= СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ =

УЛК 546.6

НИЗКОТЕМПЕРАТУРНЫЙ СИНТЕЗ ВЫСОКОДИСПЕРСНОГО АЛЮМИНАТА БАРИЯ

© 2024 г. Л. О. Козлова^a, *, И. Л. Ворошилов^a, Ю. В. Иони^a, Ю. Д. Ивакин^c, И. В. Козерожец^a, М. Г. Васильев^a

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия

^b Институт тонких химических технологий имени М.В. Ломоносова МИРЭА — Российский Технологический Университет, пр-т Вернадского, 86, Москва, 119571 Россия

^c Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия *e-mail: kozzllova167@gmail.com

> Поступила в редакцию 14.06.2024 г. После доработки 30.07.2024 г. Принята к публикации 31.07.2024 г.

Разработан новый подход к низкотемпературному синтезу высокодисперсного алюмината бария вермикулярной морфологии с заданными характеристиками (насыпная плотность от $0.015~\rm r/cm^3$, средний размер частиц в диапазоне $15-87~\rm hm$). Методика синтеза включает последовательную термическую обработку до 1200° С концентрированного водного раствора $BaCl_2$, $Al(NO_3)_3$, $(NH_2)_2CO~\rm u~C_6H_8O_7$. С помощью физико-химических методов исследования: ИК-спектроскопии, рентгенофазового анализа, просвечивающей и сканирующей электронной микроскопии, а также химического анализа охарактеризованы основные этапы синтеза $BaAl_2O_4$.

 $\mathit{Ключевые\ c.noвa:}$ наноразмерный $BaAl_2O_4$, термическая обработка, насыпная плотность, вермикулярная морфология

DOI: 10.31857/S0044457X24110026, EDN: JMRYDA

ВВЕДЕНИЕ

Наночастицы являются материалом для современных технологий, поэтому синтез высокодисперсных порошков с заданными воспроизводимыми свойствами является актуальной задачей [1]. Известно, что алюминаты щелочноземельных элементов имеют широкое применение в строительной отрасли (наполнители в полимеры, панели) [2], металлургической промышленности (добавки в сплавы металлов) [3], керамической промышленности (огнеупорные материалы) [4] и др. Также наноалюминаты Ва, Са, Sr используют в качестве люминофоров, поскольку при допировании редкоземельными элементами они обладают хорошими люминесцентными свойствами в видимой области спектра с длительным временем послесвечения [5], химической стабильностью и долгим сроком службы [6].

Наиболее широко применяется гексаалюминат бария (BaO \cdot 6Al₂O₃), обладающий хоро-

шей ионной проводимостью и высокой химической, термической и физической стабильностью, что препятствует агломерации частиц. Благодаря своим свойствам гексаалюминат бария является прекрасным материалом для создания высокотемпературной керамики (1800°C) [7]. За счет наличия кристаллов удлиненной формы со слоистой структурой алюминат бария способен повышать вязкость разрушения композитов с матрицей Al_2O_3 , а также образовывать большое количество сложных нестехиометрических алюминатов Ba—O—Al [8].

В литературе описаны различные методы получения алюминатов бария: методы сжигания [9], золь-гель метод [10], гидротермальный метод [11], микроэмульсионный синтез [12], а также метод осаждения [13]. Однако существующие методы и технологии синтеза алюмината бария не позволяют получать материалы с высокой степенью чистоты вследствие загрязнения органическими продуктами разложения, что влияет на се-

бестоимость конечного продукта [2, 14—22]. Главной задачей новых подходов к синтезу наноразмерных материалов является упрощение сложных дорогостоящих и неэффективных этапов без ухудшения свойств конечного продукта. Особый интерес в настоящее время представляет синтез соединений алюминатов бария вермикулярной морфологии, которая представляет собой округлую червеобразную форму в наноразмерном диапазоне отдельных звеньев и является перспективным конструкционным материалом.

В предыдущих работах авторского коллектива [20, 22, 23] описан способ низкотемпературного синтеза смешанных оксидов Sr и Ca, который заключается в последовательной многостадийной термической обработке концентрированного водно-углеводного раствора солей алюминия и щелочноземельных элементов. Согласно этим работам, подбор концентраций прекурсоров и условий термической обработки позволяет контролировать насыпную плотность, размер и форму частиц, а также содержание остаточного углерода в образцах.

Целью настоящей работы является определение оптимальных параметров низкотемпературного синтеза и исследование процесса фазообразования высокодисперсного алюмината бария с заданными и воспроизводимыми свойствами: формой и размером частиц, насыпной плотностью, дисперсностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез алюмината бария. Для получения алюмината бария применяли описанный ранее метод пиролиза концентрированного водно-углеводного раствора солей [2, 20, 22, 23].

В работе использовали $BaCl_2$ (ос. ч.), $Al(NO_3)_3 \cdot 9H_2O$ (ос. ч.), а также лимонную кислоту $C_6H_8O_7 \cdot H_2O$ (х. ч.) и мочевину $(NH_2)_2CO$ (х. ч.) в качестве хелатобразующего и полимеризующего агентов.

Общая схема синтеза алюмината бария $(BaAl_2O_4)$ представлена на рис. 1.

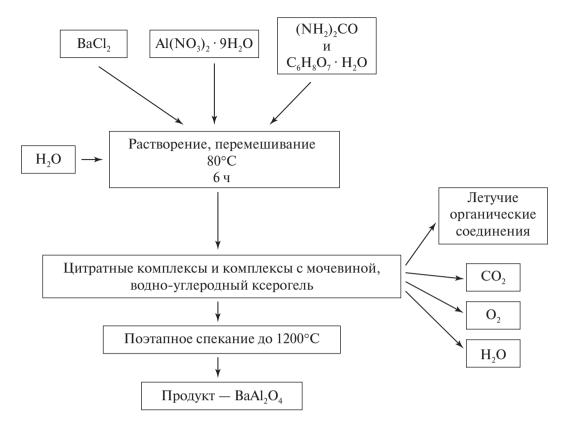
Растворы $15 \, \Gamma \, Al(NO_3)_3 \cdot 9H_2O$ в $10 \, \text{мл} \, H_2O$, $36 \, \Gamma \, (NH_2)_2CO$ в $40 \, \text{мл} \, H_2O$, $4.8 \, \Gamma \, BaCl_2$ в $15 \, \text{мл} \, H_2O$ и $10.5 \, \Gamma \, C_6H_8O_7 \cdot H_2O$ в $8 \, \text{мл} \, H_2O$ смешивали и упаривали при $80^{\circ}C$ в течение $6 \, \text{ч}$ до появления концентрированного водно-углеродного ксерогеля, который подвергали термической обработке до $1200^{\circ}C$ на воздухе в печи СНОЛ со скоростью

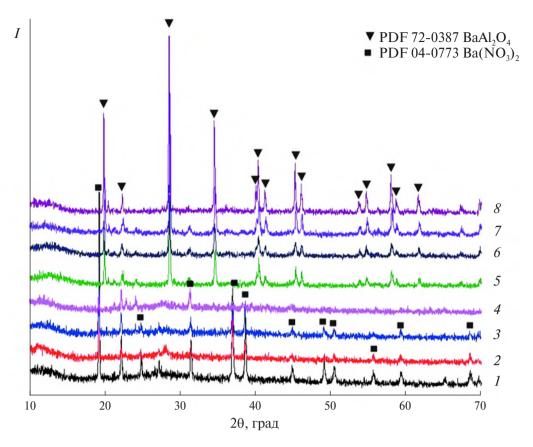
нагрева 10 град/мин в температурном интервале 20-1200°C.

Исследование образцов. Фазовый состав полученных образцов определяли с помощью дифрактометра Bruker D8 Advance в режиме отражения (Cu K_{α} -излучение, 40 кB, 40 мA, λ = = 1.54056 Å) с шагом сканирования 4 град/мин. Морфологию наночастиц исследовали на сканирующем электронном микроскопе (СЭМ) Carl Zeiss Supra 40. Образцы алюмината бария размещали на держателе, который помещали внутрь камеры с вакуумом ~10-6 мбар, при получении изображений во вторичных рассеянных электронах ускоряющее напряжение составляло 1-10 кВ, апертура 30 мкм. Просвечивающую электронную микроскопию (ПЭМ) проводили на приборе JEOL Jem-1011 при ускоряющем напряжении 80 кВ. Образцы наносили на медные сетки, покрытые углеродной пленкой, путем распыления водной суспензии ультразвуком, затем помещали внутрь камеры с вакуумом ~6-10 мбар. ИК-спектры поглощения образцов регистрировали на ИК-Фурье-спектрометре Bruker Alpha с приставкой Platinum ATR в диапазоне $400-4000 \text{ см}^{-1}$, шаг сканирования 4 см^{-1} . Анализ полученных ИК-спектров проводили на основании литературных и справочных данных [24-26]. Содержание С, Н, N в мас. % в образцах исследовали на анализаторе EA1108 CarloEbra Instruments (Италия). Горение образцов, полученных при разных температурах обжига, обеспечивали добавлением в капсулу Со₂О₃. Образец массой до 1 мг сжигали в автоматическом режиме в реакционной трубке анализатора при t == 980°C с импульсной подачей кислорода. Полный анализ продуктов сгорания проводили с помощью детектора по теплопроводности с компьютерной обработкой полученных хроматографических данных. Насыпную плотность определяли пикнометрическим методом с погрешностью измерения 10%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно данным [20, 23], лимонная кислота $C_6H_8O_7 \cdot H_2O$ и мочевина $(NH_2)_2CO$ обладают хелатообразующими и полимеризующими свойствами, поэтому в их присутствии в кипящем водном растворе солей $BaCl_2$ и $Al(NO_3)_3$ происходит образование аквакомплексов. Последующее термическое разложение аквакомплексов




Рис. 1. Схема разработанного низкотемпературного синтеза алюмината бария (BaAl₂O₄).

при 350°C приводит к формированию летучих органических соединений, таких как фураны (НМГ), муравьиная, гликолевая, левулиновая, уксусная, молочная кислоты, и нелетучего твердого остатка – солей гуминовых кислот (рис. 1). Согласно предложенному в работе [20] описанию процесса, при вспенивании реакционной массы в стенках возникающей ячеистой структуры оказывается пространство, в котором формируются оксидные частицы. Толщина стенок ячеистой структуры определяет диапазон среднего размера оксидных частиц, что указывает на актуальность проблемы подбора оптимальных параметров низкотемпературного синтеза и исследования процесса фазообразования высокодисперсного алюмината бария с заданными и воспроизводимыми свойствами.

На рис. 2 представлено изменение фазового состава образцов, полученных после термической обработки углеродсодержащего ксерогеля на основе солей Ba²⁺ и Al³⁺, при температурах 200—1200°С. На начальных этапах термической обработки до 400°С (рис. 2—4) в образце присутствуют рентгеноаморфная составляющая и кристаллический нитрат бария, что указывает

на большее сродство NO_3^- к Ba^{2+} , чем к Al^{3+} . После обработки при 900° С и выше рефлексы нитрата бария на дифрактограммах не проявляются, а наблюдаемые рефлексы соответствуют образовавшейся фазе $BaAl_2O_4$ (PDF 72-0387). Следует отметить, что традиционный высокотемпературный синтез $BaAl_2O_4$ происходит при температурах >1100°С [27].

Согласно табл. 1, параметры элементарной ячейки синтезированного высокодисперсного порошка ВаАІ2О4 сопоставимы со стандартом BaAl₂O₄ (PDF 72-0387). Данные РФА подтверждаются результатами ИК-спектроскопии (рис. 3). В образцах, полученных после термической обработки до 400°C, присутствует широкая полоса поглощения в диапазоне $1100-1800 \text{ см}^{-1}$, отвечающая колебаниям органической составляющей гуминовых кислот (рис. 3, кривые 1, 2). Термическая обработка при 900°C приводит к появлению интенсивных полос поглощения в области 420-900 см⁻¹ (рис. 3, кривые 3, 4), соответствующих валентным колебаниям связей Al-O, Ba-O и Ba-O-Al. Формирование в этой области более тонкой структуры полос поглощения около 420, 630, 800 и 840 см $^{-1}$ при

Рис. 2. Дифрактограммы образцов, полученных после термической обработки углеродсодержащего ксерогеля на основе солей Ba^{2+} и Al^{3+} при 200 (1), 230 (2), 330 (3), 400 (4), 900 (5), 1000 (6), 1100 (7), 1200°C (8).

Таблица 1. Свойства синтезированного BaAl₂O₄ в сравнении с эталонным BaAl₂O₄ (PDF 72-0387)

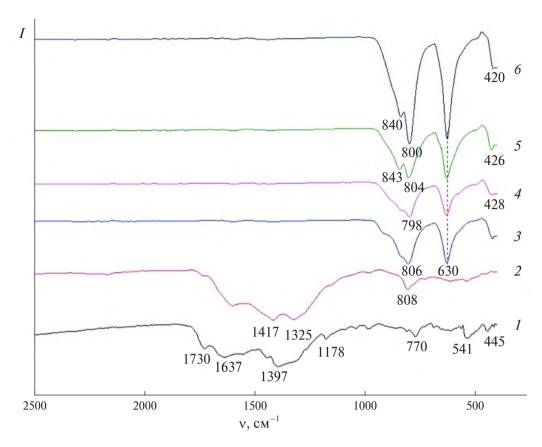
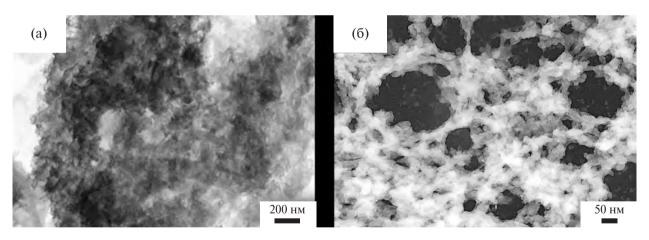
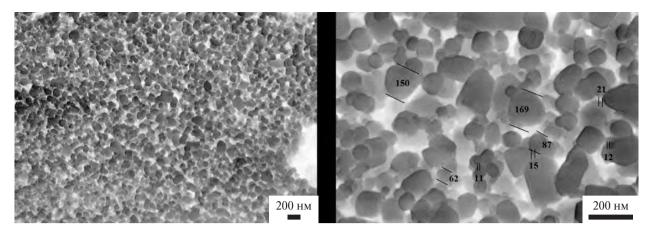

Вещество	Пр. гр.	Сингония	Параметры элементарной ячейки		
Полученный BaAl ₂ O ₄	P6 ₃ 22	Гексагональная	a = 0.521 нм, $c = 0.876$ нм, $V = 20.641$ нм ³		
PDF 72-0387 BaAl ₂ O ₄	P6 ₃ 22	Гексагональная	a = 0.5218 нм, $c = 0.8781$ нм, $V = 20.705$ нм ³		

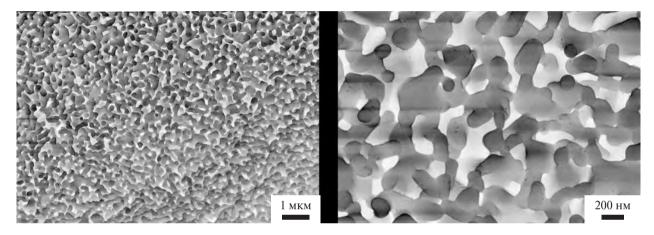
Таблица 2. Анализ содержания C, H, N на разных стадиях термической обработки углеродсодержащего ксерогеля на основе солей Ba^{2+} и Al^{3+} , мас. %. Погрешность измерения $\pm 10\%$


Элемент	t, °C								
	200	330	400	500	600	700	900		
С	14.13	9.13	2.14	0.11	0.03	Не опр.	Не опр.		
Н	2.19	0.73	0.57	0.13	0.09	0.05	Не опр.		
N	27.91	18.72	9.35	3.12	Не опр.	Не опр.	Не опр.		

температурах термообработки $1100-1200^{\circ}$ С (рис. 3, кривые 5, 6) свидетельствует о совершенствовании структуры образовавшегося $BaAl_2O_4$.

Анализ содержания С, H, N (в мас. %) на разных стадиях термической обработки углеродсодержащего ксерогеля на основе солей Ba^{2+} и АІ³⁺ (табл. 2) показал уменьшение содержания С, Н и N по мере увеличения температуры обработки. Сохранение в структуре Н в количестве 0.05 мас. % при прогреве на 700°С обусловлено наличием небольшого количества поверхностно связанной воды в структуре образца. Согласно представленным результатам (табл. 2, рис. 1—4),


Рис. 3. ИК-спектры поглощения образцов, полученных на разных стадиях термической обработки углеродсодержащего ксерогеля на основе солей Ba^{2+} и Al^{3+} при 200 (1), 400 (2), 900 (3), 1000 (4), 1100 (5) и 1200°C (6).


Рис. 4. ПЭМ- (а) и СЭМ-изображения (б) образца, полученного после термической обработки углеродсодержащего ксерогеля на основе солей Ba^{2+} и Al^{3+} при 400° С.

полное разложение $Ba(NO_3)_2$ наблюдается при температуре $\sim 600^{\circ}$ C, что согласуется с данными [14].

На рис. 4 представлены СЭМ- и ПЭМизображения образца, полученного после термической обработки углеродсодержащего ксерогеля на основе солей Ва²⁺ и Аl³⁺ при температуре 400°С. Как видно из микрофотографий, переходная форма представляет ячеистую структуру из крупных блоков с размерами от 500 нм, которые образованы агломератами наночастиц с размерами от 15 нм. Насыпная плотность переходной формы составляет 0.015 г/см³. Увеличение температуры термической обработки до 900°С приводит к полному выгоранию С, Н, N (табл. 2) и формированию изометрических кри-

Рис. 5. СЭМ-изображения образца, полученного после термической обработки углеродсодержащего ксерогеля на основе солей Ba^{2+} и Al^{3+} при $900^{\circ}C$. Размеры некоторых кристаллов указаны в нм.

Рис. 6. СЭМ-изображения образца, полученного после термической обработки углеродсодержащего ксерогеля на основе солей Ba^{2+} и Al^{3+} при температуре 1200° С.

сталлов $BaAl_2O_4$ (рис. 1-5) со средним размером частиц 87 нм и насыпной плотностью $0.054 \, \text{г/см}^3$. Последующий прогрев до 1200°C (рис. 6) приводит к образованию вермикулярной структуры образца вследствие активации твердофазной подвижности решетки и начала процессов спекания аналогично тому, как это происходит при термообработке оксида алюминия [28].

В современном материаловедении одним из важнейших направлений является создание экономически обоснованных композитных материалов, исследование их свойств и разработка на их основе новых технологий и устройств. Введение $BaAl_2O_4$ с контролируемыми свойствами как добавку к керамическим материалам позволяет получать элементы вакуумных систем для снятия статического заряда с внутренних поверхностей камер, изготовления терморегулирующих покрытий, применяемых при изготовлении кос-

мических аппаратов, импульсных ламп [7, 9–12] и др.

ЗАКЛЮЧЕНИЕ

Установлено, что методом пиролиза водноуглеводного ксерогеля при 900° С синтезирован $BaAl_2O_4$ со средним размером кристаллов 87 нм и насыпной плотностью $0.054 \, \text{г/см}^3$. Повышение температуры термообработки до $1100-1200^{\circ}$ С приводит к совершенствованию его кристаллической структуры. Термообработка при 1200° С сопровождается спеканием изометрических кристаллов с изменением их морфологии на вермикулярную.

БЛАГОДАРНОСТЬ

Исследования методом РФА проводили с использованием оборудования ЦКП ФМИ ИОНХ РАН; для проведения СЭМ использовали обору-

дование Учебно-методического центра литографии и микроскопии МГУ им. М. В. Ломоносова.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках госзадания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wang Z., Wang Y., Subramanian M.A. et al. // Prog. Solid State Chem. 2022. V. 68. № 100379. https://doi.org/10.1016/j.progsolidstchem.2022. 100379
- 2. *Reza Rezaie M., Reza Rezaie H., Naghizadeh R. //* Ceram. Int. 2009. V. 35. P. 2235. https://doi.org/10.1016/j.ceramint.2008.12.009
- 3. *Grigorovich K.V.*, *Demin K.Y.*, *Arsenkin A.M. et al.* // Russ. Metall. 2011. V. 9. P. 912. https://doi.org/10.1134/S0036029511090126
- Pollmann H. // Rev. Mineral. Geochem. 2012. V. 74.
 P. 1. https://doi.org/10.2138/rmg.2012.74.1
- Djuri ic B., Pickering S., Mcgarry D. // J. Mater. Sci. 1999. V. 34. P. 2685. https://doi.org/10.1023/a:1004625405083
- 6. *Chen G.* // J. Alloys Compd. 2006. V. 416. № 1–2. P. 279.
 - https://doi.org/10.1016/j.jallcom.2005.08.059
- 7. *Seyidoglu T.* // Open Ceram. 2023. V. 16. P. 100491. https://doi.org/10.1016/j.oceram.2023.100491
- 8. *Mohapatra M., Pattanaik D.M., Anand S. et al.* // Ceram. Int. 2007. V. 33. № 4. P. 531. https://doi.org/10.1016/j.ceramint.2005.10.019
- 9. *Singh V., Natarajan V., Kim D.-K.* // Radiat. Eff. Defects Solids. 2008. V. 163. № 3. P. 199. https://doi.org/10.1080/10420150701365854
- Yue Z., Zhong M., Ma H. et al. // J. Shanghai University. 2008. V. 12. P. 216. https://doi.org/10.1007/s11741-008-0306-1
- Zhuzhgov A.V., Kruglyakov V.Y., Suprun E.A. et al. // Russ. J. Appl. Chem. 2022. V. 95. P. 512. https://doi.org/10.1134/S1070427222040061
- 12. *Torrez-Herrera J.J., Korili S.A., Gil A.* // Catal. Rev. 2022. V. 64. № 3. P. 592. https://doi.org/10.1080/01614940.2020.1831756

- 13. Rojas-Hernandez R.E., Rubio-Marcos F., Rodriguez M.A. et al. // Renew. Sust. Energ. Rev. 2018. V. 81. P. 2759. https://doi.org/10.1016/j.rser.2017.06.081
- 14. *Su Y., Chen C., Wang J. et al.* // Ceram. Int. 2024. V. 50. № 11. P. 18169. https://doi.org/10.1016/j.ceramint.2024.02.300
- Efimov A.A., Lizunova A.A., Volkov I.A. et al. // J. Phys.: Conf. Ser. 2016. V. 741. P. 012035. https://doi.org/10.1088/1742-6596/741/1/012035
- Malwal D., Packirisamy G. // Synthesis of Inorganic Nanomaterials. 2018. P. 255. https://doi.org/10.1016/B978-0-08-101975-7.00010-5
- 17. *Kumar A., Dixit C.K.* // Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. 2017. P. 43. https://doi.org/10.1016/B978-0-08-100557-6.00003-1
- 18. Benourdja S., Kaynar Umit H., Ayvacikli M. et al. // Appl. Radiat. Isot. 2018. V. 139. P. 34. https://doi.org/10.1016/j.apradiso.2018.04.023
- 19. *Lephoto M.A.*, *Ntwaeaborwa O.M.*, *Pitale S.S. et al.* // Phys. B: Condens. Matter. 2012. V. 407. № 10. P. 1603. https://doi.org/10.1016/j.physb.2011.09.096
- 20. *Kozerozhets I., Semenov E., Kozlova L. et al.* // Mater. Chem. Phys. 2023. V. 309. P. 128387. https://doi.org/10.1016/j.matchemphys.2023.128387
- 21. *Ianos R., Lazau R., Boruntea R.C.* // Ceram. Int. 2015. V. 41. № 2. P. 3186. https://doi.org/10.1016/j.ceramint.2014.10.171
- 22. *Kozerozhets I.V., Semenov E.A., Avdeeva V.V. et al.* // Ceram. Int. 2023. V. 49. № 18. P. 30381. https://doi.org/10.1016/j.ceramint.2023.06.300
- 23. *Kozlova L.O., Ioni Yu.V., Son A.G. et al.* // Russ. J. Inorg. Chem. 2023. V.68. P. 1744. https://doi.org/10.1134/S0036023623602374
- 24. *Perier-Camby L., Thomas G.* // Solid State Ionics. 1993. V. 63–65. P. 128. https://doi.org/10.1016/0167-2738(93)90095-K
- 25. *Panasyuk G.P., Luchkov I.V., Kozerozhets I.V. et al.* // Inorg. Mater. 2013. V. 49. P. 899. https://doi.org/10.1134/S0020168513090136
- 26. *Panasyuk G.P., Azarova L.A., Belan V.N. et al.* // Theor. Found. Chem. Eng. 2018. V. 52. P. 879. https://doi.org/10.1134/S0040579518050202
- 27. *Селюнина Л.А.*, *Мишенина Л.Н.*, *Кузнецова Е.В.* и др. // Изв. ТПУ. 2014. Т. 324. № 3. С. 67.
- 28. *Wang L., Hu J., Cheng Y. et al.* // Scripta Mater. 2015. V. 107. P. 59. https://doi.org/10.1016/j.scriptamat.2015.05.020

LOW-TEMPERATURE SYNTHESIS OF HIGHLY DISPERSED BARIUM ALUMINATE

L. O. Kozlova^{a,*}, I. L. Voroshilov ^a, Yu. V. Ioni^{a, b}, Yu. D. Ivakin^c, I. V. Kozerozhets^a, and M. G. Vasiliev^a

^a Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia

^bLomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow, 119571 Russia

^cMoscow State University, Moscow, 119991 Russia *e-mail: kozzllova167@gmail.com

A new approach has been developed for the low-temperature synthesis of highly dispersed barium aluminate of vermicular morphology with specified characteristics (bulk density from $0.015\,\mathrm{g/cm^3}$, average particle size in the range of $15-87\,\mathrm{nm}$). The synthesis technique includes sequential heat treatment up to $1200^\circ\mathrm{C}$ of a concentrated aqueous solution of $\mathrm{BaCl_2}$, $\mathrm{Al(NO_3)_3}$, $\mathrm{(NH_2)_2CO}$ and $\mathrm{C_6H_8O_7}$. Using physico-chemical research methods: IR spectroscopy, X-ray phase analysis, transmission and scanning electron microscopy, as well as chemical analysis, the main stages of the synthesis of $\mathrm{BaAl_2O_4}$ are characterized.

Keywords: nanoscale BaAl₂O₄, heat treatment, bulk density, vermicular morphology