pm2_1n$ (№ 31)) [15]. Таким образом, обе высокотемпературные α -Ln₂WO₆ (Ln = La, Nd) фазы были стабилизированы в пленке. Широко известно о высокотемпературной модификации с моноклинной структурой (пр. гр. C12/c1 (№ 15)), которая реализуется для многих соединений Ln₂WO₆ (Ln = Nd, Sm, Er, Yb) в керамике [16–19], и характерна для монокристаллов, выращенных из раствора в расплаве [20]. В более старой работе сообщается так же о существовании еще одной стабильной высокотемпературной модификации R_2WO_6 (R = La, Ce, Nd, Sm, Dy, Y) с тетрагональной структурой [21]. Отметим, что информация о синтезе низкотемпературной керамики со структурой δ -Nd₂WO₆, а также β -Nd₂WO₆ с пространственной группой $P2_12_12_1$ (№ 19) в литературе отсутствует.

Ранее в [22] предпринят поиск новых анодных материалов для ТОТЭ. В работе изучена проводимость моноклинного вольфрамата самария $\rm Sm_2WO_6$, легированного кальцием в подрешетку самария. Авторы обнаружили значительный рост проводимости на воздухе при 550°C: от 2.62×10^{-8} См/см для $\rm Sm_2WO_6$ до 3.86×10^{-7} См/см для $\rm Sm_{1.9}Ca_{0.1}WO_{6-\delta}$ и 1.20×10^{-4} См/см для

 $Sm_{1.8}Ca_{0.2}WO_{6-\delta}$. При этом энергия активации проводимости снижалась от 1.4 до 0.6 эВ. Измерения во влажном водороде, показали, что наиболее высокой проводимостью обладал чистый вольфрамат самария $(5.92 \times 10^{-5} \text{ См/см при } 550^{\circ}\text{C})$, а проводимость легированных кальцием твердых растворов в этих условиях была ниже. Таким образом, учитывая разницу в проводимости материала на воздухе и в водороде [22], очевидно, что на воздухе у $Sm_{1.8}Ca_{0.2}WO_{6-\delta}$ преобладает дырочная проводимость, а вклад ионной на полтора порядка ниже. Подчеркнем, что молибдаты лантаноидов Ln₂MoO₆ с моноклинной структурой, в том числе и молибдат самария Sm₂MoO₆, также имели дырочную проводимость при высоких парциальных давлениях кислорода [23].

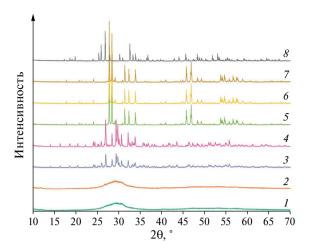
В системе La_2O_3 — WO_3 обе полиморфные модификации вольфрамата лантана β - La_2WO_6 и α - La_2WO_6 продемонстрировали невысокую проводимость [11, 13].

В 2020 году найден новый класс кислород-ионных проводников $Ln_{14}W_4O_{33}$ с псевдоромбоэдрической структурой [24, 25]. Наиболее высокую кислород-ионную проводимость продемонстрировали соединения неодима и самария [25]. Соединения Ln_2WO_6 (Ln=Nd,Sm) по составу на диаграмме состояния Ln_2O_3 — WO_3 близки к соединениям $Ln_14W_4O_{33}$ и содержат на 13.6 мол. % больше WO_3 [26]. Поэтому Ln_2WO_6 (Ln=Nd,Sm) могут быть потенциальным анодным материалом для электролитов ТОТЭ на основе $Ln_14W_4O_{33}$.

Проводимость различных полиморфных модификаций керамики Ln_2WO_6 (Ln=Nd,Sm,Yb), кроме некоторых шеелитов [16], не была исследована ранее. В настоящей работе, учитывая предыдущий опыт с молибдатами РЗЭ [8], проведен поиск условий для синтеза различных полиморфных модификаций керамики Nd_2WO_6 , в том числе, с использованием длительных изотермических отжигов. Получены твердые растворы с моноклинной структурой на основе Nd_2WO_6 с кальцием, определена их область гомогенности. Исследована общая проводимость полученных полиморфных Nd_2WO_6 модификаций и твердых растворов в сухом и влажном воздухе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез керамических образцов вольфрамата неодима Nd_2WO_6 выполнялся из механически активированной (м/а) смеси оксидов Nd_2O_3 (99.9%, Ganzhou Wanfeng Advanced Materials Technology Co., Ltd.) + WO_3 (99.9% MPTУ 6-09-533-66, Россия). Оксид неодима известен своей гигроскопичностью, поэтому перед навеской реактив отжигался при температуре 950°C в течение 1.5 ч с целью удаления воды и углекислого газа. Помол смеси оксидов, взятых в молярном соотношении 1:1, проводился

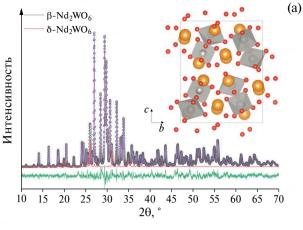

в эксцентриковой вибромельнице конструкции Аронова или в шаровой мельнице SPEX8000M (США) в течение 60 мин. Затем м/а смесь прессовалась в лиски толициной 3-5 мм и лиаметром 10 мм при давлении 300-680 МПа. Сырые прессовки без промежуточных отжигов подвергали изотермической выдержке при температурах в широком интервале 440—1600°С. Скорость нагрева печи во всех случаях была одинаковой и составляла 5°С/мин. Во избежание испарения и/или возгонки оксида вольфрама продолжительность изотермической выдержки варьировалась от 1 ч до 6 ч в зависимости от конечной температуры. При самых высоких температурах 1500 и 1600°C продолжительность отжига составляла 1 ч, тогда как с уменьшением температуры продолжительность возрастала. Некоторые образцы подвергались дополнительному длительному отжигу в течение 40-200 ч с целью достижения равновесного состояния. Твердые растворы $(Nd_{1-x}Ca_x)_2WO_6$ получали тем же способом из стехиометрических смесей оксидов CaO, Nd₂O₃ и WO₃ при температуре 1400°C. При температуре выше 1400°С образцы плавились. Оксид кальция перед взвешиванием прокаливался при 950°C, 1.5 ч.

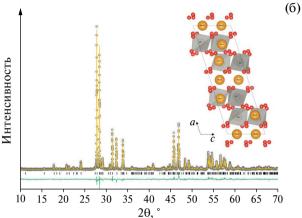
Дифрактограммы для рентгенофазового анализа (РФА) были получены с использованием дифрактометра Rigaku Smartlab SE (Япония) в непрерывном режиме. Съемка выполнялась в интервале углов 10—70° с шагом 0.01°, скорость движения гониометра 5°/мин. Фазовый анализ, расчет параметров решетки и уточнение структуры по методу Ритвельда проводились с помощью программы Smartlab Studio II. Визуализация структур выполнялась в программном пакете VESTA 3 [27].

Чтобы установить, произошла ли потеря оксида вольфрама WO₃, для определения соотношения Nd/W у вольфрамата неодима с различной предысторией, мы использовали метод масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС) (Vista Pro, (ICP) атомно-эмиссионный спектрометр (Varian, Австралия)).

Спектры поглощения материалов рассчитывали по их спектрам диффузного отражения, измеренным на спектрофотометре TerraSpec 4 Hi-Res (Malvern Panalytical, Великобритания) в диапазоне длин волн от 350 до 2500 нм (от 28000 до 4000 см⁻¹) при спектральном разрешении 3 нм. В диапазоне от 350 до 1000 нм и 6 нм в остальной части спектра. Функцию отклика спектрофотометра учитывали через регулярные промежутки времени с использованием сертифицированного в Labsphere (Labsphere, Inc., США) стандарта отражения из Spectralon. Полосы поглощения аппроксимировали набором гауссиан с использованием Origin версии 8 (OriginLab Corp., США).

Для измерения проводимости на цилиндрические керамические образцы наносились


Рис. 1. Дифрактограммы керамик Nd₂WO₆, полученных отжигом м/а смеси оксидов Nd₂O₃+WO₃ (*I*) 440°C, 6 ч, (*2*) 600°C, 4 ч, (*3*) 700°C, 4 ч, (*4*) 900°C, 4 ч, (*5*) 1200°C, 4 ч, (*6*) 1400°C, 4 ч, (*7*) 1500°C, 1 ч, (*8*) 1600°C, 1 ч.


и вжигались при 1000° С электроды из платиновой пасты ChemPur C3605. Измерения выполнялись методом импеданс-спектроскопии с использованием потенциостата/гальваностата P-40X (Россия) в сухой и влажной атмосфере. Диапазон частот составлял от 0.1 Гц до 500 кГц, интервал температур $500-900^{\circ}$ С, сухая атмосфера создавалась при прохождении воздушного потока через осушитель КОН (р H_2 O = 2.6×10^{-6} атм.), а влажная — при прохождении воздушного потока через водяной сатуратор, выдерживаемый при 20° С, что обеспечивало постоянную влажность 2.3% (р H_2 O = 0.023 атм.). Измерения выполнялись при охлаждении, для достижения равновесия образец выдерживался при каждой температуре по меньшей мере 40 мин.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Фазообразование и полиморфизм Nd_2WO_6 и твердых растворов на его основе $(Nd_{1-x}Ca_x)_2WO_6$ ($x=0,\ 0.01,\ 0.025,\ 0.1)$

На рис. 1 представлены данные РФА керамик Nd_2WO_6 , полученных отжигом м/а смеси оксидов при различных температурах. Вольфрамат неодима, отожженный при температурах ≤ 600° С (рис. 1, кривые I и 2), является рентгеноаморфным. При повышении температуры синтеза до $700-900^{\circ}$ С (рис. 1, кривые 3 и 4) образуется смесь двух кристаллических ромбических фаз пр. гр. $P2_12_12_1$ (№ 19): β - Nd_2WO_6 и δ - Nd_2WO_6 I (12]. Фаза β - Nd_2WO_6 изоструктурна β - La_2WO_6 и, насколько нам известно, ранее о ее существовании в этой системе в литературе не сообщалось. Использование при синтезе реагентов, подвергнутых

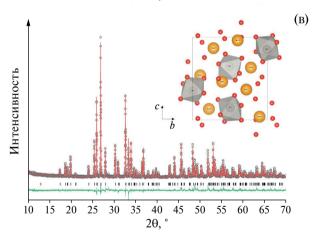
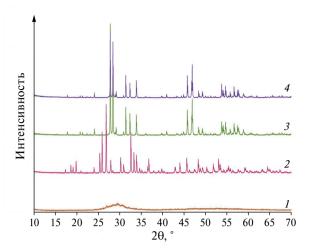



Рис. 2. Уточнение структуры исследуемых керамик по методу Ритвельда. а) Образец, полученный после отжига при 700° С, 4 ч, состоит из двух ромбических фаз пр. гр. $P2_12_1$ (19): β -Nd₂WO₆ и δ -Nd₂WO₆. На вставке проекция структуры β -Nd₂WO₆. б) Моноклинный Nd₂WO₆, полученный после отжига при 1500° С, 1 ч. На вставке проекция структуры моноклинной модификации Nd₂WO₆ пр. гр. C12/c1 (15). в) Ромбический δ -Nd₂WO₆, полученный после отжига при 1600° С, 1 ч. На вставке проекция структуры ромбической модификации δ -Nd₂WO₆ пр. гр. $P2_12_1$ (№ 19). Черточками отмечены позиции пиков, снизу приведена разность между экспериментальными и расчетными данными.

Рис. 3. Дифрактограммы керамик Nd_2WO_6 , полученных длительным отжигом: 600° C, 4+96 ч (I); 900° C, 4+96 ч (I); 1200° C, 1100° C, 11000° C, 11000

предварительной м/а, часто позволяет понизить температуру синтеза или даже получить соединения, которые не синтезируются традиционными методами. Так, например, при исследовании синтеза из м/а смеси оксидов $\text{La}_2\text{O}_3+\text{MoO}_3$ впервые был получен гексагональный молибдат лантана $\text{La}_{15}\text{Mo}_{8.5}\text{O}_{48}$ в виде нанокерамики [28].

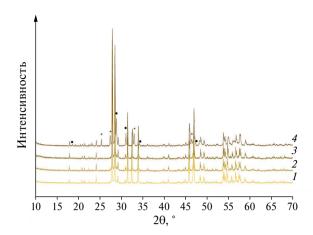
В области температур 1200—1500°С по данным РФА (рис. 1, кривые 5—7) формируется моноклинная модификация Nd_2WO_6 пр. гр. C12/c1 (№ 15) [16]. После короткого отжига при температуре 1600°С в течение 1 ч реализуется ромбическая модификация δ - Nd_2WO_6 пр. гр. $P2_12_12_1$ (№ 19). Примеры результатов уточнения кристаллических структур по методу Ритвельда для всех трех полученных модификаций Nd_2WO_6 представлены на рис. 2.

Интересный результат был получен при дополнительных отжигах керамик (рис. 3). В то время как отжиг моноклинной фазы Nd₂WO₆ в течение 40 и 80 ч при 1200°С не привел к какому-либо существенному изменению структуры (рис. 3, кривая 3), дополнительный отжиг керамики, полученной сначала при 900°C, 4 ч, в течение 96 ч при этой же температуре дал возможность получить чистую ромбическую модификацию δ -Nd₂WO₆, не прибегая к высокотемпературному отжигу при 1600°С (рис. 3, кривая 2). δ -Nd₂WO₆, получаемый при высоких температурах, согласно [15] является метастабильным. Его метастабильность подтвердил дополнительный отжиг образца δ -Nd₂WO₆, полученного при 1600°C, 1ч, при 1400°C в течение 1 ч. После такой процедуры δ -Nd₂WO₆ полностью перешел в моноклинную фазу (рис. 3, кривая 4). Образец, подвергнутый выдержке при 600°C

Пр. гр.		Условия получения		a, Å	b, Å	c, Å	<i>V</i> , Å ³	β, °	$R_{ m wp},\%$
		T, °C	τ, ч			1			···· x
$P2_12_12_1 (19)$		1600	1	5.36845(6)	9.24840(10)	10.18863(11)	505.861	90	10.41
		900	4+96	5.36723(10)	9.24778(19)	10.1896(2)	506.948		9.90
		1500	1	16.6248(2)	11.37052(14)	5.52467(7)	995.560	107.5814(5)	8.15
		1400	1	16.6258(2)	11.37039(15)	5.52460(7)	997.547	107.5830(6)	8.03
C12/c	C12/c1 (15)		4	16.6268(2)	11.37132(16)	5.52406(7)	997.101	107.5853(7)	7.93
		1200	40	16.6282(3)	11.37167(19)	5.52486(9)	996.939	107.5802(8)	9.87
		1200	80	16.6265(3)	11.37086(17)	5.52426(9)	996.484	107.5836(8)	9.13
	β≈90%	000	4	7.36629(11)	10.25876(16)	12.5250(2)	946.501	90	6.42
<i>P</i> 2 ₁ 2 ₁ 2 ₁ (19)	δ≈10%	900	4	5.3662(2)	9.2461(4)	10.1926(4)	505.727		
	β≈75%	700	0 4	7.3715(4)	10.2660(6)	12.5339(7)	948.513		7.00
	δ≈25%	700		5.3142(18)	9.261(3)	10.143(3)	499.195		7.90

Таблица 1. Результаты уточнения параметров структуры образцов Nd_2WO_6 по методу Ритвельда

Таблица 2. ИСП-МС данные микроанализа полиморфов номинального состава Nd_2WO_6


—————————————————————————————————————	C	Условия	синтеза	Номинальное	Измеренное cooтношение Nd/W	
состав	Структура	T, °C	τ, ч	соотношение Nd/W		
	δ -Nd ₂ WO ₆	900	4+96		2.17 ± 0.03	
Nd ₂ WO6	Nd ₂ WO ₆ моноклинный	1400	4	2	2.17 ± 0.03	
	δ-Nd ₂ WO ₆	1600	1		2.18 ± 0.03	

в течение 100 ч, остался преимущественно рентгеноаморфным (рис. 3, кривая I). На его дифрактограмме слегка проявились основные линии фазы β -Nd₂WO₆.

В табл. 1 представлены результаты расчетов параметров элементарных ячеек моноклинных и ромбических вольфраматов неодима. Объем элементарной ячейки ромбического δ-Nd₂WO₆, полученного при 900°С, больше, чем у образца, полученного при 1600°С. Среди моноклинных вольфраматов наибольший объем элементарной ячейки имеет образец, полученный отжигом при 1400°С в течение 1 ч. Таким образом, увеличение температуры синтеза и/или времени отжига приводит к уменьшению объема элементарных ячеек обеих модификаций вольфрамата неодима.

Известно, что при высокотемпературных отжигах WO_3 способен испаряться из его соединений. Ранее мы наблюдали это для композитов

 $La_{10}W_2O_{21}/\gamma$ - $La_6W_2O_{15}$, содержащих Nd [9]. Учитывая этот факт и уменьшение объема элементарной ячейки вольфраматов неодима при длительных и/или высокотемпературных отжигах, было выдвинуто предположение о том, что ромбическая фаза δ-Nd₂WO₆ образуется в результате испарения WO₃ и, как следствие, нарушения стехиометрии. Для проверки этого предположения проводилось измерение соотношения катионов Nd/W методом масс-спектрометрии с индуктивно связанной плазмой. Оказалось, что стехиометрия действительно сдвинута в сторону, обедненную W, однако соотношение катионов в ромбических и моноклинном образцах практически не отличается (табл. 2). Соотношение катионов практически одинаково и составило Nd/W = 2.17:1 после отжигов в интервале 900-1400°C и 2.18:1 после отжига при 1600°С, 1 ч. Исходя из этого, можно утверждать, что δ -Nd₂WO₆ действительно является полиморфной модификацией Nd₂WO₆. Следует упомянуть,

Рис. 4. Дифрактограммы моноклинных твердых растворов $(Nd_{1-x}Ca_x)_2WO_6$, $x=0(1),\ 0.01(2),\ 0.025(3),\ 0.1(4)$. Символами обозначены пики примесных фаз * $-CaCO_3$, • $-CaWO_4$.

что при исследовании методом ИСП-МС молибдатов P39 $Ln_2(MoO_4)_3$ (Ln=La, Pr, Nd, Eu, Gd) с номинальным соотношением катионов Ln/Mo=1:1.5, они также имели отклонения по составу. Для $La_2(MoO_4)_3$ соотношение La/Mo=1:1.39, для других молибдатов: Nd/Mo=1:1.4, Eu/Mo=1.41, Gd/Mo=1.43 [4]. Молибдаты $La_2(MoO_4)_3$ принадлежат области фазовой диаграммы $Ln_2O_3-MoO_3$, обогащенной оксидом молибдена. Таким образом, при исследовании как молибдатов, так и вольфраматов P39, летучесть этих оксидов из их соединений при $T \ge 900$ °C приводит к смещению номинального состава в сторону меньшего содержания этих оксидов.

Таким образом, в ходе синтеза из м/а смеси WO_3 частично испаряется и образуется соединение, обедненное вольфрамом $Nd_{2.17}WO_{6+y}$, в котором часть позиций W занято Nd. Этот процесс может быть описан следующим квазихимическим уравнением:

$$W_{W}^{x} + 4O_{O}^{x} + \frac{1}{2}Nd_{2}O_{3} \xrightarrow{Nd_{2}WO_{6}} WO_{3} \uparrow + \\ +Nd_{W}''' + \frac{5}{2}O_{O}^{x} + \frac{3}{2}V_{O}^{\bullet \bullet},$$
(1)

и приводит к образованию дополнительных кислородных вакансий в структуре. Поскольку в монокристаллах Nd_2WO_6 соотношение катионов равно 2, а керамики при таком методе синтеза образуются со сдвинутым составом $Nd_{2.17}WO_{6+y}$, можно утверждать, что вольфрамат неодима Nd_2WO_6 обладает областью гомогенности 48-50 мол. % WO_3 в системе Nd_2O_3 — WO_3

На рис. 4 представлены дифрактограммы твердых растворов Са, полученных на основе

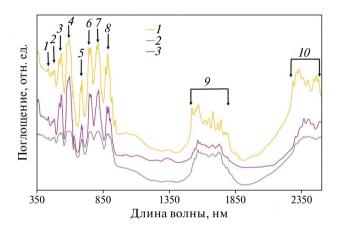
моноклинной модификации Nd₂WO₆ при 1400°C. Образцы, содержащие 1 и 2.5% кальция, оказались изоструктурными нелегированному Nd₂WO₆ пр. гр. C12/c1 (15)). Легирование 10% Са в неодимовую подрешетку привело к образованию примесных фаз CaCO₃ и CaWO₄. При увеличении содержания Са в системе объем элементарной ячейки уменьшается (табл. 3). Все три позиции неодима в моноклинном Nd₂WO₆ окружены восьмью кислородами, а ионный радиус $r_{\text{Ca}_{\text{VIII}}^{2+}} = 1.12 \text{ Å в этом окружении слегка больше } r_{\text{Nd}}^{3+} = 1.109 \text{ Å [29], можно}$ жении слегка больше $r_{\text{Nd}_{\text{VIII}}^{3+}}^{3+} = 1.109 \text{ Å [29]},$ можно предположить, что уменьшение объема элементарной ячейки свидетельствует об образовании кислородной вакансии и уменьшении окружения Са²⁺ до 7 ($r_{\text{Ca}_{\text{VII}}}^{2+} = 1.06 \,\text{Å}$). Образование кислородной вакансии при легировании Са может быть описано следующим квазихимическим уравнением:

$$2CaO + WO_{3} \xrightarrow{Nd_{2}WO_{6}} 2Ca'_{Nd} + W_{W}^{x} + 5O_{O}^{x} + V_{O}^{\bullet \bullet}.$$
 (2)

 $+W_W^x + 5O_O^x + V_O^{\bullet \bullet}$. Подобная зависимость параметров элементарной ячейки от концентрации Са наблюдалась ранее для пирохлоров $Nd_{2-x}Ca_xZr_2O_{7-\delta}$ [30, 31].

Оптические свойства керамик ромбического δ - Nd_2WO_6 и моноклинного Nd_2WO_6

На рис. 5 приведены спектры поглощения, зарегистрированные в диапазоне длин волн 350-2500 нм. Отмеченные на рис. 5 характерные полосы поглощения связаны с 4f-4f-переходами из основного состояния ${}^4I_{9/2}$ на возбужденные уровни иона Nd^{3+} и представлены в табл. 4. Измеренные при комнатной температуре спектры поглощения характеризуются большой шириной линий, что связано со значительной неупорядоченностью структуры представленных керамик. В результате этого ионы Nd³⁺ оказываются распределенными по большому числу разнообразных центров, симметрия кристаллических полей которых незначительно отличается друг от друга. При этом происходит неоднородное уширение полос поглощения, а также сдвиг положения их максимумов. Наибольшее уширение наблюдается для ромбической δ -Nd₂WO₆, синтезированной при 1600°C, 1 ч, (рис. 5, кривая 2) а наиболее упорядочена моноклинная фаза Nd_2WO_6 (рис. 5, кривая I).


Следует отметить, что очевидные различия в спектрах поглощения ромбических фаз, полученных при 900 и 1600° С (δ -Nd₂WO₆), и моноклинной Nd₂WO₆ наблюдаются в области 9 (1519-1785 нм) и 10 (2288-2474) (рис. 5, табл. 4).

Проводимость полиморфных модификаций Nd_2WO_6 и твердых растворов $(Nd_{1-x}Ca_x)_2WO_{6-\delta}$ с моноклинной структурой

Номинальный	Условия получения		Доля	a, Å	b, Å	c, Å	V, Å ³	β, град	R _{wp} , %
состав	T, °C	τ, ч	Ca, %			-			"P'
Nd ₂ WO ₆	1400	1	0	16.6258(2)	11.37039(15)	5.52460(7)	997.547	107.5830(6)	8.03
$\begin{matrix} (Nd_{0.99}Ca_{0.01})_2 \\ WO_{6-\delta} \end{matrix}$	1400	4	1	16.6171(2)	11.36954(16)	5.51982(7)	994.443	107.5655(7)	8.79
$(Nd_{0.975}Ca_{0.025})_2 \ WO_{6-\delta}$	1400	4	2.5	16.6104(3)	11.37340(19)	5.50938(9)	993.765	107.5617(8)	10.32
$(\mathrm{Nd}_{0.9}\mathrm{Ca}_{0.1})_2 \ \mathrm{WO}_{6-\delta}^{00000000000000000000000000000000000$	1400	4	10	16.6030(4)	11.3712(3)	5.49513(15)	988.855	107.5760(16)	11.94

Таблица 3. Результаты уточнения параметров структуры твердых растворов $(Nd_{1-x}Ca_x)_2WO_6$ по методу Ритвельда

^{*} Образец содержит примесные фазы и не является твердым раствором в полном смысле.

Рис. 5. Спектры поглощения Nd^{3+} в моноклинном Nd_2WO_6 (*I*) и ромбических δ - Nd_2WO_6 , полученных при 1600 (*2*) и 900°C (*3*).

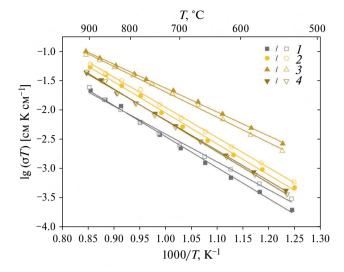

На рис. 6 представлены температурные зависимости проводимости исследуемых вольфраматов. У δ -Nd₂WO₆ и моноклинного Nd₂WO₆ зависимость проводимости (рис. 6, кривые 1, 2) отличается от проводимости моноклинного Sm₂WO₆ и твердых растворов на его основе [22]. Здесь возможен протонный вклад в общую проводимость, поскольку наблюдается превышение проводимости во влажном воздухе по сравнению с сухим. Энергии активации в сухом и влажном воздухе типичны для кислород-ионных и протонных проводников (табл. 5). Энергия активации проводимости в сухом воздухе для моноклинного Nd_2WO_6 и ромбического δ - Nd_2WO_6 составили 1.05 и 1.06 эВ, соответственно. Отметим, что энергия активации во влажном воздухе ниже, чем в суxom - 1.03 и 0.95 $\ni B$ (табл. 5), что позволяет предположить у них протонный вклад проводимости.

Таблица 4. Длины волн (λ) переходов из основного состояния $4I_{9/2}$ на возбужденные уровни иона Nd^{3+} в моноклинном Nd_2WO_6 и ромбическом δ- Nd_2WO_6

№	λ, нм	Переходы		
1	434	$^{2}P_{1/2} + ^{2}D_{5/2}$		
2	463-475	$^{2}K_{15/2} + ^{2}G_{9/2} + ^{2}D_{3/2} + ^{4}G_{11/2}$		
3	518-529	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
4	560-613	$^{4}G_{5/2} + ^{2}G_{7/2}$		
5	683-688	$^{-4}F_{9/2}$		
6	740-752	$^{4}F_{7/2} + ^{4}S_{3/2}$		
7	784-823	${}^{4}F_{5/2} + {}^{2}H_{9/2} {}^{4}F_{3/2}$		
8	879-940	$^{4}F_{3/2}$		
9	1519—1785	$^{4}I_{15/2}$		
10	2288-2474	$^{4}I_{13/2}$		

Проводимость δ -Nd₂WO₆ ниже проводимости моноклинного вольфрамата. В работе [23] оценивались геометрические размеры пустот и каналов для ионного транспорта молибдатов РЗЭ с разными пространственными группами. Авторы отмечают, что в молибдатах, принадлежащих к пространственной группой C2/c (№ 15), т.е. такой же, как у моноклинного вольфрамата Nd₂WO₆, размер каналов больше, чем у принадлежащих к пространственной группе $P2_12_12_1$ (№ 19). Можно предположить, что зависимость размера каналов в вольфраматах такая же как молибдатах Ln_2MoO_6 (Ln = Sm, Gd, Dy), и этим объясняется повышенная проводимость в моноклинном Nd_2WO_6 по сравнению с δ -Nd₂WO₆

При легировании кальцием неодимовой подрешетки моноклинного Nd_2WO_6 наблюдался рост проводимости на полпорядка; при этом у твердого

Рис. 6. Аррениусовские зависимости общей проводимости δ -Nd₂WO₆ (I) и моноклинных твердых растворов (Nd_{1-x}Ca_x)₂WO_{6- δ}, x = 0 (2), 0.01 (3), 0.025 (4). Полыми значками отмечены значения проводимости во влажном воздухе.

раствора ($\mathrm{Nd}_{1-x}\mathrm{Ca}_x$) $_2\mathrm{WO}_{6-\delta}$ (x=0.01) характер проводимости изменился, и она стала преимущественно дырочной, так как во влажном воздухе она ниже проводимости в сухом [32]. Отметим, что введение вакансий кислорода при легировании неодимовой позиции кальцием, описываемое уравнением (2), хотя и привело к росту общей проводимости, однако, проводимость при этом имеет дырочный характер на воздухе, как и в случае $\mathrm{Sm}_{1.9}\mathrm{Ca}_{0.1}\mathrm{WO}_{6-\delta}$ [22]. Это может быть обусловлено конкурирующим процессом инкорпорирования кислорода из газовой фазы с образованием дырочных носителей заряда:

$$V_{\mathcal{O}}^{\bullet\bullet} + \frac{1}{2} \mathcal{O}_2 \leftrightarrow 2h^{\bullet} + \mathcal{O}_{\mathcal{O}}^{x}.$$
 (3)

Известно, что дырочная проводимость флюоритоподобных протоников на основе вольфрамата празеодима $\Pr_{6-x}WO_{12-1.5x}$ (x=0.5, 0.75, 1, 1.25) также возрастала при введении дополнительных вакансий в структуру [32].

ЗАКЛЮЧЕНИЕ

Исследовано фазообразование вольфрамата неодима из механически активированных оксидов в широком температурном интервале 25-1600°C. Определены условия образования различных полиморфных модификаций: низкотемпературных ромбических (β -Nd₂WO₆ и δ -Nd₂WO₆ ($P2_12_12_1$ (№ 19))) и высокотемпературной моноклинной Nd₂WO6 (пр. гр. C12/c1 (15)). Хотя впервые стабилизированные в керамике β -Nd₂WO₆ и δ -Nd₂WO₆

Таблица 5. Величины энергий активации общей проводимости δ -Nd₂WO₆ и моноклинных твердых растворов (Nd_{1-x}Ca_x)₂WO_{6- δ} (x=0,0.01,0.025) в температурном интервале 500–900°C

Номинальный состав и условия получения	Атмосфера	$E_{\rm a} (\pm 0.01), \\ { m 9B}$
δ -Nd ₂ WO ₆ ,	Сухой воздух	1.06
1600°С, 1 ч	Влажный воздух	0.95
Nd ₂ WO ₆	Сухой воздух	1.05
моноклинный, 440°С, 6 ч +1500°С, 1 ч	Влажный воздух	1.03
$Nd_{1.98}Ca_{0.02}WO_{6-\delta}$	Сухой воздух	0.81
1400°С, 4 ч	Влажный воздух	0.86
$Nd_{1.95}Ca_{0.05}WO_{6-\delta},$	Сухой воздух	1.04
1350°С, 4 ч	Влажный воздух	1.07

относятся к одной и той же пространственной группе ($P2_12_12_1$ (№ 19), их структуры и соответственно дифрактограммы, различны. Стабилизировать δ -Nd₂WO₆ в чистом виде удалось, используя длительный изотермический отжиг до 100 ч при 900°С. Кроме того, благодаря механической активации удалось получить этот же полиморф кратким отжигом при 1600°С, 1ч.

Изучены оптические спектры для исследуемых керамик, которые продемонстрировали различие δ -Nd₂WO₆ и моноклинного Nd₂WO₆ в ближней ИК-области.

У обеих модификаций вольфрамата неодима δ -Nd₂WO₆ и моноклинного Nd₂WO₆ возможна протонная проводимость с более низкой энергией активацией 1.05 и 1.06 эВ. Однако для кальцийсодержащего твердого раствора (Nd_{1-x}Ca_x)₂WO_{6- δ} (x=0.01), у которого общая проводимость возрастает по сравнению с недопированным моноклинным Nd₂WO₆, преобладает дырочная проводимость на воздухе.

Работа поддержана субсидией Минобрнауки, выделенной ФИЦ ХФ РАН на выполнение государственного задания по теме "Наноструктурированные системы нового поколения с уникальными функциональными свойствами" (регистрационный номер № 122040500071-0). Измерения проводимости образцов выполнены в рамках темы государственного задания ФИЦ ПХФ и МХ РАН (номер государственной регистрации № 124013000692-4).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Pautonnier A., Coste S., Barré M., Lacorre P.* // Progress in Solid State Chemistry. 2023. V. 69. P. 100382. https://doi.org/10.1016/j.progsolidstchem.2022.100382
- Chang L.L.Y., Phillips B. // Inorg. Chem. 1964. V. 3. P. 1792.
- Chang L.L.Y., Scroger M.G., Phillips B. // J. Inorg. Nucl. Chem. 1966. V. 28. P. 1179. https://doi.org/10.1016/0022-1902(66)80443-8
- 4. Popov V.V., Menushenkov A.P., Yastrebtsev A.A. et al. // Solid State Sciences 2021. V. 112. P. 106518. https://doi.org/10.1016/j.solidstatesciences.2020.106518
- 5. *Morozov V.A., Raskina M.V., Lazoryak B.I. et al.* // Chem. Mater. 2014 V. 26 (24). P. 7124—7136. https://doi.org/10.1021/cm503720s.
- Wu C., Ma L., Zhu, Y. et al. // Catalysts. 2022. V. 12. P. 926 doi:10.3390/catal12080926.
- 7. Партин Г.С. Электропроводность флюоритоподобных сложных оксидов в системе La_6WO_{12} — $La_{10}W_2O_{21}$ и Pr_6WO_{12} — $Pr_{10}W_2O_{21}$. Магистерская диссертация. Екатеринбург 2015.
- 8. Shlyakhtina A.V., Avdeev M., Lyskov N.V. et al. // Dalton Trans. 2020. V. 49. P. 2833.
 DOI https://doi.org/10.1039/C9DT04724G
- Shlyakhtina A.V., Baldin E.D., Vorobieva G.A. et al. // International J. of Hydrogen Energy. 2023. V. 48 (59). P. 22671. https://doi.org/10.1016/j.ijhydene.2023.03.259
- 10. Partin G.S., Korona D.V., Neiman A. Ya., Belova K.G. // Russ. J. Electrochem 2015. V. 51. P. 381. https://doi.org/10.1134/S1023193515050092
- Chambrier M.-H., Kodjikian S., Ibberson R.M., Goutenoire, F. // J. of Solid State Chemistry 2009. V. 182. P. 209. https://doi.org/10.1016/j.jssc.2008.09.010
- 12. *Efremov V.A., Tyulin A.V., Trunov V.K.* // Soviet Physics Crystallography (translated from Kristallografiya) 1984. V. 29. P. 398.
- 13. *Allix M., Chambrier M.-H., Véron, E. et al.* // Cryst. Growth Des. 2011. V. 11. P. 5105. https://doi.org/10.1021/cg201010y
- 14. Carlier T., Chambrier M.-H., Anthony Ferri A. et al. // ACS Appl. Mater. Interfaces 2015. V.7 (44). P. 24409. https://doi.org/10.1021/acsami.5b01776
- Carlier T., Chambrier M.-H., Da Costa A. et al. // Chem. Mater. 2020 V. 32. P. 7188. https://dx.doi.org/10.1021/acs.chemmater.0c01405
- 16. *Yanovskii V.K.*, *Voronkova V.I.* // Solid State Physics. 1977. V. 19. P. 3318.

- Jayalekshmy N.L., Thomas J.K., Solomon S. // Bull. Mater. Sci. 2019. V. 42:178. https://doi.org/10.1007/s12034-019-1887-0
- 18. *Chen Y.-C., Weng M.-Z.* // J. of the Ceramic Society of Japan. 2016. V. 124(1). P. 98. http://dx.doi.org/10.2109/jcersj2.15155
- 19. *Kaczmarek S.M., Tomaszewicz E., Moszyński D. et al.* // Materials Chemistry and Physics 2010. V. 124. P. 646. https://doi.org/10.1016/j.matchemphys.2010.07.028
- 20. *Yanovskii V.K., Voronkova V.I.* // Inorganic Materials (translated from Neorganicheskie Materialy) 1975. V. 11. P. 73.
- 21. Yoshimura M., Sibieude F., Rouanet A., Foex M. // Rev Int Hautes Temp Refract. 1975. V. 12(3). P. 215.
- Li Q., Thangadurai V. // J. of Power Sources 2011.
 V. 196. P. 169. https://doi.org/10.1016/j.jpowsour.2010.06.055
- 23. *Morkhova Y.A.*, *Orlova E.I.*, *Kabanov A.A. et al.* // Solid State Ionics. 2023. V. 400. P. 116337. https://doi.org/10.1016/j.ssi.2023.116337
- 24. Shlyakhtina A., Lyskov N., Chernyak S. et al. // IEEE International Symposium on Applications of Feeroelectric, ISAF 2021, International Symposium on Integrated Functionalities, ISIF 2021 and Piezoresponse Force Microscopy Workshop, PFM 2021 Proceedings 9477315. https://ieeexplore.ieee.org/document/9477315
- 25. Shlyakhtina A.V., Lyskov N.V., Baldin, E. D et al. // Ceramics International. 2023. V. 50. P. 704. https://doi.org/10.1016/j.ceramint.2023.10.149
- 26. *Yoshimura M., Rouanet A //* Mat. Res. Bull. 1976. V. 11. P. 151. https://doi.org/10.1016/0025-5408(76)90070-2
- 27. *Momma K., Izumi F.* // J. Appl. Crystallogr.2011. V. 44. P. 1272. http://dx.doi.org/10.1107/S0021889811038970
- 28. *Baldin E.D.*, *Gorshkov N.V.*, *Vorobieva*, *G.A. et al.* // Energies. 2023. V. 16(15). P. 5637. https://doi.org/10.3390/en16155637
- 29. Shannon R.D. // Acta Crystallographica. 1976. V. A32. P. 155.
- 30. Shehu A. Structural analysis and its implications for oxide ion conductivity of lanthanide zirconate pyrochlores. PhD thesis. School of Biological and Chemical Sciences Queen Mary University of London. 2018
- 31. *Shlyakhtina A.V., Lyskov N.V., Konysheva E. Yu. et al.* // J. Solid State Electrochem. 2020. V 24 (7). P. 1475. https://doi.org/10.1007/s10008-020-04574-6
- 32. *Korona D.V., Partin G.S., Neiman A.Y.* // Russ. J. Electrochem. 2015. V. 51. P. 925. https://doi.org/10.1134/S1023193515100067