Hydrothermal synthesis of vo2 films from alcohol solution
- Authors: Boytsova О.V.1, Tatarenko А.Y.1, Chendev V.Y.1,2, Makarevich A.M.1, Roslyakov I.V.1, Makarevich О.N.1
-
Affiliations:
- Lomonosov Moscow State University
- Plekhanov Russian Economic University
- Issue: Vol 70, No 3 (2025)
- Pages: 309-314
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journal-vniispk.ru/0044-457X/article/view/294776
- DOI: https://doi.org/10.31857/S0044457X25030029
- EDN: https://elibrary.ru/BCFKHA
- ID: 294776
Cite item
Full Text
Abstract
M phase vanadium dioxide was firstly synthesized with alcohol as the media instead of water via a simple hydrothermal method on single-crystal r-sapphire substrates. The resulting materials demonstrate a sharp dielectric-metal transition with a change in electrical resistance of about 4 orders of magnitude near the phase transition temperature (68°C). The conditions for synthesizing films comparable in electrophysical characteristics to analogs obtained in aqueous media are established. The proposed method enlarges possibilities for the hydrothermal synthesis of film oxide materials
Keywords
Full Text

About the authors
О. V. Boytsova
Lomonosov Moscow State University
Author for correspondence.
Email: boytsovaov@my.msu.ru
Russian Federation, Moscow
А. Yu. Tatarenko
Lomonosov Moscow State University
Email: boytsovaov@my.msu.ru
Russian Federation, Moscow
V. Yu. Chendev
Lomonosov Moscow State University; Plekhanov Russian Economic University
Email: boytsovaov@my.msu.ru
Russian Federation, Moscow; Moscow
A. M. Makarevich
Lomonosov Moscow State University
Email: boytsovaov@my.msu.ru
Russian Federation, Moscow
I. V. Roslyakov
Lomonosov Moscow State University
Email: boytsovaov@my.msu.ru
Russian Federation, Moscow
О. N. Makarevich
Lomonosov Moscow State University
Email: boytsovaov@my.msu.ru
Russian Federation, Moscow
References
- Chen C., Yi X., Zhao X. et al. // Sens. Actuators, A: Phys. 2001. V. 90. № 3. P. 212. https://doi.org/10.1016/S0924-4247(01)00495-2
- Cui Y., Ke Y., Liu C. et al. // Joule. 2018. V. 2. № 9. P. 1707. https://doi.org/10.1016/j.joule.2018.06.018
- Ma H., Wang Y., Lu R. et al. // J. Mater. Chem. C. 2020. V. 8. № 30. P. 10213. https://doi.org/10.1039/d0tc02446e
- Ivanov A.V., Makarevich O.N., Boytsova O.V. et al. // Ceram. Int. 2020. V. 46. № 12. P. 19919. https://doi.org/10.1016/j.ceramint.2020.05.058
- Makarevich O.N., Ivanov A.V., Gavrilov A.I. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 3. P. 299. https://doi.org/10.1134/S0036023620030080
- Li B., Tian S., Wang Z. et al. // Appl. Surf. Sci. 2021. V. 568. № May. P. 150959. https://doi.org/10.1016/j.apsusc.2021.150959
- Ji H., Liu D., Cheng H. et al. // J. Mater. Chem. C. 2018. V. 6. № 10. P. 2424. https://doi.org/10.1039/C8TC00286J
- Zhao X.Q., Kim C.R., Lee J.Y. et al. // Appl. Surf. Sci. 2009. V. 255. № 8. P. 4461. https://doi.org/10.1016/j.apsusc.2008.11.051
- Podlogar M., Richardson J.J., Vengust D. et al. // Adv. Funct. Mater. 2012. V. 22. № 15. P. 3136. https://doi.org/10.1002/adfm.201200214
- Ganin A.Y., Kienle L., Vajenine G.V. // 2004. V. 16. P. 3233. https://doi.org/10.1002/ejic.200400227
- Jiang M., Zhao M., Li J. // Adv. Mater. Res. 2011. V. 284–286. P. 2177. https://doi.org/10.4028/www.scientific.net/AMR.284-286.2177
- Bykov M., Bykova E., Ponomareva A.V. et al. // Angew. Chem. Int. Ed. 2021. V. 60. P. 9003. https://doi.org/10.1002/anie.202100283
- Ivanov A.V., Tatarenko A.Y., Gorodetsky A.A. et al. // ACS Appl. Nano Mater. 2021. V. 4. № 10. P. 10592. https://doi.org/10.1021/acsanm.1c02081
- Yin S., Hasegawa T. // KONA Powder Part. J. 2023. V. 2023. № 40. P. 94. https://doi.org/10.14356/kona.2023015
- Shvets P., Dikaya O., Maksimova K. et al. // J. Raman Spectrosc. 2019. V. 50. № 8. P. 1226. https://doi.org/10.1002/jrs.5616
- Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160
- Marini C., Arcangeletti E., Castro D.Di et al. // Phys. Rev. B. 2008. V. 77. P. 235111. https://doi.org/10.1103/PhysRevB.77.235111
- Makarevich A.M., Sobol A.G., Sadykov I.I. et al. // J. Alloys Compd. 2021. V. 853. P. 157214. https://doi.org/10.1016/j.jallcom.2020.157214
- Makarevich A.M., Sadykov I.I., Sharovarov D.I. et al. // J. Mater. Chem. C. 2015. V. 3. № 35. P. 9197. https://doi.org/10.1039/c5tc01811k
- Yakovkina L.V., Mutilin S.V., Prinz V.Y. et al. // J. Mater. Sci. 2017. V. 52. № 7. P. 4061. https://doi.org/10.1007/s10853-016-0669-y
Supplementary files
