—— СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ =

УЛК 542.8

ПОЛИКАТИОННЫЕ ПЕРОВСКИТЫ В СИСТЕМЕ Ba₂Y₂O₅-BaCuO₂-BaMoO₄-BaTiO₃

© 2024 г. М. Н. Смирнова^a, *, М. А. Копьева a , Г. Д. Нипан a , Г. Е. Никифорова a , А. Д. Япрынцев a , А. А. Архипенко a

^aИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: smirnova macha 1989@mail.ru

Поступила в редакцию 14.02.2024 г. После доработки 20.03.2024 г. Принята к публикации 22.03.2024 г.

Для сохранения однофазности кубического твердого раствора $Ba_2(Y, Cu, Mo)_2O_6$, склонного к полиморфизму, использован оксид титана. В результате синтеза методом сжигания геля, отжига при 1000° С и последующего охлаждения в инерционно-термическом режиме впервые получена кубическая модификация F43m Ba_5Y_2 CuMoTi O_{14} без примеси перовскита Fm3m. Методами рентгенофазового анализа, рентгенофлуоресцентной спектрометрии, инфракрасной спектроскопии и спектроскопии диффузного отражения проведено сравнительное исследование образцов Ba_4Y_2 CuMo O_{11} и Ba_5Y_2 CuMo O_{12} .

Ключевые слова: многокомпонентные оксидные системы, фазовые состояния

DOI: 10.31857/S0044457X24070054, EDN: XOMJFI

ВВЕЛЕНИЕ

В пределах области гомогенности поликатионного кубического твердого раствора в системе Ba-Y-Cu-W-O было обнаружено изменение структуры. Для однофазных образцов серии $Ba_{2}Y_{1-x}Cu_{x}WO_{6}$ (0 $\leq x \leq 0.75$) [1] выделены два интервала: $0 \le x \le 0.25$ (базовая структура Ва_о Y₂CuW₄O₂₄) [1] и $0.4 \le x \le 0.6$ (базовая структура $Ba_4YCuW_2O_{12}$) [2], в которых с увеличением содержания Си монотонно уменьшается параметр *а* кубической решетки *Рт3т* [1]. Отмечено одновременное существование двух кубических фаз (Ba: Y: Cu: W = 8:2:7:3) при 900°C с последующим образованием однофазного перовскита при 1000°С [3]. Способность Y занимать обе катионные позиции в перовскитной структуре АВО, [4] и возможность образования вакансий в В-позициях [5] приводят к существованию для перовскита в концентрационном тетраэдре системы ВаО-Y2O3-СиО-WO3 объема гомогенности [4], который удобно представить с помощью многогранного полиэдра [6].

В системе Ba—Y—Cu—W—О наряду с перовскитом *Fm3m* присутствует вторая кубическая полиморфная модификация [1—5, 8—15]. Деформация кубической ячейки [16—18] позволяет использовать перовскитоподобные фазы в качестве сегнетоэлектриков [19], мультиферроиков [20],

сверхпроводников [21] и электродов топливных элементов [22], но неконтролируемое искажение структуры приводит к невоспроизводимости физических свойств. Совместное существование нескольких полиморфных модификаций создает неопределенность при использовании перовскитоподобных фаз в качестве матриц для введения оптически активных катионов, поскольку не исключена диффузия между родственными структурами.

В отличие от системы Ba—Y—Cu—W—O, сведения о перовскитоподобных фазах на основе четверных оксидов в системе Ba—Y—Cu—Mo—O единичны. Сообщается, что при номинальном составе Ba $_{2.5}$ YCu $_{0.5}$ MoO $_{7.5}$ (Ba $_5$ Y $_2$ CuMo $_2$ O $_{15}$) получен кубический перовскит Fm3m с параметром элементарной ячейки a=0.83656 нм, для которого приведена молекулярная формула Ba $_2$ (Y $_{0.6}$ Cu $_{0.4}$)(Y $_{0.2}$ Mo $_{0.8}$)O $_6$ [7].

В настоящей работе высказано предположение о возможности предотвращения полиморфного перехода для многокомпонентного кубического твердого раствора $Ba_2(Y, Cu, Mo)_2O_6$ с помощью допирования TiO_2 . Для этой цели использован классический перовскит $BaTiO_3$, для которого кубическая модификация переходит в гексагональную выше 1400° С. Проанализированы оптические свойства твердых

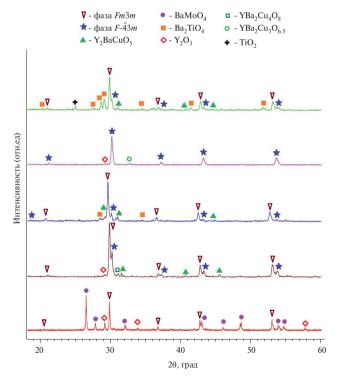
растворов квазичетверной системы $Ba_2Y_2O_5$ — $BaCuO_2$ — $BaMoO_4$ — $BaTiO_3$ в УФ/видимом и ИК-диапазонах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы Ba₂Y₂O₅-BaCuO₂системы BaMoO₄-BaTiO₂ синтезировали методом сжигания геля, в качестве исходных реагентов использовали ВаО (ч., ТУ 6-09-5397-88), $Y_2(CO_2)_2 \cdot 3H_2O$ (x. ч., ТУ 6-09-4770-79), CuO (ос. ч., ТУ 6-09-3098-73), МоО₂ (ч. д. а., ТУ 6-09-4471-77), тетрабутилат титана (C₄H₀O)₄Ti (техн., ТУ 6-09-2738-89) и азотную кислоту (ч. д. а., ГОСТ 4461-77), разбавленную водой в соотношении 1:1 (об.). Оксиды металлов и кристаллогидрат карбоната иттрия растворяли в азотной кислоте и к полученному раствору добавляли по каплям тетрабутилат титана. Далее реакционную смесь упаривали до образования геля, который после кратковременного возгорания превращался в серо-черный порошок, который перетирали, переносили в керамический тигель, отжигали при 1000°C в течение 3 ч и охлаждали в инерционно-термическом режиме, не вынимая из печи [23, 24].

Рентгенофазовый анализ выполняли на дифрактометре Bruker Advance D8 (излучение CuK_{α}) в интервале углов $2\theta~10^{\circ}-70^{\circ}$ с шагом сканирования 0.0133° . Результаты обрабатывали с помощью программного пакета DIFFRAC.EVA. Количественный фазовый анализ проводили методом полнопрофильного анализа по методу Ритвельда с использованием программного обеспечения TOPAS 4.2.

Содержание Ва, Y, Cu, Мо и Ті в однофазных образцах контролировали с помощью рентгенофлуоресцентной спектрометрии (РФС) на спектрометре Спектроскан МАКС-GVM (Россия) с использованием метода фундаментальных параметров.


ИК-спектры регистрировали на спектрометре Perkin Elmer Spectrum 65 FT-IR в области 4000-400 см $^{-1}$ с разрешением 2 см $^{-1}$.

Спектры диффузного отражения в диапазоне 200—1000 нм регистрировали с помощью модульной оптической системы Ocean Optics (дейтериево-галогеновый источник DH-2000-BAL, интегрирующая сфера ISP-80-8-R диаметром 80 мм, детектор QE650000). В качестве образца сравнения использовали стандарт WS-1 (Ocean Optics) из политетрафторэтилена.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В отличие от $Ba_4YCuW_2O_{12}$ [2], образец Ва₄ YCuMo₂O_{12.5} оказался неоднофазным и, наряду с перовскитом (Fm3m), изоструктурным $Ba_{4}YCu_{9}WO_{q}$ [15] и $Ba_{4}YCuW_{2}O_{12}$, содержал $BaMoO_4$ и Y_2BaCuO_5 . В образце номинального состава $B_{2.5}^4 Y Cu_{0.5} MoO_{7.5}$ ($Ba_5 Y_2 Cu Mo_2 O_{15}$) [7] кроме $BaMoO_4$ образовался Y_2O_2 (рис. 1, кривая 1). Использование соотношения Ba: Y: Cu: Mo = = 3:1:1:1 позволило снизить содержание примесного ВаМоО,, однако наряду с примесями Y₂O₂ и CuO появилась кубическая модификация $F\overline{4}3m$ [11]. Увеличение содержания Си до Ва : Y: Cu: Mo = 3:1:2:1 привело к исчезновению фазы $F\overline{4}3m$, но не снизило содержание примесей. При эквимолярном удалении Ва и Мо из исходной смеси (3111) до Ba₅Y₂Cu₂MoO₁₃ (5221) был получен перовскит Fm3m без примеси F43m, но с примесью ВаСиО₂.

Следующее совместное удаление Ва и Си привело к совместной кристаллизации модификаций Fm3m и $F\overline{4}3m$ в образце $Ba_4Y_2CuMoO_{11}$ при незначительных иттрийсодержащих примесях (Y_2O_3 , Y_2BaCuO_5 и $Y_2Ba_4CuO_8$, рис. 1, кривая 2). В результате снижения содержания Y

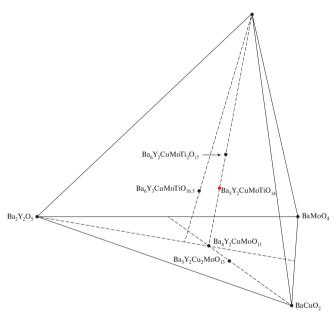
Рис. 1. Дифрактограммы образцов номинального состава: $I-\mathrm{Ba_5Y_2CuMo_2O_{15}}$ (5212), $2-\mathrm{Ba_4Y_2CuMoO_{11}}$ (4211), $3-\mathrm{Ba_6Y_3CuMoTiO_{16.5}}$ (63111), $4-\mathrm{Ba_5Y_2CuMoTiO_{14}}$ (52111), $5-\mathrm{Ba_6Y_2CuMoTi_2O_{17}}$ (62112).

Параметр	Ba ₄ Y ₂ CuMoO ₁₁				Ba ₅ Y ₂ CuMoTiO ₁₄				
	Ba	Y	Cu	Mo	Ba	Y	Cu	Mo	Ti
Определено	59.50	21.16	7.31	12.03	64.01	16.57	5.78	8.88	4.76
По формуле	61.96	20.06	7.17	10.82	64.06	16.59	5.93	8.95	4.47

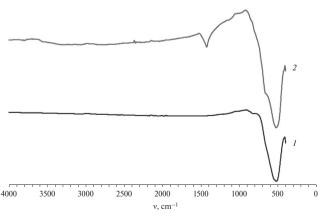
Таблица 1. Соотношение элементов в синтезированных образцах $Ba_4Y_2CuMoO_{11}$ и $Ba_5Y_2CuMoTiO_{14}$, %

(Ba: Y: Cu: Mo = 4:1.8:1:1) и изменения соотношения Cu: Mo (Ba: Y: Cu: Mo = 8:4:1:3 и 8:4:3:1) образовались многофазные смеси с участием кубической фазы Fm3m.

Для предотвращения возможного полиморфного перехода в твердом растворе на первом этапе было использовано эквимолярное замещение Си и Мо на Ті. Наряду со смесью *Fm3m* и $F\overline{4}3m$ в образце $Ba_6Y_3CuMoTiO_{16.5}$ образовались Y₂BaCuO₅ и Ba₂TiO₄ (рис. 1, кривая 3). На следующем этапе была исследована возможность растворения ВаТіО, в Ва, У, СиМоО, Полученный образец Ba₅Y₂CuMoTiO₁₄ содержал только фазу F43m и наименьшее количество примесей Y_2O_3 и $YBa_2Cu_3O_{7-\delta}$ (рис. 1, кривая 4). Дальнейшее добавление ВаТіО, к Ва, У, СиМоО, до соотношения Ba: Y: Cu: Mo: Ti = 6:2:1:1:2 привело к появлению перовскита *Fm3m*, снижению содержания У ВаСиО, и увеличению содержания $Ba_{5}TiO_{4}$ (рис. 1, кривая 5). Замещение 20% катионов на Ті в В-позиции перовскита $Ba_4Y_2CuMoO_{12-\delta}$ позволило стабилизировать кубическую решетку $F\overline{4}3m$.


В табл. 1 представлены номинальные и экспериментально определенные соотношения из спектров РФС для образцов $Ba_4Y_2CuMoO_{11}$ и $Ba_6Y_3CuMoTiO_{16.5}$, свидетельствующие о сохранении соотношений Ba, Y, Cu, Mo и Ti в синтезированных твердых растворах.

На рис. 2 представлено положение фигуративных точек для синтезированных образцов $Ba_4Y_2CuMoO_{11}, Ba_5Y_2Cu_2MoO_{13}, Ba_6Y_3CuMoTiO_{16.5}, Ba_5Y_2CuMoTiO_{14}$ и $Ba_6Y_2CuMoTi_2O_{17}$ в концентрационном тетраэдре $Ba_2Y_2O_5-BaCuO_2-BaMoO_4-BaTiO_5$.


На рис. 3 приведены ИК-спектры $Ba_4Y_2CuMoO_{11}$ (*I*) и $Ba_5Y_2CuMoTiO_{14}$ (*2*) после синтеза и отжига при $1000^{\circ}C$. В ИК-спектрах $Ba_4Y_2CuMoO_{11}$ и $Ba_5Y_2CuMoTiO_{14}$ наблюдается интенсивная полоса поглощения с максимумом при 517 и 516.2 см $^{-1}$, соответствующая валентным колебаниям с изменением длины связи в октаэдрах MoO_6 [25] и TiO_6 [26] перовскита. Площадка или перегиб в области 780-830 см $^{-1}$

свидетельствует о наличии асимметричных валентных колебаний в тетраэдрах MoO_4 [27], связанных, скорее всего, с присутствием в образце следовых количеств $BaMoO_4$, а полоса при 1424 см⁻¹ для $Ba_5Y_2CuMoTiO_{14}$ указывает на валентные колебания Ti-O-Ti [28].

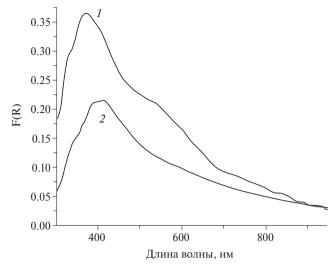

Результаты исследования оптических свойств образцов $Ba_4Y_2CuMoO_{11}$ и $Ba_5Y_2CuMoTiO_{14}$

Рис. 2. Концентрационный тетраэдр $Ba_2Y_2O_5-BaCuO_2-BaMoO_4-BaTiO_3$.

Рис. 3. ИК-спектры образцов $Ba_4Y_2CuMoO_{11}$ (*1*) и $Ba_5Y_2CuMoTiO_{14}$ (*2*).

Рис. 4. Функция Кубелки—Мунка для образцов Ba_4Y , $CuMoO_{11}$ (I) и Ba_5Y , $CuMoTiO_{14}$ (I).

в УФ/видимом и ближнем ИК-диапазонах спектра (рис. 4) представлены в форме функции Кубелки-Мунка, которую можно считать прямо пропорциональной поглощению, пренебрегая наличием сильного рассеяния или пропускания света образцами. Оба спектра содержат широкую полосу поглощения с максимумом при \sim 400 нм, которую можно отнести к полосе с переносом заряда $O^{2-} \rightarrow Cu^{2+}$ [29] для позиций Cu²⁺ в октаэдрическом кислородном окружении перовскита и поглощению самого перовскита. В спектре $Ba_4Y_2CuMoO_{11}$ (рис. 4, спектр 1) дополнительно наблюдается малоинтенсивная уширенная полоса в диапазоне 500-650 нм, которую можно отнести к поглощению позициями Cu²⁺ в плоскоквадратном кислородном окружении ВаСиО, [30]. В спектре $Ba_5Y_2CuMoTiO_{14}$ (рис. 4, спектр 2) дополнительных полос Cu^{2+} для других типов окружения не наблюлается.

ЗАКЛЮЧЕНИЕ

Методом сжигания геля впервые получены кубические твердые растворы номинальных составов $Ba_4Y_2CuMoO_{11}$ и $Ba_5Y_2CuMoTiO_{14}$. Установлено, что варьирование соотношений Ba:Y:Cu:Mo:Ti в системе $Ba_2Y_2O_5-BaCuO_2-BaMoO_4-BaTiO_3$ способно предотвратить полиморфный переход $F\overline{4}3m \leftrightarrow Fm3m$ в твердом растворе. Оптическое поглощение $Ba_5Y_2CuMoTiO_{14}$ указывает на наличие Cu^{2+} только в октаэдрическом кислородном окружении, характерном для перовскитов.

БЛАГОДАРНОСТЬ

Исследование проводили с использованием оборудования ЦКП ФМИ ИОНХ РАН.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Минобрнауки России в рамках государственного залания ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Garcia-Ruiz A., Bokhimi X. // J. Mater. Res. 1992.
 V. 7. № 1. P. 24.
 https://doi.org/10.1557/JMR.1992.0024
- 2. *Bryntse I.* // Acta Chem. Scand. 1990. V. 44. P. 855. https://doi.org/10.3891/acta.chem.scand.44-0855
- 3. *Кольцова Т.Н.* // Инженерная физика. 2003. № 1. С. 9.
- 4. *Кольцова Т.Н.* // Неорган. материалы. 2004. Т. 40. № 6. С. 751.
- 5. *Bokhimi X., Morales A., Garcia-Ruiz A.* // Powder Diffraction. 1996. V. 11. № 1. P. 42. https://doi.org/10.1017/S0885715600008903
- 6. *Нипан Г.Д., Смирнова М.Е., Никифорова Г.Е.* // Неорган. материалы. 2019. Т. 55. № 9. С. 989. https://doi.org/10.1134/S0002337X19090100
- 7. *Gu L.-N., Li R.-K., Chen Z.-Y. et al.* // Chinese J. Low. Temp. Phys. 2000. V. 22. № 1. P. 77.
- 8. Ferguson G., Trotter J. Structure Reports for 1990: Metals and Inorganic Sections. Springer Science & Business Media, 2013. 339 p.
- Bremer M., Langbein H. // Eur. J. Solid State Inorg. Chem. 1996. V. 33. № 11. P. 1173.
- 10. *Yaron U., Kowal D., Felner I. et al.* // Physica C. 1990. V. 168. № 5–6. P. 546. https://doi.org/10.1016/0921-4534(90)90075-P
- 11. *Kitahama K., Hori Y., Kawai T. et al.* // Jpn. J. Appl. Phys. 1991. V. 30. № 5A. P. L809. https://doi.org/10.1143/JJAP. 30.L809
- 12. *Bokhimi X.* // Physica C. 1991. V. 175. № 1–2. P. 119. https://doi.org/10.1016/0921-4534(91)90242-Q
- 13. *Marsumoto Y., Irie F.* // Jpn. J. Appl. Phys. 1990. V. 29. № 3A. P. L416. https://doi.org/10.1143/JJAP. 29.L416
- Marsumoto Y., Mori M., Yasuda T. // Physica B. 1990.
 V. 165–166. Part 2. P. 1691. https://doi.org/10.1016/S0921-4526(09)80431-6

- Bokhimi X., Garcia-Ruiz A. // Mater. Res. Soc. Symp. Proc. 1989. V. 169. P. 233. https://doi.org/10.1557/PROC-169-233
- 16. *Gupta S. //* Ferroelectric Materials for Energy Harvesting and Storage. 2021. P. 1. https://doi.org/10.1016/B978-0-08-102802-5.00001-7
- 17. *Кузьминов Ю.С.*, *Осико В.В.*, *Прохоров А.М.* // Квантовая электроника. 1980. Т. 7. № 8. С. 1621.
- 18. *Леманов В.В., Смирнова Е.П., Зайцева Н.П.* // Физика твердого тела. 2009. Т. 51. № 8. С. 1590.
- 19. Смоленский Г.А., Боков В.А., Исупов В.А. и др. Физика сегнетоэлектрических явлений. 1985. Л.: Наука, 396 с.
- 20. *Акбашев А.Р., Кауль А.Р.* // Успехи химии. 2011. T. 80. № 12. C. 1211. https://doi.org/10.1070/RC2011v080n12ABEH004239
- 21. *Кравченко В.С.* // Успехи химии. 2008. Т. 77. № 6. С. 585. https://doi.org/10.1070/RC2008v077n06ABEH003756
- 22. Истомин С.Я., Лысков Н.В., Мазо Г.Н., Антипов Е.В. // Успехи химии. 2021. Т. 90. № 6. С. 644. https://doi.org/10.1070/RCR4979

- 23. *Смирнова М.Н., Копьева М.А., Нипан Г.Д. и др. //* Журн. неорган. химии. 2023. Т. 68. № 6. С. 746. https://doi.org/10.31857/S0044457X2260236X
- 24. *Смирнова М.Н., Копьева М.А., Нипан Г.Д. и др. //* Журн. неорган. химии. 2022. Т. 67. № 7. С. 925. https://doi.org/10.1134/s0036023622070221
- 25. Фомичев В.В., Полозникова М.Э., Кондратов О.И. // Успехи химии. 1992. Т. 61. № 9. С. 1601.
- 26. *Abdel Aal A.*, *Hammad T.R.*, *Zawrah M. et al.* // Acta Phys. Polonica A. 2014. V. 126. № 6. P. 1318. https://doi.org/10.12693/APhysPolA.126.1318
- 27. *Phuruangrat A., Kuntalue B., Thongtem T. et al.* // Mater. Sci.-Poland. 2015. V. 33. № 3. P. 537. https://doi.org/10.1515/msp-2015-0093
- 28. *Vetrivel V., Rajendran K., Kalaselvi V. //* Int. J. Chem. Tech. Research. 2015. V. 7. № 3. P. 1090.
- 29. *Buvaneswari G., Aswathy V., Rajakumari R.* // Dyes Pigments. 2015. V. 123. P. 413. https://doi.org/10.1016/j.dyepig.2015.08.024
- 30. *Paulus E.F., Miehe G., Fuess H. et al.* // J. Solid State Chem. 1991. V. 90. № 1. P. 17. https://doi.org/10.1016/0022-4596(91)90166-F

POLYCATION PEROVSKITES IN THE SYSTEM Ba,Y,O₅-BaCuO,-BaMoO₄-BaTiO₃

M. N. Smirnova^a, *, M. A. Kopeva^a, G. D. Nipan^a, G. E. Nikiforova^a, A. D. Yapryntsev^a, A. A. Arkhipenko^a

^aKurnakov Institute of general and inorganic chemistry of the Russian Academy of Sciences, Moscow, 119991 Russia

*e-mail: smirnova_macha1989@mail.ru

To maintain the single-phase nature of the cubic solid solution $Ba_2(Y,Cu,Mo)_2O_6$, which is prone to polymorphism, titanium oxide was used. As a result of the synthesis by burning the gel, annealing at $1000^{\circ}C$ and subsequent cooling in an inertial thermal mode, the cubic modification F43m without an admixture of perovskite Fm3m for the composition $Ba_5Y_2CuMoTiO_{14}$ was obtained for the first time. A comparative study of samples $Ba_4Y_2CuMoO_{11}$ and $Ba_5Y_2CuMoTiO_{14}$ was carried out using the methods of X-ray phase analysis, X-ray fluorescence spectrometry, infrared spectroscopy and diffuse reflectance spectroscopy.

Keywords: multicomponent oxide systems, phase states