—— ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ **——**

УДК 544.31

СИНТЕЗ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ТИТАНАТА ЭРБИЯ ПРИ 2—1900 К

© 2024 г. А. В. Гуськов^а, П. Г. Гагарин^а, В. Н. Гуськов^{а, *}, К. С. Гавричев^а

^а Институт общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: guskov@igic.ras.ru

Поступила в редакцию 04.06.2024 г. После доработки 29.07.2024 г. Принята к публикации 30.07.2024 г.

Синтез титаната эрбия выполнен совместным осаждением гидроксидов эрбия и титана с последующим высокотемпературным отжигом. Определены температурные интервалы последовательности формирования кристаллической структуры типа пирохлора. Методами релаксационной, адиабатической и дифференциальной сканирующей калориметрии выполнены измерения изобарной теплоемкости титаната эрбия в интервале температур 2—1870 К. На основе сглаженных значений теплоемкости рассчитаны энтропия и приращение энтальпии в области 0—1900 К, оценен вклад аномалии Шоттки при температурах до 300 К и рассчитана энергия Гиббса образования титаната эрбия при 298.15 К.

Ключевые слова: титанат эрбия, термодинамические функции, аномалия Шоттки

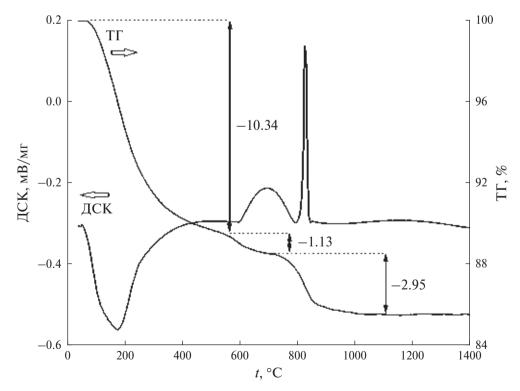
DOI: 10.31857/S0044457X24110083, EDN: JKWZNG

ВВЕДЕНИЕ

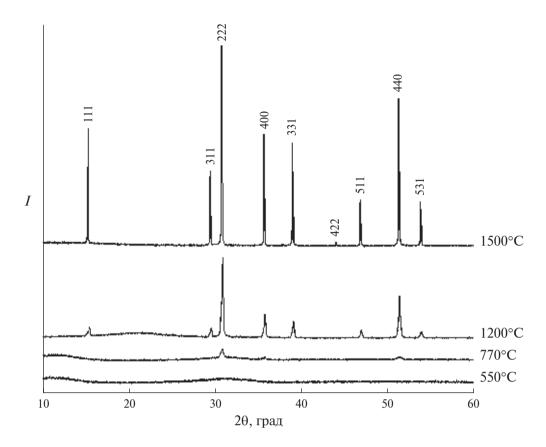
Титанат эрбия $Er_2Ti_2O_7$ — соединение структурного типа пирохлора с температурой плавления $1780 \pm 30^{\circ}$ C [1]. Наряду с другими титанатами редкоземельных элементов (РЗЭ) впервые был получен высокотемпературным спеканием стехиометрической смеси оксидов эрбия и титана в работе [2]. Позже была показана возможность получения титанатов лантаноидов методами соосаждения гидроксидов с последующим прокаливанием или термическим разложением азотнокислых солей [3, 4]. Монокристаллический титанат эрбия был получен в работах [5, 6] с помощью зонной плавки, в [7] – прямым плавлением, в [8] — из раствора-расплава оксидов эрбия и титана в дифториде свинца. Синтез титаната эрбия проводили в основном с целью изучения магнитных свойств в области самых низких температур, так как титанаты РЗЭ относятся к антиферромагнитным материалам с высокой геометрической фрустрацией. По результатам измерения низкотемпературной теплоемкости [9] установлено, что магнитное превращение парамагнитного титаната эрбия с максимумом при температуре 1.25 К является антиферромагнитным и не приводит к образованию спиновых льда и жидкости [10], что подтверждено последующими магнитными, нейтронодифракционнымии расчетными исследованиями, а также измерением низкотемпературной теплоемкости [5, 6, 11–16]. Магнитный фазовый переход предлагается использовать для магнитного охлаждения адиабатическим размагничиванием в качестве альтернативы применению ³Не [17]. В работе [18] показано, что нанокристаллические (~70 нм) порошки Ег₂Ті₂О₇ могут работать в качестве электрохимических накопителей водорода, демонстрируя удовлетворительную электрохимическую обратимость и высокую емкость. В литературе особое внимание уделяется титанатам РЗЭ как материалам для иммобилизации радиоактивных отходов [19, 20], в том числе многокомпонентным (высокоэнтропийным) титанатам [21–23]. Сравнительное изучение механического воздействия и радиационного облучения тяжелыми ионами титаната эрбия выполнено в работе [24] и показано, что измельченный образец имеет менее глубокую деструкцию, несмотря на схожесть повреждений. Устойчивость вещества к радиационным повреждениям связывают с $T_{\rm c}$ – критической температурой аморфизации, выше которой процессы отжига (релаксации) преобладают над процессами повреждения, и кристалл больше не может быть аморфизован. Чем ниже $T_{\rm c}$ для материала, тем выше его устойчивость к радиационным повреждениям, поскольку отжиг удаляет домены повреждений при относительно низких температурах [25]. В этой же публикации показана прямая корреляция между энтальпиями образования титанатов и критической температурой аморфизации, что подтверждает необходимость детального изучения термодинамических свойств веществ как критерия их устойчивости. Впервые энтальпии образования титанатов РЗЭ определены расчетными методами в [26] и уточнены экспериментально калориметрическим методом растворения титанатов в расплаве молибдата натрия при 976 К в работе [25]. Энтальпия образования титаната эрбия из элементов составила $\Delta H_f^{\circ} = -3852.7 \pm 4.5 \text{ кДж/моль, из оксидов}$ $-\Delta H_{f-ox} = -79.6 \pm 3.9 \text{ кДж/моль. Теплоемкость}$ Er₂Ti₂O₇ в интервале температур 4.5-324 К измерена методом адиабатической калориметрии в работе [27], а в области 320-1000 К - с помощью дифференциальной сканирующей калориметрии [28]. Необходимо отметить, что полученные значения теплоемкости при пересекающейся температуре 320 К в этих двух исследованиях не согласуются между собой, а использованные в работе [27] образцы, по признанию авторов, содержали примесные фазы, что потребовало корректировки полученных результатов. В связи с этим представленные в работах [27, 28] данные по температурным зависимостям теплоемкости и рассчитанным функциям титаната эрбия нуждаются в верификации. Поэтому целью настоящей работы являлись синтез титаната эрбия, измерение его теплоемкости и расчет термодинамических функций в диапазоне температур 2–1870 К.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных веществ для синтеза титаната эрбия $Er_2Ti_2O_7$ использовали сульфат титанила $TiOSO_4 \cdot xH_2O$ (99.99 мас. %, Sigma-Aldrich), полуторный оксид эрбия Er_2O_3 (99.998 мас. %, LANHIT), соляную кислоту HCl (35—38 мас. %, ос. ч.) и раствор аммиака NH_4OH (25—28 мас. %, OOO "Химмед"). Термический анализ методом ДСК/ТГ проводили на установке синхронного термического анализа STA 449F1 Jupiter (Netzsch-Geratebau GmbH), рентгенофа-


зовый анализ – на дифрактометре Bruker D8 Advance (Cu K_{α} , $\lambda = 1.5418$ Å, Ni-фильтр, Lynxeyeдетектор, геометрия на отражение) в интервале углов $2\theta = 10^{\circ} - 80^{\circ}$. Морфологию образцов исследовали с помощью электронного микроскопа TescanAmber с неиммерсионной колонной BrightBeam. Ускоряющее напряжение составляло от 2 до 10 кВ. Измерения теплоемкости титаната эрбия в интервале температур 2-42 К проводили методом релаксационной калориметрии на установке PPMS-9 (Quantum Design Inc. [29]) при охлаждении образца. По данным изготовителя, точность измерения теплоемкости методом релаксационной калориметрии составляет $\pm 5\%$. Образцы для измерения теплоемкости этим методом готовили в виде таблеток (диаметр 3 мм, толщина ~1 мм) прессованием из порошкообразного титаната эрбия с последующим отжигом при 1673 К в течение 4 ч. Теплоемкость Ег₂Ті₂О₇ измеряли методом адиабатической калориметрии в интервале температур 5-345 К на автоматической установке БКТ-3 с блоком Аксамит-9 (ИП Малышев). Измерение температуры образца проводили с помощью Fe-Rhтермометра сопротивления (шкала ITS-90). Проверка качества получаемых значений, выполненная по результатам измерения теплоемкости бензойной кислоты марки К-2, показала, что отклонение от данных [30] в области 10-50 К не превышает 2% и уменьшается при более высоких температурах (50-340 К) до 0.25%. В интервале температур 329-1869 К измерения теплоемкости проводили в дифференциальном сканирующем калориметре DSC 404 F1 Pegasus (Netzsch-Geratebau GmbH). Для определения теплоемкости использовали метод отношений с изотермическими сегментами (DIN ISO11357-4) в платинородиевых тиглях с крышкой в инертной атмосфере со скоростью нагревания 10 град/мин. Калибровка прибора выполнена по металлическим стандартам. Пределы допускаемых абсолютных погрешностей измерения температуры, удельной теплоты и удельной теплоемкости составляют до 3 К, до 3% и от 1 до 3.5% соответственно. Для проверки качества работы установки выполняли измерения теплоемкости стандартного образца монокристаллического сапфира. При расчете мольной теплоемкости использовали значение мольной массы М.м. $(Er_2Ti_2O_7) = 549.2478$ г/моль, вычисленное по данным [31].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ


Синтез. Анализ литературных данных показал, что оптимальным способом синтеза свободных от примесей и посторонних фаз хорошо закристаллизованных титанатов РЗЭ является метод обратного осаждения. Метод успешно использовали для синтеза цирконатов и гафнатов редкоземельных элементов [32, 33]. Для синтеза Er₂Ti₂O₇ сульфат титанила растворяли в воде, а оксид эрбия - в соляной кислоте. Моляльные концентрации металлов в растворах в пересчете на содержание оксидов определяли весовым методом. Для этого гидроксиды титана и эрбия осаждали водным раствором аммиака, осадки отделяли, сушили, прокаливали при температуре 1000°С и взвешивали. Для получения стехиометрического соотношения металлов в рабочем растворе смешивание рассчитанных количеств исходных растворов также проводили весовым методом. Преимущество использования моляльных концентраций состоит в том, что при прочих равных условиях взвешивание гораздо точнее измерения объема, причем значения моляльных концентраций не зависят от температуры. Приготовленный раствор по каплям при интенсивном перемешивании приливали к концентрированному раствору аммиака, взятому в избытке. Осадок отмывали, центрифугировали и высушивали при 90°С в течение 72 ч, затем проводили последовательный отжиг при 550, 770, 1200 и 1500°С со ступенчатыми выдержками образца при каждой температуре в течение 4 ч. Температуры ступеней отжига задавали на основании результатов ДСК/ТГ, полученных на установке синхронного термического анализа STA 449F1 Jupiter (рис. 1).

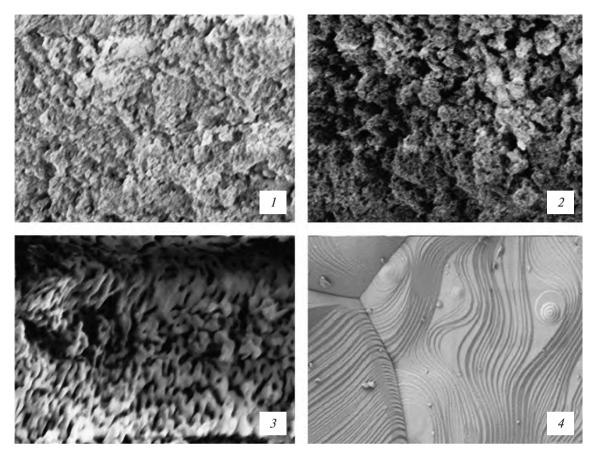
При нагревании высушенного прекурсора наблюдали эндотермический эффект в области $100-400^{\circ}$ С, соответствующий удалению 3.5 М H_2 О, и два экзотермических процесса в интервале $600-800^{\circ}$ С с удалением \sim 0.5 М H_2 О и максимумом при \sim 830°С, сопровождаемые потерей еще 1 М H_2 О. Эти экзотермические процессы отвечают за образование наноразмерного титаната эрбия. Наличие двух эффектов (при 720 и 800°С) при образовании титаната тулия отмечалось в работе [34]. Общая потеря массы при нагревании до 1400° С составила \sim 14.5%, что эквивалентно \sim 5 М H_2 О на каждый моль $Er_2Ti_2O_7$.

Дифракционные исследования кристаллической структуры по мере температурной обработки образца титаната эрбия (рис. 2) показали аморфное состояние после отжига при 550° С (кривая I) с последующим процессом формирования наноразмерной структуры (кривая 2),

Рис. 1. ДСК/ТГ высушенного образца прекурсора $Er_2Ti_2O_7$.

Рис. 2. Рентгеновская дифракция образцов прекурсора $\mathrm{Er_2Ti_2O_7}$, отожженных при 550 (*1*), 770 (*2*), 1200 (*3*) и 1500°C (*4*); $\mathrm{Cu}K_\alpha$ -излучение, $\lambda = 1.5418~\mathrm{\mathring{A}}$.

по-видимому, близкой к структуре дефектного флюорита. Отжиг при температуре 1200°С сопровождался преобразованием структуры флюорита в слабо закристаллизованный пирохлор (кривая 3), оценка размеров кристаллитов по Дебаю—Шереру показала размер ~30 нм. Слабая кристаллизация при 1200°С наблюдается также на дифрактограмме образца титаната эрбия в работе [27], использованного для измерения теплоемкости без учета влияния размерности образца на ее величину. Удовлетворительная закристаллизованность в настоящей работе получена при отжиге образца при температуре 1500°С (рис. 2, кривая 4).


Температурную последовательность формирования кристаллической структуры пирохлора можно отследить по микрофотографиям поверхности образца (рис. 3). Картирование поверхности образца показало равномерное распределение основных элементов (Ег, Ті и О), а энергодисперсионный анализ — отсутствие посторонних примесей в образцах, отожженных при 1200 и 1500°С, тогда как в образцах, ото-

жженных при 550° C, обнаружены следы хлора и серы, а при 770° C — незначительные следы серы.

В результате проведенного синтеза получен однофазный кристаллический образец $Er_2Ti_2O_7$ структурного типа Fd3m (пирохлор) с параметром кубической решетки a=10.076(5) Å, соответствующим среднему значению (10.0768 Å) из приведенных в табл. 1 литературных данных.

Термодинамические функции. Измерения теплоемкости титаната эрбия выполнены методами релаксационной (2–40 K), адиабатической (5–345 K) и дифференциальной сканирующей (309—1869 K) калориметрии. Экспериментальные результаты представлены в табл. 2 и на рис. 4. На врезках (рис. 4) показаны области стыковки данных по теплоемкости, которые получены разными методами, и видно их удовлетворительное соответствие.

Как было отмечено выше, теплоемкость титаната эрбия в области самых низких температур (<5 K) измеряли неоднократно, однако результаты представлены исключительно в графическом

Рис. 3. Морфология поверхности образцов $Er_2Ti_2O_7$, отожженных при 550 (1), 770 (2), 1200 (3) и 1500°C (4), \times 30 000.

Таблица 1. Способ синтеза и температура окончательного отжига титаната эрбия

Параметр a , Å	Способ синтеза	Температура отжига, °С	Источник
10.076(5)	Обратное осаждение	1500	Наст. работа
10.0869	Спекание	_	[1]
10.069	Спекание	1200-1350	[2]
10.07	_	_	[4]
10.072(3)	Зонная плавка	>1800	[5]
10.0772(4)	Зонная плавка	>1800	[6]
10.085	Прямое плавление	~1780—1800	[7]
10.0787(3)	Раствор-расплав	1235	[8]
10.075(0)	Спекание	1500	[11]
10.0840(2)	Раствор-расплав	1235	[25]
10.0727(1)	Золь-гель	1400	[25]
10.0782(5)	Спекание	1200	[27]
10.0745(10	Спекание	1500	[28]
10.0762	_	_	[35]
10.07522(9)	Зонная плавка	>1800	[36]

Таблица 2. Экспериментальная теплоемкость $Er_2Ti_2O_7$ (пирохлор)

<i>T</i> , K	$C_{\rm p}$, Дж/(моль K)	<i>T</i> , K	C_{p} , Дж/(моль K)	<i>T</i> , K	$C_{\rm p}$, Дж/(моль K)
Релаксационная калориметрия					
2.021	3.485	5.892	0.7233	17.369	11.12
2.209	3.167	6.452	0.6422	19.021	14.07
2.414	2.820	7.077	0.6119	20.694	17.49
2.637	2.495	7.779	0.6676	22.663	20.63
2.881	2.203	8.510	0.8208	24.800	22.31
3.150	1.939	9.299	1.124	27.174	25.51
3.443	1.692	10.170	1.629	29.730	28.44
3.765	1.475	11.173	2.436	32.513	31.33
4.118	1.284	12.156	3.464	35.553	34.10
4.504	1.113	13.305	4.972	38.950	36.71
4.928	0.9562	14.547	6.748	42.417	40.14
5.378	0.8288	15.903	8.772		
		Адиабатичес	кая калориметрия		
4.985	1.2600	92.75	88.04	187.29	168.57
5.853	1.0127	94.71	90.10	189.25	169.72
8.899	1.4208	96.67	91.56	191.22	171.02
9.992	2.0688	98.63	93.57	193.18	172.30
13.23	5.6406	100.59	95.50	195.13	173.57
14.52	7.6079	102.55	97.39	197.09	175.29
16.13	10.299	104.52	99.34	199.05	175.74
17.76	11.924	106.48	101.27	201.99	177.92
19.40	16.080	108.45	103.26	205.93	180.31
22.34	20.637	110.42	105.05	209.86	182.58
24.00	23.831	112.39	106.94	213.78	184.85
25.77	26.921	114.35	108.73	217.70	186.99
27.55	29.452	116.32	110.44	221.62	189.24
29.35	31.315	118.29	112.36	225.54	191.35
29.57	32.612	120.27	114.29	229.45	193.32
31.17	32.653	122.24	116.06	233.36	195.40
34.00	36.410	124.21	117.70	237.26	197.15
35.72	37.810	126.18	119.71	241.16	198.76
37.57	39.297	128.16	121.40	245.04	200.64
39.42	41.145	130.13	123.09	248.93	202.26

Таблица 2. Продолжение

Таолица 2. Прод						
<i>T</i> , K	$C_{\rm p}$, Дж/(моль K)	T, K	$C_{\rm p}$, Дж/(моль K)	T, K	$C_{\rm p}$, Дж/(моль K)	
	Адиабатическая калориметрия					
41.28	42.803	132.10	124.95	252.81	203.90	
43.15	44.389	134.08	126.76	256.68	205.65	
45.02	45.839	136.05	128.52	260.54	207.14	
46.90	47.431	138.03	130.12	264.39	208.66	
48.78	48.970	140.00	131.92	268.23	210.04	
50.66	50.524	141.98	133.63	272.06	211.54	
52.60	52.156	143.95	135.35	275.87	212.83	
54.50	53.798	145.92	136.91	279.68	214.31	
56.41	55.292	147.90	138.72	283.48	215.64	
58.31	56.974	149.87	140.36	287.26	216.78	
60.23	58.341	151.84	142.08	291.03	218.19	
62.14	59.817	153.81	143.52	294.78	219.36	
64.07	61.379	155.78	145.15	298.51	220.50	
65.99	62.862	157.76	146.60	302.11	221.35	
67.92	64.481	159.73	148.29	305.79	222.42	
69.85	66.133	161.70	149.69	309.45	223.38	
71.79	68.004	163.67	151.31	313.09	224.32	
73.72	69.914	165.65	152.98	316.72	225.18	
75.66	71.867	167.62	154.47	320.32	226.04	
77.60	73.940	169.59	156.01	323.90	227.02	
77.63	76.615	171.56	157.45	327.46	227.80	
78.86	75.591	173.53	158.72	331.00	228.82	
81.03	77.319	175.50	160.02	334.51	229.75	
82.98	78.999	177.46	161.72	338.00	230.49	
84.93	80.781	179.43	163.02	341.46	231.10	
86.88	82.626	181.40	164.38	344.89	231.95	
88.83	84.381	183.36	165.65			
	Диффер	 эенциальная ск	⊥ канирующая калорі	 иметрия		
309	222.0	839	274	1369	287.3	
319	225.1	849	274.2	1379	287.5	
329	228.1	859	274.6	1389	287.7	
339	230.8	869	274.9	1399	288.0	
349	233.3	879	275.2	1409	288.4	
	200.0	0,7		1107	200.1	

Таблица 2. Продолжение

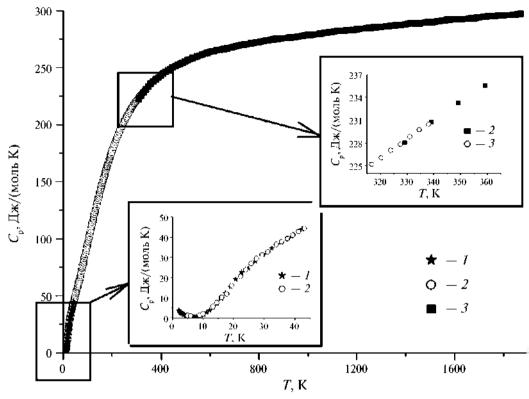
<i>T</i> , K	$C_{ m p},$ Дж/(моль ${ m K})$	<i>T</i> , K	$C_{ m p},$ Дж/(моль $ m K)$	<i>T</i> , K	$C_{ m p}$, Дж/(моль К
	Диффер	енциальная с	канирующая калори	иметрия	
359	235.6	889	275.5	1419	288.6
369	237.7	899.	275.7	1429	288.6
379	239.7	909	275.9	1439	288.6
389	241.5	919	276.1	1449	288.7
399	243.2	929	276.4	1459	288.9
409	244.7	939	276.7	1469	289.2
419	246.2	949	277.0	1479	289.5
429	247.6	959	277.3	1489	289.6
439	248.9	969	277.6	1499	289.6
449	250.1	979	277.9	1509	289.7
459	251.3	989	278.2	1519	290.0
469	252.4	999	278.4	1529	290.4
479	253.4	1009	278.6	1539	290.8
489	254.4	1019	278.8	1549	291.1
499	255.4	1029	279.1	1559	291.5
509	256.4	1039	279.4	1569	291.8
519	257.3	1049	279.7	1579	292.0
529	258.2	1059	280.0	1589	292.1
539	259.0	1069	280.3	1599	292.1
549	259.8	1079	280.6	1609	292.2
559	260.6	1089	280.9	1619	292.3
569	261.3	1099	281.3	1629	292.2
579	262.1	1109	281.6	1639	292.6
589	262.8	1119	282.0	1649	292.7
599	263.4	1129	282.2	1659	292.9
609	264.0	1139	282.4	1669	293.3
619	264.6	1149	282.6	1679	293.4
629	265.0	1159	282.6	1689	293.5
639	265.5	1169	282.7	1699	294.1
649	265.9	1179	282.9	1709	294.4
659	266.3	1189	283.2	1719	294.7
669	266.7	1199	283.5	1729	294.9
679	267.2	1209	283.7	1739	294.9

Таблица 2. Окончание

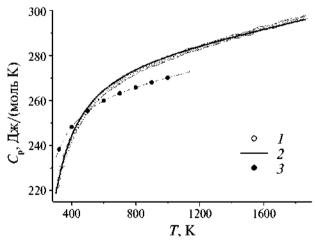
<i>T</i> , K	$C_{ m p},$ Дж/(моль ${ m K})$	<i>T</i> , K	$C_{ m p},$ Дж/(моль ${ m K})$	<i>T</i> , K	$C_{ m p},$ Дж/(моль ${ m K})$
	Диффер	енциальная с	канирующая калори	іметрия	
689	267.7	1219	284.0	1749	295.0
699	268.2	1229	284.2	1759	295.2
709	268.8	1239	284.5	1769	295.5
719	269.3	1249	284.7	1779	295.8
729	269.7	1259	284.9	1789	295.9
739	270.1	1269	285.1	1799	295.8
749	270.6	1279	285.2	1809	296.0
759	270.9	1289	285.4	1819	296.2
769	271.3	1299	285.7	1829	296.2
779	271.6	1309	285.9	1839	296.4
789	272.0	1319	286.1	1849	296.5
799	272.4	1329	286.3	1859	297.0
809	272.8	1339	286.6	1869	297.2
819	273.2	1349	286.7		
829	273.6	1359	287.1		

виде. Наиболее полная картина молярной теплоемкости в области магнитного фазового перехода (0–10 K) приведена в работе [16], откуда перенесена на рис. 5 для сравнения с результатами измерений теплоемкости методами релаксационной и адиабатической калориметрии, полученными в настоящей работе. Видно удовлетворительное совпадение данных. Результаты работы [16] учтены при расчете термодинамических функций.

Сглаживание экспериментальных значений теплоемкости выполнено в области $2-30~\rm K$ полиномом вида $C_p = \sum_0^4 A_i \times T^i$, а в интервале $20-1900~\rm K$ — программным комплексом CpFit [37, 38]. Параметры сглаживающих функций приведены в табл. 3, а сглаженная теплоемкость и расчетные значения энтропии и приращения энтальпии — в табл. 4.


Сравнение данных, полученных в настоящей работе и в [27], показывает хорошее согласие в пределах погрешностей сглаженных значений теплоемкости (например, при 298.15 K 220.04 \pm \pm 1.23 и 219.0 \pm 1.4 Дж/(моль K) соответственно) и расчетных функций, в то время как результаты

[28] сильно отличаются от приведенных в табл. 4 как по величине, так и по общему ходу температурной кривой (рис. 6).


На рис. 6 показано также сравнение экспериментальной температурной зависимости теплоемкости титаната эрбия и расчетных значений, полученных из величин теплоемкостей простых оксидов Er_2O_3 и TiO_2 [39, 40]. Наблюдается полное соответствие экспериментальных и расчетных значений, что подчеркивает ненадежность данных работы [28]. Высокотемпературную зависимость теплоемкости титаната эрбия помимо табличной формы иногда удобно использовать в виде уравнения Майера—Келли:

$$C_p$$
[Дж/(моль K), 300–1900 K)] = 265.67 +
+ 0.0175956 T – 4698463.6/ T^2R^2 = 0.9999.

Как известно [41], наличие незавершенной 4f-электронной оболочки у соединений лантаноидов приводит не только к существованию низкотемпературных магнитных переходов, но и к заметному вкладу в теплоемкость так называемой "аномалии Шоттки", которая является следстви-

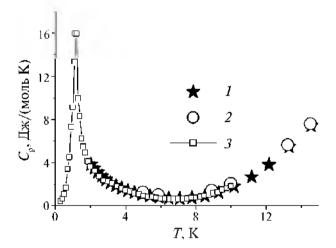


Рис. 4. Теплоемкость титаната эрбия по данным: I – релаксационной (2—40 K), 2 – адиабатической (5—345 K) и 3 – дифференциальной сканирующей (309—1869 K) калориметрии. На врезках показаны области самых низких температур и стыковки результатов измерений методами адиабатической и дифференциальной сканирующей калориметрии.

Рис. 5. Молярная теплоемкость титаната эрбия в области температур 300-1900 K (*I*) в сравнении с результатами расчета из теплоемкостей простых оксидов Er_2O_3 , TiO_2 [39, 40] (*2*) и из работы [28] (*3*).

ем взаимодействия 4*f*-электронов с электрическим полем кристалла. Выделить этот вклад можно сравнением с теплоемкостью одногипного по кристаллической структуре соединения, у которого такой вклад отсутствует. Для соединений тя-

Рис. 6. Молярная теплоемкость $Er_2Ti_2O_7$ в области магнитного перехода, данные: I — релаксационной, 2 — адиабатической калориметрии, 3 — из работы [16].

желых лантаноидов обычно используют соединения лютеция, в данном случае титаната лютеция структурного типа пирохлора [42].

Рассчитанная разность теплоемкостей титанатов эрбия и лютеция (теплоемкость титаната лютеция взята из работы [43]), а также приведенная

Таблица 3. Параметры сглаживающих функций

$C_{p} = \sum_{1}^{4} A_{i} \times T^{i}, T = 2-30 \text{ K}$ i
<i>i</i>
ι Λ_l
0 7.931
-2.481
2 0.2366
-0.005015
4 0.00002582

20-1900 K

 $C_{\rm p}$ Fit: $C_{\rm p}(T)=3R\Sigma\alpha_i[(\theta_i/T)^2e^{\theta_i/T}/(e^{\theta_i/T}-1)^2]$, где R — универсальная газовая постоянная, α_i и θ_i — варьируемые параметры

i	α_i	$\Delta(\alpha_i)^*$	$s(\alpha_i)^{**}$	θ_i , K	$\Delta(\theta_i)^a$, K
2.193	0.02038	0.01038	78.39	0.5670	0.2887
5.434	0.1205	0.06137	686.8	11.51	5.862
0.4283	0.03972	0.02023	2055	293.6	149.5
3.395	0.1467	0.07473	331.9	6.920	3.524
1.555	0.09615	0.04896	6816	401.0	204.2

 $^{*\}Delta(j_i) - 95\%$ -ный доверительный интервал.

Таблица 4. Молярная теплоемкость и термодинамические функции $Er_2Ti_2O_7$ (пирохлор), P = 101.24 кПа

T, K	$C_{ m p},$ Дж/(моль $ m K)$	S , Дж/(моль K)	H(T) - H(0 K), Дж/моль
0.5	1.080	0.551	0.204
1	9.141	3.253	2.40
1.5	6.233	7.825	7.93
2	3.876	9.200	10.3
3	2.485	10.50	13.4
4	1.480	11.06	15.4
5	0.8320	11.32	16.5
6	0.5149	11.44	17.2
7	0.5018	11.51	17.7
8	0.7665	11.59	18.3
9	1.2836	11.71	19.3
10	2.0283	11.88	20.9
12	4.1042	12.43	27.0
14	6.8080	13.25	37.8

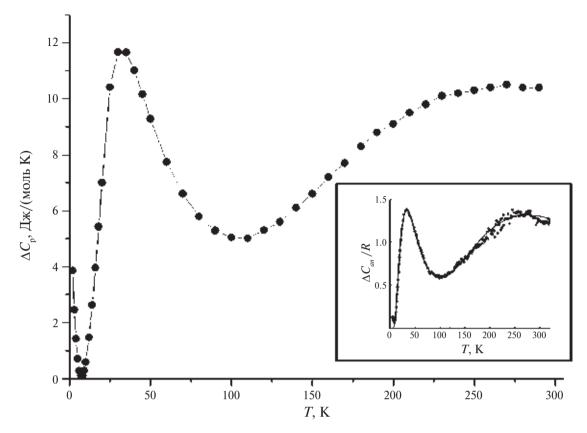
Примечание. Расчетные данные приведены курсивом.

^{**} $s(j_i)$ — стандартное отклонение для параметров j_i .

Таблица 4. Продолжение

1аолица 4. Продолжение T, K	$C_{\rm p},$ Дж/(моль K)	S , Дж/(моль K)	H(T) - H(0 K), Дж/моль
16	9.9635	14.36	54.5
18	13.404	15.74	77.8
20	16.974	17.33	108.2
25	25.524	22.06	214.9
30	32.041	27.32	359.6
35	37.173	32.66	533.1
40	41.551	37.91	730.1
45	45.626	43.04	948.1
50	49.668	48.06	1186
60	58.064	57.85	1724
70	66.938	67.46	2349
80	76.136	76.99	3064
90	85.516	86.50	3872
100	94.984	96.00	4775
110	104.45	105.5	5772
120	113.82	115.0	6863
130	123.00	124.5	8048
140	131.89	133.9	9322
150	140.44	143.3	10680
160	148.59	152.6	12130
170	156.31	161.9	13660
180	163.57	171.0	15250
190	170.38	180.0	16930
200	176.75	188.9	18660
210	182.68	197.7	20460
220	188.21	206.3	22310
230	193.35	214.8	24220
240	198.13	223.2	26180
250	202.58	231.3	28180
260	206.71	239.4	30230
270	210.56	247.2	32320
280	214.14	255.0	34440
290	217.48	262.5	36600
298.15	220.04 ± 1.23	268.6 ± 2.5	38380 ± 240

Таблипа 4. Окончание


T, K	$C_{ m p},$ Дж/(моль ${ m K})$	S , Дж/(моль K)	H(T) - H(0 K), Дж/моли
300	220.60	270.0	38790
310	223.51	277.2	41010
320	226.23	284.4	43260
330	228.78	291.4	45530
340	231.17	298.2	47830
350	233.42	305.0	50160
400	242.81	336.8	62070
450	249.90	365.8	74400
500	255.39	392.4	87040
550	259.73	417.0	99920
600	263.25	439.7	113000
650	266.15	460.9	126200
700	268.59	480.8	139600
750	270.69	499.4	153100
800	272.54	516.9	166700
850	274.20	533.5	180300
900	275.72	549.2	194100
950	277.14	564.1	207900
1000	278.49	578.4	221800
1100	281.03	605.0	249800
1200	283.43	629.6	278000
1300	285.73	652.4	306500
1400	287.95	673.6	335100
1500	290.07	693.6	364000
1600	292.09	712.4	393200
1700	294.01	730.1	422500
1800	295.82	747.0	452000
1900	297.53	763.0	481600

на врезке для сравнения эта же разность из работы [27], показаны на рис. 7 для интервала температур 0—320 K.

Как видно из рис. 7, приведенные разности согласуются между собой, что подчеркивает надежность полученных результатов. Полученные данные по термодинамическим функциям титаната

эрбия в совокупности с литературными данными позволяют рассчитать величину энергии Гиббса образования $\rm Er_2Ti_2O_7$ (298.15 K) из оксидов и из элементов.

 $\Delta_f G_{\text{ox}}(\text{Er}_2\text{Ti}_2\text{O}_7, 298.15 \text{ K}) = \Delta_f H_{\text{ox}}(\text{Er}_2\text{Ti}_2\text{O}_7, 298.15 \text{ K}) - 298.15 \text{ K}) - 298.15 \text{ K}) - S(\text{Er}_2\text{O}_3, 298.15 \text{ K}) - 2S(\text{TiO}_2, 298.15 \text{ K})] =$

Рис. 7. Температурная зависимость разности $\Delta C_p = C_p(\text{Er}_2\text{Ti}_2\text{O}_7) - C_p(\text{Lu}_2\text{Ti}_2\text{O}_7)$ [43]. На врезке показана та же разность из работы [27].

 $=-79600-298.15\times[268.6-154.389-2\times50.333]=$ $=-79600-298.15\times13.545=-83638$ Дж/моль. $\Delta_f G(\text{Er}_2\text{Ti}_2\text{O}_7, 298.15 \text{ K}) = \Delta_f H(\text{Er}_2\text{Ti}_2\text{O}_7, 298.15 \text{ K}) - 298.15 \text{ K}) - 298.15 \text{ K}) - 298.15 \text{ K}) - 28(\text{Er}, 298.15 \text{ K}) - 28(\text{Ti}, 298.15 \text{ K}) - 28(\text{Er}, 298.15 \text{ K}) - 28(\text{Ti}, 298.15 \text{ K}) - 3.58(\text{O}_2, 298.15 \text{ K})] = -3852700 - 298.15 \times [268.6 - 2 \times 73.136 - 2 \times 30.626 - 3.5 \times 205.036] = -3852700 - 298.15 \times [268.6 - 144.272 - 61.252 - 717.626] = -3903500 - 298.15 \times (-654.550) = -3852700 + 195154 = -3657546$ Дж/моль.

Величины энтальпии образования $Er_2Ti_2O_7$ из оксидов и из элементов взяты из работы [25], а данные по энтропиям Er_2O_3 и TiO_2 — из работ [39, 44].

ЗАКЛЮЧЕНИЕ

Методом обратного осаждения выполнен синтез титаната эрбия. На основании дифракционных и электронно-микроскопических исследований определена температурная последовательность образования и кристаллизации титаната эрбия структурного типа пирохлора. Показано, что синтез $Er_2Ti_2O_7$ проходит через стадию на-

норазмерного состояния ($800-1000^{\circ}$ C), а хорошая закристаллизованность образца достигается отжигом при температурах $\geq 1400^{\circ}$ C. Выполнены измерения изобарной теплоемкости титаната эрбия в интервале температур 2-1870 К методами релаксационной, адиабатической и дифференциальной сканирующей калориметрии. С учетом литературных данных рассчитаны термодинамические функции $\text{Er}_2\text{Ti}_2\text{O}_7$ (энтропия и энтальпия) в диапазоне 0-1900 К, выполнена оценка общего вида вклада в теплоемкость аномалии Шоттки при температурах <300 К и рассчитана энергия Гиббса образования титаната эрбия из элементов и простых оксидов при 298.15 К.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено в рамках госзадания с использованием оборудования ЦКП ФМИ ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Тимофеев Н.И., Салибеков Г.Е., Романович И.В.* // Изв. АН СССР. Неорган. материалы. 1971. Т. 7. С. 890.
- 2. Brixner L.H. // Inorg. Chem. 1964. V. 3. P. 1065.
- 3. *Щербакова Л.Г., Мамсурова Л.Г., Суханова Г.Е.* // Успехи химии. 1979. Т. 48. С. 423.
- 4. *Комиссарова Л.Н., Шацкий В.М., Пушкина Г.Я. и др.* // Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты. М.: Наука, 1984. 235 с.
- Li Q.J., Xu L.M., Fan C. et al. // J. Cryst. Growth. V. 377. P. 96.
 - https://doi.org/10.1016/j.jcrysgro.2013.04.048
- Vlaskova K., Proschek P., Pospsil J., Klicpera M. // J. Cryst. Growth. 2020. V. 546. P. 125783. https://doi.org/10.1016/j.jcrysgro.2020.125783
- 7. *Ершова Л.М., Игнатьев Б.В., Кусалова Л.И. и др. //* Изв. АН СССР. Неорган. материалы. 1977. Т. 13. С. 2042.
- 8. Farmer J.M., Boather L.A., Chakoumakos B.C. et al. // J. Alloys Compd. 2014. V. 605. P. 63. https://doi.org/10.1016./j.jallcom.2014.03.153
- 9. *Blote H.W.J.*, *Wielinga R.F.*, *Huiskamp W.J.* // Physica. 1969. V. 43. P. 549. https://doi.org/10.1016/0031-8914(69)90187-6
- Greedan J.E. // J. Alloys Compd. 2006. V. 408–412. P. 444.
 - https://doi.org/10.1016./j.jallcom.2004.12.084
- 11. *Ben Amor N., Bejar M., Hussein M. et al.* // J. Supercond. Nov. Magn. 2012. V. 25. P. 035. https://doi.org/10.1007/s10948-011-1344-9
- Champion J.D.M., Harris M.J., Holdsworth P.C.W. et al. // Phys. Rev. B. 2003. V. 68. P. 020401. https://doi.org/10.1103/physrevb.68.020401
- 13. *Bonville P., Petit S., Mirebeau I. et al.* // J. Phys.: Condens. Matter. 2013. V. 25. P. 275601. https://doi.org/10.1088/0953-8984/25/27/275601
- Oitmaa J., Singh R.R.P., Javanparast B. et al. // Phys. Rev. B. 2013. V. 88. P. 220404. https://doi.org/10.1103/PhysRevB.88.220404
- 15. *Dalmas de Reotier P., Yaouanc A., Chapuis Y. et al.* // Phys. Rev. B. 2012. V. 86. P. 104424. https://doi.org/10.1103/physrevb.86.104424
- Ruff J.P.C., Clancy J.P., While M.A. et al. // Phys. Rev. Lett. 2008. V. 101. P. 147205. https://doi.org/10.1103/PhysRevLett.101.147205
- 17. *Wolf B., Tusch U., Dorschug S. et al.* // J. Appl. Phys. 2016. V. 120 № 14. P. 142112. https://doi.org/10.1063/1.4961708
- Zhang L., Zhang W., Zhu J. et al. // J. Alloys Compd. 2009. V. 480. P. L45. https://doi.org/10.1016/j.jallcom.2009.02.146
- 19. Lumpkin G.R. // J. Nucl. Mater. 2001. V. 289. P. 136.
- 20. Weber W.J., Ewing R.C. // Science. 2000. V. 289. № 5487. P. 2051. https://doi.org/10.1126/science.289.5487.205

- Teng Z., Tan Y., Zeng S. et al. // J. Eur. Ceram Soc. 2021. V. 41. P. 3614. https://doi.org/10.1016/jeurceramoc.202101.013
- 22. *Guo H., Zhang K., Li Y.* // Ceram. Int. 2024. V. 50. P. 21859.
 - https://doi.org/10.1016/j.ceramint.2024.03298
- 23. *Popov V.V., Menushenkov A.P., Yastrebtsev A.A. et al.* // Ceram. Int. 2024. V. 50. P. 5319. https://doi.org/10.1016/j.ceramint.2023.11.283
- Chung C.-K., O'Quinn, NeuefeindJ.C. et al. // Acta Mater. 2019. V. 181. P. 309. https://doi.org/j.actamat.2019.09.022
- 25. *Helean K.B., Ushakov S.V., Brown C.E. et al.* // J. Solid State Chem. 2004. V. 177. P. 1858. https://doi.org/i.issc.2004.01.009
- 26. *Резницкий Л.А.* // Неорган. материалы. 1993. Т. 29. С. 1310.
- 27. *Bissengaliyeva M.R.*, *Bespyatov M.A.*, *Gogol D.B. et al.* // J. Chem. Eng. Data. 2022. V. 67. P. 2059. https://doi.org/10.1021/acs.jced.2c00050
- 28. *Denisova L.T., Izotov A.D., Kargin Y.F. et al.* // Dokl. Phys. Chem. 2017. V. 472. № 2. P. 139. https://doi.org/10.1134/S0012501617080012
- Rosen P.F., Woodfield B.F. // J. Chem. Thermodyn. 2020. V. 141. P. 105974. https://doi.org/10.1016/j.jct.2019.105974
- 30. *Sabbah R., Xu-wu A., Chickos J.S. et al.* // Thermochim. Acta. 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
- 31. *Prohaska T., Irrgeher J., Benefield J. et al.* // Pure Appl. Chem. 2022. V. 94. № 5. P. 573. https://doi.org/10.1515/pac-2019-0603
- 32. *Гуськов В.Н.*, *Гавричев К.С.*, *Гагарин П.Г.*, *Гуськов А.В.* // Журн. неорган. химии. 2019. Т. 64. С. 1072. https://doi.org/10.1134/S0044457X19100040
- 33. *Guskov A.V.*, *Gagarin P.G.*, *Guskov V.N. et al.* // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
- 34. *Шляхтина А.В.*, *Кнотько А.В.*, *Ларина Л.Л. и др.* // Неорган. материалы. 2004. Т. 40. С. 1495.
- 35. *Knop O., Brisse F., Castelliz L.* // Can. J. Chem. 2011. V. 43. P. 2812. https://doi.org/10.1139/v65-392
- 36. *Wang Q., Ghasemi A., Scheie A. et al.* // Cryst. Eng. Comm. 2019. V. 21. P. 703. https://doi.org/10.1039/c8ce01885e
- Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- 38. *Voronin G.F., Kutsenok I.B.* // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
- 39. *Konings R.J.M., Benes O., Kovacs A. et al.* // J. Phys. Chem. Ref. Data. 2014. V. 4. P. 013101. https://doi.org/10.1063/1.4825256
- 40. *Chase M.W.*, Ir. NIST-JANAF Thermochemical Tables. Four Edition. Monograph № 9, Part I, II. Washington DC, 1998. 1963 p.

- 41. *Tari A*. The specific heat of matter at low temperatures. London, Imperial College Press, 2003. P. 211.
 - https://doi.org/10.1142/9781860949395_0006
- 42. Westrum E.F. Jr. // J. Therm. Anal. 1985. V. 30. P. 1209.

https://doi.org/10.1007/BF01914288

- 43. *Bissengalieva M.R., Knyazev A.V., Bespyatov M.A. et al.* // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/j.jct.2021.103346
- 44. *Глушко В.П.* Термические константы веществ. Справочник. М., 1965—1982. https://www.chem.msu.su/cgibin/tkv.pl?show=welcome. html&_ga=2.137226480.1380683462.1715071323-1284717817.1617178349 erbiumerbium

SYNTHESIS AND THERMODYNAMIC PROPERTIES OF ERBIUM TITANATE

A. V. Guskov^a, P. G. Gagarin^a, V. N. Guskov^a, *, K. S. Gavrichev^a

^a Kurnakov Institute General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, 119991 Russia

*e-mail: guskov@igic.ras.ru

Erbium titanate was synthesized by co-precipitation of erbium and titanium hydroxides followed by high-temperature annealing. The temperature intervals of the sequence of formation of pyrochlore-type crystal structure were determined. Measurements of the isobaric heat capacity of erbium titanate in the range of $2-1870\,\mathrm{K}$ were carried out by relaxation, adiabatic and differential scanning calorimetry methods. On the basis of smoothed values of heat capacity, entropy and enthalpy increment in the region $0-1900\,\mathrm{K}$ were calculated, the contribution of Schottky anomaly at temperatures up to $300\,\mathrm{K}$ was evaluated, and the Gibbs energy of erbium titanate formation at $298.15\,\mathrm{K}$ was calculated.

Keywords: thulium titanate, synthesis, thermodynamic functions, Schottky anomaly