УДК 547.792.9;547.833.3

СИНТЕЗ БРОМИДОВ И ГЕКСАФТОРФОСФАТОВ 2-АЛКИЛ-1,2,4-ТРИАЗОЛО[3,4-а]ИЗОХИНОЛИН-2-ИЯ

© 2024 г. Л. С. Ермакова¹, Н. О. Леонтьев², М. С. Денисов¹, И. А. Борисова¹, М. В. Дмитриев², В. А. Глушков^{1,2,*}

¹ Институт технической химии Пермского федерального исследовательского центра Уральского отделения Российской академии наук, Пермь, 614068 Россия ² Пермский государственный национальный исследовательский университет, Пермь, 614099 Россия *e-mail: glusha55@gmail.com

> Поступило в редакцию 2 октября 2024 г. После доработки 8 декабря 2024 г. Принято к печати 16 декабря 2024 г.

Осуществлено алкилирование 1,2,4-триазоло[3,4-a]изохинолинов 1-бромалканами в условиях микроволнового синтеза; полученные бромиды 2-алкил-1,2,4-триазоло[3,4-a]изохинолин-2-ия переведены в гексафторфосфаты и охарактеризованы методами масс-спектрометрии высокого разрешения, спектроскопии ЯМР 1 H, 13 C и рентгеноструктурного анализа.

Ключевые слова: 1,2,4-триазолы, изохинолины, алкилирование, микроволновый синтез

DOI: 10.31857/S0044460X24100023, **EDN:** RFQPWH

ВВЕДЕНИЕ

1,2,4-Триазолы, аннелированные с гетероциклическими ядрами, вызывают интерес у специалистов, работающих в области медицинской химии. Известны примеры синтеза 1,2,4-триазоло[4,3-a]пиридинов [1], 1,2,4-триазоло[4,3-a]хинолинов [2], 1,2,4-триазоло[5,1-a]-изохинолинов [3, 4], 1,2,4-триазоло[5,1-a]-изохинолинов [4, 5], 1,2,4-триазоло[4,3-a]пиразинов [6], 1,2,4-триазоло[3,4-b][1,3,4]тиадиазолов [7, 8], имидазо-1,2,4-триазолов [9], 1,2,4-триазоло[1,5-a]-пиримидинов [10], 1,2,4-триазоло[4,3-a]хиноксалинов [11], 1,2,4-триазоло[4,3-a]хиноксалинов [11], 1,2,4-триазоло[5,1-a]-1,2,4-триазинов [13] и 1,2,4-триазоло[5,1-a]-1,2,4-триазинов [14].

1,2,4-Триазолы, аннелированные с другими гетероциклами, проявляют антибактериальную, противораковую, анти-ВИЧ активность, оказывают также противовоспалительное, противоэпилептическое действие [1, 14]. Среди них найдены потенциальные

энергетические материалы [6], цитотоксики [7, 8], ингибиторы протеиновой тирозин-фосфатазы [9], соединения с противомалярийной активностью [10], средства для борьбы с лейкемией [11]. Замещенные 1,2,4-триазоло[4,3-а][1,4]бензодиазепины – известные лекарственные препараты триазолам (снотворное), альпрозолам и эстазолам (оказывают анксиолитическое и седативное действие) [15].

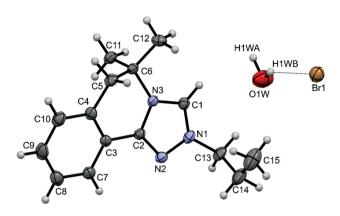
Недавно нами были получены соли 2-(замещенный бензил)-5,5-диметил-5,6-дигидро-1,2,4-три-азоло[3,4-a]изохинолиния, использованные как платформа для получения комплексов палладия(II) PEPPSI-типа, проявляющих высокую цитотоксическую активность [16]. Целью настоящей работы являлся синтез ряда солей 2-алкил-1,2,4-триазоло[3,4-a]-изохинолиния как потенциальных N-гетероциклических карбеновых лигандов, пригодных для синтеза аналогичных PEPPSI-комплексов с алкильными заместителями у атома N^2 .

Схема 1.

R = H (1a, 2, 4), OMe (16, 3, 5); Alk = Et (a), Pr (δ), Bu (B), C_5H_{11} (Γ), C_6H_{13} (Д), C_7H_{15} (e), C_8H_{17} (ж), $C_{10}H_{21}$ (3), $C_{12}H_{25}$ (μ), $C_{18}H_{37}$ (κ).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исходя из 1,2,4-триазоло[3,4-a]изохинолинов **1a**, **б** [3], в условиях микроволнового синтеза получены бромиды **2a**–**к** и **3a**–**к** (схема 1).


Бромиды **26**, **в**, **к** и **3а**, **в**, **к** являются кристаллическими соединениями; остальные бромиды в этих рядах представляют собой маслообразные вещества. Для характеристики новых солей мы произвели замену аниона бромида на гексафторфосфат, получив ряды кристаллических солей **4а**–**к** и **5а**–**к** с выходами 45–80% (табл. 1).

Строение всех полученных соединений подтверждено данными ИК, ЯМР ¹Н и ¹³С спектроскопии. Соли **26**, **в**, **к** и **3а**, **в**, **к** выделены в виде моногидратов, о чем свидетельствуют широкие полосы ОН-групп в их ИК спектрах с максимумами при 3407–3533 см⁻¹. Так, в спектрах ЯМР ¹Н солей **26**, **в**, **к**, и **3а**, **в**, **к**, **4а**–**к** и **5а**–**к** протоны при атоме С³ регистрируются сигналом в слабом поле в области 9.38–12.06 м. д.; соответствующий сигнал атома С³ в спектрах ЯМР ¹³С проявляется при 138.47–141.64 м. д., что соответствует литературным данным (139–142 м. д.) [16]. Масс-спектры высокого разрешения также подтверждают состав синтезированных солей (см. Экспериментальную часть).

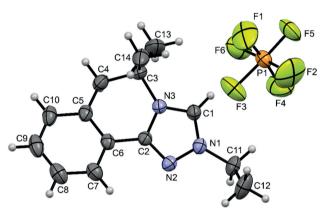

Строение солей **26** и **4а** дополнительно подтверждено данными рентгеноструктурного анализа (рис. 1, 2). Данные РСА подтверждают региоселективность алкилирования исключительно по атому N^2 . Соединения **26** и **4а** кристаллизуются в центросимметричных пространственных группах моноклинной сингонии (рис. 1, 2). Бромид **26** явля-

Таблица 1. Выходы и температуры плавления солей 2-алкил-1,2,4-триазоло-5,6-дигидро[3,4-*a*]изохинолин-2-ия 2–5.

		I		ъ	
Соединение	R	Alk	X	Выход,	Т. пл., °С
26	Н	(CH ₂) ₂ CH ₃	Br	12	89–90
2в	Н	(CH2)3CH3	Br	40	132–133
2κ	Н	(CH ₂) ₁₇ CH ₃	Br	28	55–56
3a	OMe	CH ₂ CH ₃	Br	14	210–213
3в	OMe	(CH2)3CH3	Br	46	151–154
3к	OMe	(CH ₂) ₁₇ CH ₃	Br	71	64–66
4a	Н	CH ₂ CH ₃	PF ₆	62	153–156
46	Н	(CH2)2CH3	PF ₆	74	151–153
4в	Н	(CH2)3CH3	PF ₆	23	121–123
4Γ	Н	(CH2)4CH3	PF ₆	36	110–113
4д	Н	(CH ₂) ₅ CH ₃	PF ₆	49	65–68
4e	Н	(CH2)6CH3	PF ₆	39	93–94
4ж	Н	(CH2)7CH3	PF ₆	49	54–56
43	Н	(CH ₂) ₉ CH ₃	PF ₆	45	49–51
4и	Н	$(CH_2)_{11}CH_3$	PF ₆	70	41–43
4κ	Н	(CH ₂) ₁₇ CH ₃	PF ₆	62	77–79
5a	OMe	CH ₂ CH ₃	PF ₆	68	194–196
56	OMe	(CH2)2CH3	PF ₆	67	184–187
5в	OMe	(CH2)3CH3	PF ₆	74	174–176
5г	OMe	(CH ₂) ₄ CH ₃	PF ₆	57	139–142
5д	OMe	(CH2)5CH3	PF ₆	71	134–136
5e	OMe	(CH2)6CH3	PF ₆	80	137–140
5ж	OMe	(CH2)7CH3	PF ₆	56	127–128
53	OMe	(CH ₂) ₉ CH ₃	PF ₆	51	86–89
5и	OMe	$(CH_2)_{11}CH_3$	PF ₆	54	69–71
5к	OMe	$(CH_2)_{17}CH_3$	PF ₆	57	46–49

Рис. 1. Общий вид молекулы бромида **26** по данным PCA в представлении тепловыми эллипсоидами 30%-ной вероятности.

Рис. 2. Общий вид молекулы бромида **4a** по данным РСА в представлении тепловыми эллипсоидами 30%-ной вероятности.

Таблица 2. Длины связей в триазольном фрагменте соединений **26** и **4a**.

Соедин	ение 26	Соединение 4а		
Связь	Длина	Связь	Длина	
	связи, Å	Связь	связи, Å	
$C^1=N^1$	1.311(6)	$C^1=N^1$	1.296(4)	
$C^1 - N^3$	1.324(5)	C^{1} $-N^{3}$	1.341(3)	
$C^2 - N^3$	1.358(4)	$C^2 - N^3$	1.368(3)	
$C^2 = N^2$	1.311(5)	$C^2 = N^2$	1.313(3)	
N^1-N^2	1.373(4)	$N^1 - N^2$	1.371(3)	

ется моногидратом, каждая молекула воды образует две водородные связи с соседними атомами брома. Гексафторфосфат-анион в кристалле соли ${\bf 4a}$ разупорядочен по двум позициям, атомы фтора минорного компонента разупорядочения на рис. 2 не изображены. Положительный заряд в катионах обеих солей преимущественно сосредоточен на атоме азота ${\bf N}^1$. Однако в бромиде ${\bf 26}$ сильно выражена делокализация кратных связей ${\bf C}^1{=}{\bf N}^1$ и ${\bf C}^1{-}{\bf N}^3$, их длины очень близки (табл. 2). Это может свидетельствовать о заметной делокализации заряда по атомам азота ${\bf N}^1$ и ${\bf N}^3$.

ВЫВОДЫ

Таким образом, в результате проведенных исследований получен ряд бромидов и гексафторфосфатов 1,2,4-триазоло-5,6-дигидро[3,4-а]изохинолин-2-ия, состав которых подтвержден данными масс-спектрометрии высокого разрешения, а строение данными спектроскопии ЯМР ¹H, ¹³C и рентгеноструктурного анализа. Полученные соли будут далее использованы в качестве N-гетероциклические карбеновых лигандов в синтезе новых комплексов палладия(II) PEPPSI-типа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Микроволновый синтез проводили на приборе Discover SP (TEM). Температуры плавления определяли на приборах Melting Point M-565 (Buchi, Швейцария) и ПТП. ИК спектры записывали на спектрометре VERTEX 80v (Bruker, США) в суспензии вазелинового масла или в тонкой пленке, полученной испарением раствора соединения в хлороформе. Масс-спектры электрораспылительной ионизации записывали в режиме регистрации положительных ионов на квадрупольно-времяпролетном масс-спектрометре высокого разрешения maXis impact HD (Bruker Daltonik GmbH) в диапазоне масс 50-1300 Да после хроматографической колонки без оптимизации разделения (Agilent Zorbax SB-Aq, элюент – ацетонитрил–вода, 95:5, 0.3 мл/мин). Образцы для анализа растворяли в ацетонитриле или ацетонитриле с добавлением небольшого количества ДМСО. Спектры ЯМР ¹Н и ¹³С записывали в CDCl₃ и ДМСО- d_6 на приборе Bruker Avance III HD 400 (при 400 и 100 МГц соответственно). При записи спектров ЯМР ¹Н внутренним стандартом служил ГМДС, при записи спектров ЯМР ¹³С – сигналы растворителя

 $(CDCl_3)$. Спектры ЯМР 13 С записывали с развязкой от протонов $(^{13}C\{^1H\})$. Чистоту продуктов и ход реакций контролировали методом ТСХ на пластинках Sorbfil, элюент — хлороформ—этилацетат, 9:1. Для колоночной хроматографии использовали силикагель Kieselgel 60 с размером частиц 0.063-0.2 мм.

В работе использовали гексафторфосфат аммония, бромэтан, 1-бромпропан, 1-бромбутан, 1-бромоктан, 1-бромоктан, 1-бромоктан, 1-бромдекан, 1-бромоктадекан, 2,4,6-триметилпиридин — все производства фирмы «Alfa Aesar»; особо чистый ацетонитрил марки «0», карбонат калия, петролейный эфир (40–70°С), дихлорметан (стабилизированный 0.5% этанола), этилацетат — российского производства. Исходные соединения 1а, 6 получали известным методом [3].

Синтез четвертичных солей 1,2,4-триазоло[3,4-а]изохинолин-2-ия (общая методика). Соединение 1а, б (3 ммоль) растворяли в толстостенной пробирке для микроволнового синтеза в 7 мл ацетонитрила, прибавляли бромалкан (12 ммоль для соединения 1а или 6 ммоль для соединения 16) и ставили в прибор для микроволнового синтеза на 1 ч при 100°С. Растворитель отгоняли под вакуумом. К маслянистому остатку прибавляли 15 мл этилацетата и одну каплю воды, нагревали до кипения и оставляли для кристаллизации (бромиды 26, в, к и 3а, в, к). Для получения гексафторфосфатов 4а-к, 5а-к маслянистый остаток растворяли в 10 мл этанола, прибавляли к раствору 489 мг (3 ммоль) аммония гексафторфосфата в 4 мл воды и оставляли для кристаллизации. Выпавшие кристаллы гексафторфосфатов 4а-к, 5а-к отфильтровывали и сушили на воздухе.

5,5-Диметил-2-пропил-5,6-дигидро-1,2,4-три-азоло[3,4-а]изохинолин-2-ия бромид, гидрат (26). Выход 242 мг (12%), белые кристаллы, т. пл. 89–90°С. ИК спектр (тонкая пленка), v, см⁻¹: 3416 ш (ОН), 2971, 2933, 2880, 1612, 1593, 1566, 1540, 1474, 1377, 1273, 1181, 1152, 738, 660. Спектр ЯМР 1 Н (400 МГц, CDCl₃), δ , м. д.: 1.06 т (3H, CH₃, $^3J_{\rm HH}$ 7.4 Гц), 1.84 с (6H, 2 CH₃), 2.14 секстет (2H, NCH₂CH₂CH₃, $^3J_{\rm HH}$ 7.4 Гц), 2.21 уш. с (2H, H₂O), 3.24 с (2H, C⁶H₂), 4.60 т (2H, NCH₂, $^3J_{\rm HH}$ 7.4 Гц), 7.40 д (1H, C⁷H, $^3J_{\rm HH}$ 7.6 Гц), 7.49 д. д. д (1H, С⁸H, $^3J_{\rm HH}$ 7.7, 7.7, $^4J_{\rm HH}$ 1.2 Гц), 7.59 д. д. д (1H, С⁹H, $^3J_{\rm HH}$ 7.6, 7.6, $^4J_{\rm HH}$ 1.2 Гц), 8.02 д. д. (1H, С¹⁰H, $^3J_{\rm HH}$ 7.8, $^4J_{\rm HH}$

1.4 Гц), 12.03 с (1H, $\mathrm{C}^3\mathrm{H}$). Спектр ЯМР $^{13}\mathrm{C}$ (100 МГц, CDCl₃), δ_C , м. д.: 10.69 (CH₃), 22.33 (<u>C</u>H₂CH₃), 27.43 (2 CH₃), 41.35 (C⁶), 54.30 (N⁺CH₂), 59.98 (C⁵), 119.18 (C⁸), 125.41 (C⁷), 128.45 (C¹⁰), 129.26 (C⁹), 133.32 (C^{6a}), 133.45 (С^{10a}), 141.32 (C³), 149.40 (С^{10b}). Массспектр, m/z: 242.1655 [С₁₅H₂₀N₃ + H]⁺ (вычислено для С₁₅H₂₀BrN₃: 242.1652).

2-Бутил-5,5-диметил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия бромид, гидрат (2в). Выход 422 мг (40%), белый аморфный порошок, т. пл. 132-133°C. ИК спектр (вазелиновое масло), v, cm⁻¹: 3411 (OH), 3346 (OH), 1609, 1590, 1565, 1543, 1276, 1187, 1155, 1002, 889, 785, 738. Спектр ЯМР 1 Н (400 МГц, ДМСО- d_{6}), δ , м. д.: 0.98 т (3H, Me, $^3J_{\rm HH}$ 7.4 Гц), 1.44 секстет (2H, С $\underline{\rm H}_2$ СH $_3$, 3J 7.2 Гц), 1.66 с (6H, CH₃), 2.00 квинтет (2H, С<u>Н</u>₂CH₂CH₃, ^{3}J 7.2 Γ _{II}), 3.34 c (2H, $C^{6}H_{2}$), 4.46 T (2H, $N^{+}CH_{2}$) 3 Ј 7.2 Гц), 7.52–7.57 м (2H, H^{7,8}), 7.64–7.68 м (1H, C^9 H,), 8.00 д (1H, C^{10} H, 3 J 7.6 Гц), 10.69 с (1H, C^3 H). Спектр ЯМР 13 С, $\delta_{\rm C}$, м. д.: 12.75 (СН₂СН₃), 18.47 (CH₂CH₂CH₃), 26.06 (2CH₃), 29.62 (NCH₂CH₂), 39.70 (C⁶), 51.51 (N⁺CH₂), 58.89 (C⁵), 119.05 (C⁸), 124.34 (C^7) , 127.76 (C^{10}) , 128.99 (C^9) , 132.58 (C^{6a}) , 134.09 (C^{10a}) , 140.39 (C^3) , 148.62 (C^{10b}) . Масс-спектр, m/z: 256.1809 $[C_{16}H_{22}N_3]^+$ (Вычислено для $C_{16}H_{22}N_3$: 256.1808).

5,5-Диметил-2-октадецил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия бромид, гидрат (2к). Выход 445 мг (28%), белый аморфный порошок, т. пл. 55–56°С. ИК спектр (тонкая пленка), v, см⁻¹: 3407 ш (OH), 2921, 2853, 1613, 1594, 1566, 1540, 1468, 1377, 1244, 1216, 1182, 1152, 845, 754, 661. Спектр ЯМР 1 Н (400 МГц, CDCl₃), δ , м. д.: 0.87 т (3H, Me, $^{3}J_{HH}$ 6.8 Гц), 1.24–1.29 м (28Н, СН₂), 1.31–1.45 м (4Н, CH₂), 1.83 с (6H, Me), 2.04–2.12 м (2H, NCH₂C<u>H</u>₂), 3.22 с (2H, C^6H_2), 4.62 т (2H, NCH_2 , $^3J_{HH}$ 7.5 Γ ц), 7.38 д (1H, C 7 H, $^3J_{\rm HH}$ 7.2 Гц), 7.48 д. д. д (1H, С 8 H, $^3J_{\rm HH}$ 7.6, 7.6, $^4J_{\rm HH}$ 1.2 Гц), 7.58 д. д. д (1H, С 9 H, $^3J_{\rm HH}$ 7.6, 7.6, ${}^{4}J_{\rm HH}$ 1.4 Гц), 8.02 д. д (1H, С¹⁰H, ${}^{3}J_{\rm HH}$ 7.6, $^4J_{\rm HH}$ 1.4 Гц), 12.05 с (1H, С 3 H). Спектр ЯМР 13 С (100 MΓ_{II}, CDCl₃), δ_C, м. д.: 13.89, 22.53, 26.25, 27.55, 28.90, 28.98, 29.21, 29.26, 29.31, 29.41, 29.50, 29.54, 29.57, 31.81, 41.59, 53.08, 60.09, 119.41, 125.51, 128.51, 129.29, 133.34, 133.56, 141.64, 149.47. Maccспектр, m/z: 452.3997 [C₃₀H₅₀N₃ + H]⁺ (вычислено для $C_{30}H_{50}N_3$: 452.3999).

5,5-Диметил-8,9-диметокси-2-этил-5,6-дигидро-1,2,4-триазоло[3,4-a]изохинолин-2-ия бромид, гидрат (3а). Выход 103 мг (14%), белый аморфный порошок, т. пл. 210–213°С. ИК спектр (вазелиновое масло), ν , см⁻¹: 3533, 3455, 3075, 1610, 1580, 1554, 1531, 1505, 1445, 1356, 1346, 1287, 1267, 1228, 1188, 1151, 1121, 1043, 1011, 907, 824, 739, 568. Спектр ЯМР 1 Н (400 МГц, ДМСО- d_{6}), δ , м. д.: 1.56–1.61 м $(9H, CH_3)$, 3.23 c $(2H, C^6H_2)$, 3.92 c $(3H, OCH_3)$, 3.93 с (3H, OCH₃), 4.72 к (2H, N⁺CH₂, ${}^{3}J_{\text{HH}}$ 7.3 Гц), 7.26 c (1H, C^7H), 7.43 c (1H, $C^{10}H$), 9.41 c (1H, C^3H). Спектр ЯМР 13 С (100 МГц, ДМСО- d_6), δ_C , м. д.: $13.20 \text{ (CH}_3), 25.48 \text{ (2CH}_3), 40.34 \text{ (C}^6), 47.42 \text{ (N}^+\text{CH}_2),$ 56.13 (C⁵), 58.43 (CH₃O), 58.43 (CH₃O), 108.46 (C¹⁰), $109.61 (C^7)$, $112.81 (C^{6a})$, $131.10 (C^{10a})$, $139.92 (C^3)$, 144.84 (С⁹), 148.08 (С⁸), 153.49 (С^{10b}). Масс-спектр, m/z: 288.1707 [C₁₆H₂₂N₃O₂ + H]⁺ (вычислено для C₁₆H₂₂N₃O₂: 288.1707).

2-Бутил-5,5-диметил-8,9-диметокси-5,6-дигидро-1,2,4-триазоло[3,4-a]изохинолин-2-ия бромид, гидрат (Зв). Выход 182 мг (46%), белый аморфный порошок, т. пл. 151–154°С. ИК спектр (тонкая пленка), v, cm⁻¹: 3416 III (OH), 2961, 2935, 2876, 1611, 1599, 1504, 1464, 1439, 1350, 1269, 1225, 1182, 1137, 1123, 1040, 747. Спектр ЯМР 1 Н (400 МГц, ДМСО- d_{6}), δ , м. д.: 1.00 т (3H, CH₃, ³J_{HH} 7.4 Гц), 1.42–1.55 м (2H, СН₂СН₃), 1.81 с (6H, СН₃), 2.03–2.10 квинтет (2H, NCH_2CH_2 , ${}^3J_{HH}$ 7.7 Γ II), 3.17 c (2H, C^6H_2), 3.96 c (3H, OCH₃), 3.97 c (3H, OCH₃), 4.60 T (2H, NCH₂, ${}^{3}J_{HH}$ 7.4 Γ ц), 6.86 с (1H, C^7 H), 7.41 с (1H, C^{10} H), 12.06 с (1H, C^3 H). Спектр ЯМР ¹³С (100 МГц, ДМСО- d_6), δ_C, м. д.: 13.44, 19.77, 27.46, 30.86, 41.04, 52.55, 56.25, 59.92, 107.36, 111.13, 111.62, 127.46, 141.06, 149.03, 149.22, 153.35. Macc-спектр, *m/z*: 316.2023 $[C_{18}H_{26}N_3O_2]^+$ (вычислено для $C_{18}H_{26}N_3O_2$: 316.2020).

5,5-Диметил-2-октадецил-8,9-диметокси-5,6-дигидро-1,2,4-триазоло[**3,4-***a*] изохинолин-2-ия бромид, гидрат (**3**к). Выход 961 мг (71%), бесцветные кристаллы, т. пл. 64–66°С. ИК спектр (вазелиновое масло), v, см⁻¹: 3459, 3422, 1641, 1603, 1550, 1508, 1441, 1351, 1277, 1265, 1221, 1185, 1044, 851, 819, 722. Спектр ЯМР ¹H (400 МГц, ДМСО- d_6), δ , м. д.: 0.89 т (3H, CH₃, $^3J_{\rm HH}$ 6.7 Гц), 1.27–1.31 м (28H, CH₂), 1.40 м (4H, CH₂), 1.65 с (6H, CH₃), 2.00 квинтет (2H, NCH₂C $\underline{\rm H}_2$, $^3J_{\rm HH}$ 7.3 Гц), 3.25 с (2H, С⁶H₂), 3.90 с (3H, OCH₃), 3.92 с (3H, OCH₃), 4.41 т (2H, NCH₂, $^3J_{\rm HH}$ 7.3 Гц), 7.16 с (1H, С⁷H), 7.42 с (1H, С¹⁰H), 10.50 с

(1H, C³H). Спектр ЯМР 13 С (100 МГц, ДМСО- d_6), $\delta_{\rm C}$, м. д.: 13.85, 22.03, 25.52, 26.27, 28.05, 28.36, 28.63, 28.74, 28.89, 28.94, 28.97, 31.24, 32.22, 35.00, 39.48, 51.89, 55.88, 55.92, 58.96, 107.00, 111.02, 112.30, 128.26, 140.24, 148.53, 149.10, 152.71. Масс-спектр, m/z: 512.4204 [${\rm C}_{32}{\rm H}_{54}{\rm N}_3{\rm O}_2$] $^+$ (вычислено для ${\rm C}_{32}{\rm H}_{54}{\rm N}_3{\rm O}_2$: 512.4211).

5,5-Диметил-2-этил-5,6-дигидро-1,2,4-три-азоло[3,4-а]изохинолин-2-ия гексафторфосфат (4а). Выход 692 мг (62%), бесцветные кристаллы, т. пл. 153–156°С. ИК спектр (вазелиновое масло), ν , см⁻¹: 3166, 1612, 1596, 1567, 1544, 1343, 1179, 1148, 971, 876, 846, 745, 729, 558. Спектр ЯМР 1 Н (400 МГц, ДМСО- d_6), δ , м. д.: 1.57 т (3H, CH $_3$, $^3J_{\rm HH}$ 7.3 Гц), 1.60 с (6H, CH $_3$), 3.28 с (2H, C 6 H $_2$), 4.43 к (2H, N $^+$ CH $_2$, $^3J_{\rm HH}$ 7.3 Гц), 7.50–7.56 м (2H, С 7,8 H), 7.65 д. д. д (1H, С 9 H, $^3J_{\rm HH}$ 7.6, 7.5, $^4J_{\rm HH}$ 1.4 Гц), 8.00 д (1H, С 10 H, $^3J_{\rm HH}$ 7.6 Гц), 10.28 с (1H, С 3 H). Спектр ЯМР 13 С (100 МГц, ДМСО- d_6), δ _С, м. д.: 13.57, 26.29, 40.67, 47.60, 59.09, 119.44, 124.84, 128.33, 129.51, 133.14, 134.49, 140.12, 149.09. Масс-спектр, m/z: 228.1497 [С $_{14}$ H $_{18}$ N $_3$] $^+$ (вычислено для С $_{14}$ H $_{18}$ N $_3$: 228.1495).

5,5-Диметил-2-пропил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гексафторфосфат **(46).** Выход 855 мг (74%), бесцветные кристаллы, т. пл. 151–153°C. ИК спектр (вазелиновое масло), v, cm⁻¹: 3169, 1613, 1596, 1569, 1553, 1377, 1216, 1184, 1152, 867, 834, 788, 558. Спектр ЯМР ¹Н (400 МГц, ДМСО- d_6), δ , м. д.: 1.01 т (3H, CH₃, ${}^3J_{\rm HH}$ 7.3 Гц), 1.63 с (6H, CH₃), 1.96–2.05 сексет (2H, С $\underline{\text{H}}_2$ СН $_3$, 3J 7.3 Γ ц), 3.31 с (2H, C^6H_2), 4.38 т (2H, NCH_2 , $^3J_{HH}$ 7.1 Γ ц), 7.51–7.57 м (2H, $\mathbb{C}^{7,8}$ H), 7.66 д. д. д (1H, \mathbb{C}^{9} H, $^3J_{\rm HH}$ 7.7, 7.6 $^4J_{\rm HH}$ 1.3 Гц), 8.00 д. д (1H, С 10 H, $^3J_{\rm HH}$ 7.7, ${}^4J_{\rm HH}$ 1.3 Гц), 10.29 с (1H, ${\rm C^3H}$). Спектр ЯМР ${}^{13}{\rm C}$ (100 МГц, ДМСО- d_6), δ_C , м. д.: 10.28, 21.32, 26.13, 40.61, 53.59, 59.10, 119.19, 124.62, 128.03, 129.21, 132.90, 134.24, 140.10, 148.08. Масс-спектр, *m/z*: $242.1650 [C_{15}H_{20}N_3]^+$ (вычислено для $C_{15}H_{20}N_3$: 242.1652).

2-Бутил-5,5-диметил-5,6-дигидро-1,2,4-три-азоло[3,4-*a***]изохинолин-2-ия гексафторфосфат** (**4в**). Выход 461 мг (23%), белый аморфный порошок, т. пл. 121–123°С. ИК спектр (тонкая пленка), ν , см⁻¹: 3163, 3072, 2965, 2938, 2877, 1613, 1595, 1568, 1546, 1474, 1381, 1217, 1180, 1148, 835, 736, 558. Спектр ЯМР ¹H (400 МГц, CDCl₃), δ , м. д.: 0.97 т (3H, CH₃, ${}^3J_{\text{HH}}$ 7.4 Гц), 1.44 секстет (2H, C $\underline{\text{H}}_2$ CH₃, ${}^3J_{\text{HH}}$ 7.4 Гц),

1.68 с (6H, CH₃), 2.02 квинтет (2H, NCH₂C<u>H</u>₂), 3.20 с (2H, C⁶H₂), 4.40 т (2H, NC<u>H</u>₂, ${}^3J_{\rm HH}$ 7.6 Гц), 7.37 д (1H, C⁷H, ${}^3J_{\rm HH}$ 7.6 Гц), 7.45 д. д. д (1H, C⁸H, ${}^3J_{\rm HH}$ 7.6, 7.7, ${}^4J_{\rm HH}$ 1.2 Гц), 7.55 д. д. д. (1H, С⁹H, ${}^3J_{\rm HH}$ 7.8, 7.6, ${}^4J_{\rm HH}$ 1.4 Гц), 7.99 д. д (1H, С¹⁰H, ${}^3J_{\rm HH}$ 7.8, ${}^4J_{\rm HH}$ 1.4 Гц), 9.45 с (1H, С³H). Спектр ЯМР 13 С (100 МГц, CDCl₃), $\delta_{\rm C}$, м. д.: 13.29, 19.50, 26.43, 30.48, 41.06, 52.84, 60.16, 119.32, 125.47, 128.40, 129.36, 133.35, 133.82, 138.94, 149.96. Масс-спектр, m/z: 256.1809 [С₁₆H₂₂N₃] $^+$ (вычислено для С₁₆H₂₂N₃: 256.1808).

5,5-Диметил-5,6-дигидро-2-пентил-1,2,4-триазоло[3,4-а]изохинолин-2-ия гексафторфосфат **(4г).** Выход 450 мг (36%), бесцветные кристаллы, т. пл. 110-113°С. ИК спектр (вазелиновое масло), v, cm^{-1} : 3139, 3090, 1612, 1596, 1568, 1554, 1400, 1227, 1179, 1153, 879, 849, 834, 784, 736, 558. Спектр ЯМР 1 Н (400 МГц, ДМСО- d_{6}), δ , м. д.: 0.95 т (3H, CH₃, $^{3}J_{HH}$ 7.1 Гц), 1.39–1.43 м (4H, С $\underline{\text{H}}_{2}$ С $\underline{\text{H}}_{2}$ С $\underline{\text{H}}_{3}$), 1.64 с $(6H, CH_3), 2.00$ квинтет $(2H, CH_2CH_2CH_2CH_3, {}^3J_{HH})$ 7.4 Гц), 3.34 с (2H, C^6H_2), 4.42 т (2H, NCH_2 , $^3J_{HH}$ 7.3 Γ ц), 7.55–7.61 м (2H, $\mathbb{C}^{7,8}$ H), 7.70 д. д. д (1H, \mathbb{C}^{9} H, $^3J_{\rm HH}$ 7.6, 7.6, $^4J_{\rm HH}$ 1.4 Гц), 8.04 д. д (1H, С 10 H, $^3J_{\rm HH}$ $7.7, {}^{4}J_{HH}$ 1.4 Гц), 10.39 с (1H, С³H). Спектр ЯМР ¹³С (100 МГц, ДМСО- d_6), δ_C , м. д.: 13.78, 21.62, 26.32, 27.74, 27.86, 52.07, 59.08, 119.45, 124.86, 128.34, 129.53, 133.17, 134.55, 140.50, 149.12. Масс-спектр, m/z: 270.1963 [C₁₇H₂₄N₃ + H]⁺ (вычислено для $C_{17}H_{24}N_3$: 270.1965).

2-Гексил-5,5-диметил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гексафторфосфат **(4д).** Выход 635 мг (49%), бесцветные кристаллы, т. пл. 65-68°С. ИК спектр (вазелиновое масло), v, cm^{-1} : 3160, 1614, 1597, 1571, 1554, 1399, 1342, 1276, 12245, 1183, 1151, 839, 776, 730, 558. Спектр ЯМР ¹Н (400 МГц, ДМСО- d_6), δ , м. д.: 0.90 т (3H, Me, ${}^3J_{\rm HH}$ 7.1 Γ ц), 1.33–1.37 м (4H, $CH_2CH_2CH_3$), 1.45 м (2H, $NCH_2CH_2CH_2$), 1.63 с (6H, Me), 1.95–2.02 квинтет $(2H, NCH₂CH₂, ³J_{HH}, 7.4 Гц), 3.12 с <math>(2H, C^6H_2), 4.40$ т (2H, NCH₂, ³J_{HH}, 7.4 Гц), 7.51–7.57 м <math>(2H, C^{7,8}H),7.66 д. д. д (1H, C^9 H, $^3J_{\rm HH}$ 7.6, 7.6 $^4J_{\rm HH}$ 1.4 Γ ц), 8.00 д. д (1H, C^{10} H, $^3J_{\rm HH}$ 7.7, $^4J_{\rm HH}$ 1.3 Γ ц), 10.32 с (1H, C^3 H). Спектр ЯМР ¹³С (100 МГц, ДМСО- d_6), δ_C , м. д.: 13.41, 21.49, 24.97, 26.11, 27.75, 30.27, 51.97, 58.99, 119.17, 124.56, 128.00, 129.19, 132.85, 134.21, 140.15, 148.94. Масс-спектр, *m/z*: 284.2126 $[C_{18}H_{26}N_3]^+$ (вычислено для $C_{18}H_{26}N_3$: 284.2121).

2-Гептил-5,5-диметил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гексафторфосфат **(4е).** Выход 518 мг (39%), бесцветные кристаллы, т. пл. 93–94°С. ИК спектр (тонкая пленка), v, см⁻¹: 3166, 3071, 2956, 2930, 2859, 1613, 1595, 1568, 1545, 1400, 1275, 12317, 1181, 1148, 841, 779, 735, 558. Спектр ЯМР ¹H (400 МГц, CDCl₃), δ , м. д.: 0.87 т (3H, CH_3 , ${}^3J_{HH}$ 7.0 Γ Ц), 1.27–1.33 м (4H, CH_2), 1.34–1.38 м (4H, CH₂), 1.70 с (6H, CH₃), 2.00–2.08 квинтет (2H, NCH_2CH_2 , ${}^3J_{HH}$ 7.6 Гц), 3.21 с (2H, C^6H_2), 4.42 т (2H, NCH₂, ${}^{3}J_{HH}$ 7.6 Гц), 7.37 д (1H, С⁷H, ${}^{3}J_{HH}$ 7.6 Гц), 7.45 д. д. д (1H, C^8 H, $^3J_{HH}$ 7.8, 7.6, $^4J_{HH}$ 1.3 Γ ц), 7.56 д. д. д (1H, C^9 H, $^3J_{\rm HH}$ 7.8, 7.6, $^4J_{\rm HH}$ 1.4 Γ ц), 8.01 д. д (1H, C^{10} H, $^3J_{\rm HH}$ 7.8, $^4J_{\rm HH}$ 1.3), 9.53 с (1H, $C^{3}H$). Спектр ЯМР ^{13}C (100 МГц, CDCl₃), δ_{C} , м. д.: 13.96, 22.48, 26.25, 26.56, 28.56, 28.68, 31.49, 41.24, 53.16, 60.20, 119.36, 125.56, 128.49, 129.35, 133.40, 133.75, 139.08, 149.97. Масс-спектр, *m/z*: 298.2280 $[C_{19}H_{28}N_3]^+$ (вычислено для $C_{19}H_{28}N_3$: 298.2278).

5,5-Диметил-2-октил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гексафторфосфат **(4ж).** Выход 676 мг (49%), бесцветные кристаллы, т. пл. 54–56°C. Спектр ЯМР ¹H (400 МГц, CDCl₃), δ , м. д.: 0.86 т (3H, CH₃, ${}^3J_{\rm HH}$ 6.7 Гц), 1.26–1.33 м (6H, CH₂), 1.35-1.45 м (4H, CH₂), 1.69 с (6H, CH₃), 1.00–2.08 м (2H, NCH₂C \underline{H}_2 , ³ J_{HH} 7.3 Гц), 3.20 с $(2H, C^6H_2), 4.41$ т $(2H, NCH_2, {}^3J_{HH}, 7.3$ Гц), 7.37 д (1H, C^7 H, $^3J_{\rm HH}$ 7.6 Гц), 7.46 д. д. д (1H, C^8 H, $^3J_{\rm HH}$ 7.7, 7.7, ${}^{4}J_{\rm HH}$ 1.2 Гц), 7.56 д. д. д (1H, С 9 H, ${}^{3}J_{\rm HH}$ 7.6, 7.6, ${}^{4}J_{\text{HH}}$ 1.4 Гц), 8.00 д. д (1H, С 10 H, ${}^{3}J_{\text{HH}}$ 7.8, ${}^{4}J_{\text{HH}}$ 1.3 Γ ц), 9.51 с (1H, C^3 H). Спектр ЯМР ¹³С (100 М Γ ц, СDCl₃), δ_C, м. д.: 14.00, 22.55, 26.27, 26.52, 28.66, 28.85, 28.96, 31.67, 41.17, 53.12, 60.17, 119.33, 125,52, 128.46, 129.35, 133.39, 133.76, 139.03, 149.96. Maccспектр, m/z: 312.2440 [C₂₀H₃₀N₃]⁺ (вычислено для $C_{20}H_{30}N_3$: 312.2434).

2-Децил-5,5-диметил-5,6-дигидро-1,2,4-три-азоло[3,4-*а***]изохинолин-2-ия гексафторфосфат (43).** Выход 658 мг (45%), бесцветные кристаллы, т. пл. 45–47°С. ИК спектр (тонкая пленка), v, см⁻¹: 3166, 3071, 2926, 2856, 1613, 1595, 1568, 1545, 1475, 1381, 1217, 1181, 1148, 840, 735, 558. Спектр ЯМР 1 H (400 МГц, CDCl₃), δ , м. д.: 0.86 т (3H, CH₃, 3 J_{HH} 6.9 Гц), 1.26–1.30 м (10H, CH₂), 1.34–1.44 м (4H, CH₂), 1.70 с (6H, CH₃), 2.00–2.08 квинтет (2H, NCH₂C<u>H</u>₂, 3 J_{HH} 7.6 Гц), 3.20 с (2H, C⁶H₂), 4.41 т (2H, NCH₂, 3 J_{HH} 7.6 Гц), 7.37 д (1H, C⁷H, 3 J_{HH} 7.6 Гц), 7.46 д. д. д

(1H, C^8 H, $^3J_{\rm HH}$ 7.6, 7.6, $^4J_{\rm HH}$ 1.3 Γ ц), 7.57 д. д. д (1H, C^9 H, $^3J_{\rm HH}$ 7.6, 7.6, $^4J_{\rm HH}$ 1.4 Γ ц), 8.01 д. д (1H, C^{10} H, $^3J_{\rm HH}$ 7.6, $^4J_{\rm HH}$ 1.5 Γ ц), 9.53 с (1H, C^3 H). Спектр ЯМР 13 С (100 М Γ ц, CDCl $_3$), $\delta_{\rm C}$, м. д.: 14.03, 22.61, 26.27, 26.55, 28.68, 28.90, 29.22, 29.32, 29.43, 31.82, 41.22, 53.14, 60.16, 119.31, 125.55, 128.48, 129.31, 133.39, 133.69, 139.03, 149.94. Масс-спектр, m/z: 340.2747 $[C_{22}H_{34}N_3]^+$ (вычислено для $C_{22}H_{34}N_3$: 340.2747).

5,5-Диметил-2-додецил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гексафторфосфат **(4и).** Выход 1.078 г (70%), бесцветные кристаллы, т. пл. 41–43°С. ИК спектр (тонкая пленка), v, см⁻¹: 3165, 3071, 2925, 2855, 1613, 1595, 1568, 1546, 1400, 1274, 1217, 1181, 1148, 876, 843, 735, 558. Спектр ЯМР 1 Н (400 МГц, ДМСО- d_{6}), δ , м. д.: 0.85 т (3H, CH_3 , ${}^3J_{HH}$ 6.9 Γ ц), 1.23–1.29 м (14H, CH_2), 1.34 м (4H, CH₂), 1.60 с (6H, CH₃), 1.96 квинтет (2H, NCH₂CH₂, $^{3}J_{\rm HH}$ 7.3 Гц), 3.30 с (2H, С 6 H₂), 4.39 т (2H, N $^{+}$ CH₂, $^{3}J_{\rm HH}$ 7.3 Гц), 7.51–7.56 м (2H, С^{7,8}H), 7.66 д. д. д (1H, C^9 H, $^3J_{HH}$ 7.6, 7.5, $^4J_{HH}$ 1.2 Гц), 7.99 д (1H, C^{10} H, $^3J_{HH}$ 7.5 Γ ц), 10.34 с (1H, C^3 H). Спектр ЯМР 13 С (100 М Γ ц, ДМСО- d_6), δ_C , м. д.: 13.31, 21.57, 26.02, 27.13, 27.65, 27.94, 28.19, 28.31, 28.38, 28.46, 28.54, 30.84, 31.94, 34.33, 51.93, 119.06, 124.42, 127.85, 129.06, 132.73, 134.07, 140.03, 148.88. Macc-спектр, m/z: 368.3061 $[C_{24}H_{38}N_3]^+$ (вычислено для $C_{24}H_{38}N_3$: 368.3060).

5,5-Диметил-2-октадецил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гексафторфосфат **(4к).** Выход 1.12 г (62%), белый аморфный порошок, т. пл. 77–79°С. ИК спектр (тонкая пленка), v, cm⁻¹: 3170, 2955, 2920, 2851, 1597, 1569, 1548, 1217, 1182, 1150, 838, 777, 722, 647, 558. Спектр ЯМР ¹H (400 МГц, CDCl₃), δ, м. д.: 0.87 т (3H, CH₃, $^{3}J_{\rm HH}$ 6.9 Гц), 1.25–1.31 м (20H, CH₂), 1.38–1.45 м (8H, CH₂), 1.71 с (6H, CH₃), 1.80–1.88 м (4H, CH₂), 2.05 квинтет (2H, NCH₂C \underline{H}_2 , ${}^3J_{HH}$ 7.4 Γ ц), 3.20 с $(2H, C^6H_2)$, 4.42 т $(2H, NCH_2, {}^3J_{HH}, 7.6)$, 7.37 д (1H, C^7 H, $^3J_{HH}$ 7.6 Γ ц), 7.47 д. д. д (1H, C^8 H, $^3J_{HH}$ 7.6, 7.6, $^4J_{
m HH}$ 1.2 Гц), 7.57 д. д. д (1H, С 9 H, $^3J_{
m HH}$ 7.6, 7.6, $^4J_{
m HH}$ 1.4 Гц), 8.01 д. д (1H, C^{10} H, $^3J_{HH}$ 7.8, $^4J_{HH}$ 1.4), 9.58 с (1H, C^3 H). Спектр ЯМР ¹³С (100 МГц, CDCl₃), δ_C , м. д.: 14.06, 22.66, 26.33, 26.60, 28.19, 28.72, 28.77, 28.96, 29.34, 29.38, 29.43, 29.53, 29.60, 29.64, 29.68, 31.92, 32.87, 33.89, 41.30, 53.18, 60.19, 119.40, 125.59, 128.49, 129.32, 133.38, 133.73, 139.18, 149.94. Maccспектр, m/z: 452.3998 $[C_{30}H_{50}N_3]^+$ (вычислено для $C_{30}H_{50}N_3$: 452.3999).

5,5-Диметил-8,9-диметокси-2-этил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гексафторфосфат (5а). Выход 888 мг (68%), бесцветные кристаллы, т. пл. 194-196°С. ИК спектр (вазелиновое масло), ν , см⁻¹: 3157, 3100, 1613, 1599, 1572, 1504, 1343, 1273, 1239, 1225, 1183, 1138, 1124, 1039, 987, 970, 875, 840, 796, 747, 713, 631, 558. Спектр ЯМР ¹H (400 МГц, CDCl₃), δ, м. д.: 1.65 т (3H, CH₃, ³J_{HH} 7.2 Γ ц), 1.68 с (6H, CH₃), 3.12 с (2H, C⁶H₂), 3.94 с (6H, OCH₃), 4.45 к (2H, NCH₂, ³J_{HH} 7.2 Гц), 6.83 с $(1H, C^7H)$, 7.41 с $(1H, C^{10}H)$, 9.43 с $(1H, C^3H)$. Спектр ЯМР ¹³С (100 МГц, CDCl₃), δ_C, м. д.: 13.77, 26.51, 40.91, 48.36, 56.27, 56.34, 60.12, 107.53, 111.30, 111.67, 127.75, 138.49, 149.28, 150.20, 153.44. Maccспектр, m/z: 288.1707 [C₁₆H₂₂N₃O₂]⁺ (вычислено для $C_{16}H_{22}N_3O_2$: 288.1707).

5,5-Диметил-8,9-диметокси-2-пропил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гекса**фторфосфат (5б).** Выход 893 мг (67%), бесцветные кристаллы, т. пл. 184-187°С. ИК спектр (вазелиновое масло), v, см⁻¹: 3166, 3078, 1601, 1570, 1532, 1504, 1440, 1267, 1226, 1184, 1142, 1125, 1039, 985, 878, 843, 748, 640, 557. Спектр ЯМР 1 Н (400 МГц, ДМСО- d_{6}), δ , м. д.: 1.01 т (3H, CH₃, ${}^3J_{\text{HH}}$ 7.5 Гц), 1.61 с (6H, CH₃), 1.94-2.06 M (2H, CH₂CH₃), 3.21 c (2H, C⁶H₂), 3.87 c $(3H, OCH_3), 3.89 c (3H, OCH_3), 4.34 T (2H, NCH_2, {}^3J_{HH})$ 7.1 Γ ц), 7.11 c (1H, C^7 H), 7.41 c (1H, C^{10} H), 10.25 c $(1H, C^3H)$. Спектр ЯМР 13 С $(100 MГц, ДМСО-<math>d_6)$, $\delta_{\rm C}$, м. д.: 10.29, 21.31, 26.05, 39.35, 53.29, 55.73, 55.79, 58.83, 107.14, 110.87, 112.23, 128.08, 139.86, 148.47, 149.05, 152.67. Macc-спектр, m/z: 302.1864 $[C_{17}H_{24}N_3O_2]^+$ (вычислено для $C_{17}H_{24}N_3O_2$: 302.1863).

2-Бутил-5,5-диметил-8,9-диметокси-5,6-дигидро-1,2,4-триазоло[**3,4-***a*] изохинолин-**2-**ия гексафторфосфат (**5в**). Выход 1.016 г (74%), бесцветные кристаллы, т. пл. 174–176°С. ИК спектр (вазелиновое масло), v, см⁻¹: 3157, 3079, 1600, 1569, 1547, 1532, 1506, 14452, 1407, 13564, 1272, 1223, 1179, 1136, 1122, 1041, 985, 880, 845, 744, 558. Спектр ЯМР ¹H (400 МГц, ДМСО- d_6), δ , м. д.: 1.00 т (3H, CH₃, $^3J_{\text{HH}}$ 7.3 Гц), 1.45 секстет (2H, С $\underline{\text{H}}_2\text{CH}_3$, $^3J_{\text{HH}}$ 7.4 Гц), 1.64 с (6H, CH₃), 1.98 квинтет (2H, С $\underline{\text{H}}_2\text{CH}_2\text{CH}_3$, $^3J_{\text{HH}}$ 7.3 Гц), 3.24 с (2H, С⁶H₂), 3.90 с (3H, ОСН₃), 3.92 с (3H, ОСН₃), 4.40 т (2H, NCH₂, $^3J_{\text{HH}}$ 7.2 Гц), 7.13 с (1H, С⁷H), 7.44 с (1H, С¹⁰H), 10.27 с (1H, С³H). Спектр ЯМР ¹³С (100 МГц, ДМСО- d_6), δ _С, м. д.: 13.29, 18.87, 26.22, 30.06, 39.47, 51.69, 55.87,

 $55.90,\,58.97,\,107.05,\,111.03,\,112.27,\,128.26,\,140.08,\,148.55,\,149.20,\,152.71.$ Масс-спектр, $\emph{m/z}$: 316.2021 [$\textit{C}_{18}\textit{H}_{26}\textit{N}_{3}\textit{O}_{2}$] + (вычислено для $\textit{C}_{18}\textit{H}_{26}\textit{N}_{3}\textit{O}_{2}$: 316.2020).

5,5-Диметил-8,9-диметокси-2-пентил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гексафторфосфат (5г). Выход 809 мг (57%), бесцветные кристаллы, т. пл. 139-142°С. ИК спектр (тонкая пленка), ν , см⁻¹: 3162, 3079, 2959, 2873, 1601, 1572, 1549, 1506, 1467, 1439, 1408, 1380, 1352, 1270, 1226, 1181, 1136, 11231, 1041, 985, 876, 840, 750, 558. Спектр ЯМР ¹Н (400 МГц, CDCl₃), δ , м. д.: 0.89–0.93 м (3H, CH₃), 1.36–1.40 м (4H, CH₂CH₂CH₃), 1.67 с (6H, CH₃), 2.04 квинтет (2H, NCH₂C $\underline{\text{H}}_2$, ${}^3J_{\text{HH}}$ 7.5 Γ ц), 3.14 с (2H, C^6 H₂), 3.95 с (3H, OCH₃), 3.95 с $(3H, OCH_3), 4.37$ т $(2H, NCH_2, {}^3J_{HH}, 7.6$ Гц), 6.86 с $(1H, C^7H)$, 7.39 с $(1H, C^{10}H)$, 9.38 с $(1H, C^3H)$. Спектр ЯМР 13 С (100 МГц, CDCl₃), $\delta_{\rm C}$, м. д.: 13.66, 21.91, 26.41, 28.25, 28.31, 40.66, 52.95, 56.22, 56.27, 60.11, 107.41, 111.13, 111.74, 127.85, 138.47, 149.15, 150.15, 153.40. Масс-спектр, m/z: 330.2179 [С₁₉H₂₈N₃O₂]⁺ (вычислено для $C_{19}H_{28}N_3O_2$: 330.2176).

2-Гексил-5,5-диметил-8,9-диметокси-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гексафторфосфат (5д). Выход 783 мг (71%), белый аморфный порошок, т. пл. 134-136°С. ИК спектр (вазелиновое масло), ν , см⁻¹: 3172, 3085, 1603, 1551, 1505, 1434, 1400, 1353, 1275, 1262, 1183, 1138, 1122, 1043, 985, 963, 878, 848, 833, 749, 558. Спектр ЯМР ¹Н (400 МГц, ДМСО-*d*₆), δ, м. д.: 0.92 т (3H, CH₃, $^{3}J_{\rm HH}$ 7.1 Гц), 1.34–1.39 м (4H, CH₂), 1.39–1.48 м (2H, CH_2), 1.64 с (6H, CH_3), 2.00 квинтет (2H, $NCH_2C\underline{H}_2$, $^{3}J_{\text{HH}}$ 7.3 Гц), 3.24 с (2H, C 6 H₂), 3.90 с (3H, OCH₃), 3.92 с (3H, OCH₃), 4.40 т (2H, NCH₂, ${}^{3}J_{\rm HH}$ 7.3 Γ ц), $7.12 \text{ c} (1\text{H}, \text{C}^7\text{H}), 7.45 \text{ c} (1\text{H}, \text{C}^{10}\text{H}), 10.26 \text{ c} (1\text{H}, \text{C}^7\text{H}).$ Спектр ЯМР 13 С (100 МГц, ДМСО- d_6), δ_C , м. д.: 13.27, 21.39, 24.91, 26.08, 27.69, 30.19, 51.86, 55.82, 55.95, 58.95, 107.63, 110.96, 112.53, 128.15, 139.73, 148.66, 149.05, 152.93. Масс-спектр, т/z: 344.2337 $[C_{20}H_{30}N_3O_2]^+$ (вычислено для $C_{20}H_{30}N_3O_2$: 344.2333).

2-Гептил-5,5-диметил-8,9-диметокси-5,6-дигидро-1,2,4-триазоло[3,4-*a***]изохинолин-2-ия гексафторфосфат (5e**). Выход 1.203 г (80%), бесцветные кристаллы, т. пл. 137–140°С. ИК спектр (тонкая пленка), v, см⁻¹: 3163, 3079, 2956, 2931, 2859, 1613, 1601, 1572, 1549, 1505, 1481, 1467, 1439, 1409, 1380, 1352, 1271, 1226, 1182, 1137, 1121, 1041, 985, 877, 833, 748, 558. Спектр ЯМР ¹Н (400 МГц, CDCl₃), δ,

м. д.: 0.89 т (3H, CH₃, ${}^3J_{\rm HH}$ 7.1 Гц), $1.28{-}1.33$ м (4H, CH₂CH₂CH₃), $1.36{-}1.47$ м (4H, NCH₂CH₂CH₂CH₂), 1.71 с (6H, CH₃), 2.06 квинтет (2H, NCH₂CH₂), 3.16 с (2H, C⁶H₂), 3.97 с (3H, OCH₃), 3.97 с (3H, OCH₃), 4.40 т (2H, NCH₂, ${}^3J_{\rm HH}$ 7.6), 6.87 с (1H, C⁷H), 7.42 с (1H, C¹⁰H), 9.47 с (1H, C³H). Спектр ЯМР ¹³С (100 МГц, CDCl₃), $\delta_{\rm C}$, м. д.: 13.89, 22.40, 26.15, 26.44, 28.48, 28.66, 31.41, 40.67, 40.71, 52.96, 56.22, 56.26, 60.10, 107.41, 111.13, 111.72, 127.81, 127.85, 138.55, 149.17, 150.13, 153.42. Масс-спектр, m/z: 358.2490 [С₂₁H₃₂N₃O₂]⁺ (вычислено для С₂₁H₃₂N₃O₂: 358.2490).

5,5-Диметил-8,9-диметокси-2-октил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гексафторфосфат (5ж). Выход 580 мг (56%), бесцветные кристаллы, т. пл. 127-128°С. ИК спектр (тонкая пленка), v, см⁻¹: 3162, 3079, 2979, 2858, 1601, 1572, 1549, 1506, 1481, 1467, 1408, 1380, 1352, 1271, 1226, 1182, 1137, 1121, 1041, 985, 877, 842, 748, 558. Спектр ЯМР 1 Н (400 МГц, CDCl₃), δ , м.д.: 0.86 т (3H, CH₃, $^{3}J_{HH}$ 6.9 Γц), 1.22–1.31 м (6H, CH₂), 1.34–1.45 м (4H, CH₂), 1.69 с (6H, CH₃), 2.04 квинтет (2H, NCH₂C $\underline{\text{H}}_2$, ${}^3J_{\text{HH}}$ 7.7 Γ ц), 3.14 c (2H, C^6 H₂), 3.95 c (6H, OCH₃), 4.38 т $(2H, NCH₂, {}^{3}J_{HH}, 7.6), 6.84 c (1H, C⁷H), 7.40 c (1H, C⁸H), 7.40 c (1H,$ C^{10} H), 9.46 с (1H, C^{3} H). Спектр ЯМР 13 С (100 МГц, СDCl₃), δ_C, м. д.: 13.98, 22.52, 26.25, 26.50, 28.72, 28.83, 28.93, 31.64, 40.78, 53.01, 56.26, 56.30, 60.14, 107.45, 111.18, 111.73, 127.82, 138.61, 149.22, 150.10, 153.46. Macc-спектр, *m/z*: 372.2652 [С₂₂H₃₄N₃O₂ + H]⁺ (вычислено для $C_{22}H_{35}N_3O_2$ ⁺: 372.2646).

2-Децил-5,5-диметил-8,9-диметокси-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гекса**фторфосфат (53).** Выход 636 мг (51%), бесцветные кристаллы, т. пл. 86-89°С. ИК спектр (вазелиновое масло), v, см⁻¹: 3172, 3087, 1603, 1573, 1553, 1507, 1437, 1339, 1352, 1289, 1263, 1227, 1213, 1181, 1139, 1121, 1042, 985, 868, 835, 746, 558. Спектр ЯМР ¹Н (400 МГц, ДМСО- d_6), δ , м. д.: 0.89 т (3H, CH₃, ${}^3J_{\rm HH}$ 6.9 Гц), 1.31–1.36 м (10H, CH₂), 1.39–1.45 м (4H, CH_2), 1.64 с (6H, CH_3), 2.01 квинтет ($NCH_2C\underline{H}_2$, ${}^3J_{HH}$ 7.3 Γ ц), 3.24 c (2H, C^6H_2), 3.90 c (3H, OCH₃), 3.92 c (3H, OCH₃), 4.40 т (NCH₂, ³J_{HH} 7.2 Гц), 7.13 с (1H, $C^{7}H$), 7.44 c (1H, $C^{10}H$), 10.33 c (1H, $C^{3}H$). Chektp ЯМР ¹³С (100 МГц, ДМСО- d_6), δ_C , м. д.: 13.50, 21.71, 25.31, 26.11, 27.79, 28.07, 28.30, 28.45, 28.55, 30.96, 51.84, 55.80, 55.88, 58.90, 107.37, 110.93, 112.40, 128.14, 139.86, 148.58, 149.02, 152.81. Масс-спектр, m/z: 400.2961 [C₂₄H₃₈N₃O₂ + H]⁺ (вычислено для C₂₄H₃₉N₃O₂⁺: 400.2959).

5,5-Диметил-8,9-диметокси-2-додецил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гексафторфосфат (5и). Выход 926 мг (54%), бесцветные кристаллы, т. пл. 69–71°С. ИК спектр (тонкая пленка), v, cm⁻¹: 3160, 3083, 2926, 2855, 1601, 1572, 1549, 1481, 1438, 1400, 1352, 1271, 1226, 1181, 1137, 1121, 1041, 985, 877, 843, 748, 558. Спектр ЯМР ¹Н (400 МГц, ДМСО- d_6), δ , м. д.: 0.90 т (3H, CH₃, ${}^3J_{\rm HH}$ 7.0 Гц), 1.25–1.33 m (14H, CH₂), 1.37–1.48 m (4H, CH₂), 1.64 c (6H, CH₃), 2.01 квинтет (2H, NCH₂C $\underline{\text{H}}_2$, $^3J_{\text{HH}}$ 6.7 Гц), $3.24 \text{ c} (2H, C^6H_2), 3.90 \text{ c} (3H, OCH_3), 3.92 \text{ c} (3H, OCH_3)$ OCH₃), 4.39 т (2H, NCH₂, ${}^{3}J_{HH}$ 7.3 Гц), 7.13 с (1H, C^7 H), 7.44 с (1H, C^{10} H), 10.27 с (1H, C^3 H). Спектр ЯМР ¹³С (100 МГц, ДМСО- d_6), δ_C , м. д.: 13.88, 22.06, 25.54, 26.26, 28.07, 28.38, 28.68, 28.75, 28.91, 28.98, 29.00, 31.28, 32.25, 35.08, 51.98, 55.91, 59.01, 107.05, 111.05, 112.31, 128.29, 140.12, 148.59, 149.21, 152.70. Масс-спектр, m/z: 428.3276 [C₂₆H₄₂N₃O₂ + H]⁺ (вычислено для $C_{26}H_{43}N_3O_2^+$: 428.3272).

5,5-Диметил-8,9-диметокси-2-октадецил-5,6-дигидро-1,2,4-триазоло[3,4-а]изохинолин-2-ия гексафторфосфат (5к). Выход 881 мг (57%), белый аморфный порошок, т. пл. 46-49°С. ИК спектр (вазелиновое масло), ν , см⁻¹: 3162, 3077, 1613, 1602, 1506. 1466, 1410, 1352, 1271, 1227, 1181, 1137, 1121, 1043, 1028, 986, 881, 849, 837, 747, 721, 558. Спектр ЯМР ¹Н (400 МГц, ДМСО-*d*₆), δ, м. д.: 0.85 т (3H, СН₃, $^{3}J_{\rm HH}$ 6.9 Гц), 1.23–1.29 м (26H, CH₂), 1.31–1.41 м (4H, CH_2), 1.59 с (6H, CH_3), 1.96 квинтет (2H, $NCH_2C\underline{H}_2$, $^{3}J_{\rm HH}$ 7.4 Гц), 3.27 с (2H, С 6 H₂), 3.86 с (3H, ОСН₃), 3.88 с (3H, OCH₃), 4.35 т (2H, NCH₂, ${}^{3}J_{\rm HH}$ 7.3 Γ п), 7.11 c (1H, C^7 H), 7.39 c (1H, C^{10} H), 10.29 c (1H, C^3 H). Спектр ЯМР 13 С (100 МГц, ДМСО- d_6), δ_C , м. д.: 13.84, 22.02, 25.40, 25.50, 26.22, 27.46, 28.04, 28.34, 28.63, 28.72, 28.79, 28.86, 28.88, 28.94, 28.97, 31.24, 32.21, 34.99, 39.47, 51.92, 55.87, 58.95, 107.00, 111.00, 112.26, 128.23, 140.09, 148.54, 149.16, 152.72. Maccспектр, m/z: 512.4217 [C₃₂H₅₄N₃O₂]⁺ (вычислено для C₃₂H₅₄N₃O₂: 512.4211).

Рентгеноструктурный анализ выполнен на дифрактометре Xcalibur Ruby (Agilent Technologies) с ССD-детектором [Мо K_{α} -излучение, 295(2) K, ω -сканирование с шагом 1°]. Поглощение учтено эмпирически с использованием алгоритма SCALE3 ABSPACK [17]. Структуры расшифрованы с помо-

щью программы SHELXT [18] и уточнены полноматричным методом наименьших квадратов по F^2 в анизотропном приближении для всех неводородных атомов с помощью программы SHELXL [19] с графическим интерфейсом OLEX2 [20]. Атомы водорода включены в уточнение в модели *наездника* (за исключением атомов водорода молекулы воды, уточненных независимо в изотропном приближении).

Соединение **26**: моноклинная сингония, пространственная группа C2/c, $C_{15}H_{20}N_3 \cdot \text{Br} \cdot H_2 \text{O}$, M=340.26, a=22.484(7) Å, b=7.4409(15) Å, c=19.871(5) Å, $\beta=107.02(3)^\circ$, V=3179.0(15) Å³, Z=8, $d_{\text{выч}}=1.422 \text{ г/см}^3$, $\mu=2.586 \text{ мм}^{-1}$. Окончательные параметры уточнения: $R_1=0.0573$ [для 2231 отражений с $I>2\sigma(I)$], $wR_2=0.1722$ (для всех 3804 независимых отражений, $R_{\text{int}}=0.0494$), S=1.044.

Соединение **4a**: моноклинная сингония, пространственная группа $P2_1/c$, $C_{14}H_{18}N_3 \cdot PF_6$, M=373.28, a=10.361(2) Å, b=16.562(3) Å, c=10.123(2) Å, $\beta=97.670(18)^\circ$, V=1721.5(6) Å³, Z=4, $d_{\rm выч}=1.440$ г/см³, $\mu=0.221$ мм⁻¹. Окончательные параметры уточнения: $R_1=0.0657$ [для 2294 отражений с $I>2\sigma(I)$], $wR_2=0.2187$ (для всех 4013 независимых отражений, $R_{\rm int}=0.0456$), S=1.045.

Результаты РСА зарегистрированы в Кембриджском центре кристаллографических данных под номерами ССDC 2374375 (**26**) и 2374376 (**4a**).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Ермакова Любовь Сергеевна, ORCID: https://orcid.org/0009-0008-1397-6631

Леонтьев Николай Олегович, ORCID: https://orcid.org/0009-0000-9777-0658

Дмитриев Максим Викторович, ORCID: https://orcid.org/0000-0002-8817-0543

Денисов Михаил Сергеевич, ORCID: https://orcid.org/0000-0002-2261-8122

Борисова Ирина Алексеевна, ORCID: https://orcid.org/0000-0002-0731-3400

Глушков Владимир Александрович, ORCID: https://orcid.org/0000-0001-6493-7351

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках государственного задания (номер государственной регистрации темы

124021400012-1) с использованием оборудования Центра коллективного пользования «Исследования материалов и вещества» Пермского федерального исследовательского центра УрО РАН и Центра коллективного пользования «Спектроскопия и анализ органических соединений» Института органического синтеза им. И. Я. Постовского УрО РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Pan Y., Tian R., Chen Y., Wang L., Qin H., Wang J. // Tetrahedron. 2023. Vol. 148. P. 133688. doi 10.1016/ j.tet.2023.133688
- Zhang W., Jiang R., Mu Y., Hong Y., Man Y., Yang Z., Tang D. // Tetrahedron Lett. 2023. Vol. 114. P. 154256. doi 10.1016/j.tetlet.2022.154256
- Глушков В.А., Шкляев Ю.В., Майорова О.А., Постаногова Г.А., Фешина Е.В. // ХГС. 2000. Т. 36.
 С. 380; Glushkov V.A., Shklyaev Yu.V., Maiorova O.A., Postanogova G.A., Feshina E.V. // Chem. Heterocycl. Compd. 2000. Vol. 36. P. 319. doi 10.1007/BF02256870
- 4. *Deady L.W., Devine S.M.* // J. Heterocycl. Chem. 2004. Vol. 41. P. 549. doi 10.1002/jhet.5570410411
- Chen Z., Chen S., Qui Z., Lin B., Yao Y., Weng Z. // J. Org. Chem. 2024. Vol. 89. P. 7163. doi 10/1021/acs. joc.4c00557
- Yount J., Morris M., Henson N., Zeller M., Byrd E.F.C., Piercey D.G. // Chem. Eur. J. 2024. Vol. 30. P. e202400661. doi 10.1002/chem.202400661
- 7. *Badr S.M.I.*, *Barwa R.M.* // Bioorg. Med. Chem. 2011. Vol. 19. P. 4506. doi 10.1016/j.bmc.2011.06.024
- 8. *Zhao P.-L., Duan A.-N., Zou M., Yang H.-K., You W.-W., Wu S.-G.* // Bioorg. Med. Chem. Lett. 2012. Vol. 22. P. 4471. doi 10.1016/j.bmcl.2012.03.023
- Yan X., Zhang C., Gao L.-X., Liu M.-M., Yang Y.-T., Yu L.-J., Zhou Y.-B., Milaneh S., Zhu Y.-L., Li J., Wang W.-L. // Eur. J. Med. Chem. 2024. Vol. 265. P. 116027. doi 10.1016/j.ejmech.2023.116027
- 10. Feitosa L.M., Franca R.R.F., Ferreira M. de L.G., Aguiar A.C.C., de Souza G.E., Maluf S.E.C., de Souza J.O.,

- Zapata L., Duarte D., Morais I., Nogueira F., Nonato M.C., Pinheiro L.C.S., Guido R.V.C., Boechat N. // Eur. J. Med. Chem. 2024. Vol. 267. P. 116163. doi 10.1016/j.ejmech.2024.116163; Ali I., Cha H.J., Lim B., Chae C.H., Youm J., Park W.J., Lee S.H., Kim J.H., Jeong D., Lim J.K., Hwang Y.-H., Roe J.-S., Woo J.-S., Lee K., Choi G. // Eur. J. Med. Chem. 2024. Vol. 265. 116052. doi 10.1016/j.ejmech.2023.116052
- Ali I., Cha H.J., Lim B., Chae C.H., Youm J., Park W.J., Lee S.H., Kim J.H., Jeong D., Lim J.K., Hwang Y.-H., Roe J.-S., Woo J.-S., Lee K., Choi G. // Eur. J. Med. Chem. 2024. Vol. 265. 116052. doi 10.1016/ j.ejmech.2023.116052
- 12. Носова Э.В., Копотилова А.Е., Иванькина М.А., Мошкина Т.Н., Копчук Д.С. // Изв. АН. Сер. хим. 2022. Т. 71. № 7. С. 1483; Nosova E.V., Kopotilova A.E., Ivan'kina M.A., Moshkina T.N., Kopchuk D.S. // Russ. Chem. Bull. 2022. Vol. 71. N 7. P. 1483. doi 10.1007/s11172-022-3554-7
- 13. Shtaitz Ya.K., Ladin E.D., Kopchuk D.S., Khalymbadzha I.A., Gaviko V.S., Zyryanov G.V., Antonenko D.V., Ostrovskii V.A., Rusinov V.L. // Russ. J. Gen. Chem. 2024. Vol. 94. P. 749. doi 10.1134/S1070363224040029
- 14. *Русинов В.Л.*, *Чарушин В.Н.*, *Чупахин О.Н.* // Изв. AH. Сер. хим. 2018. № 4. С. 573; *Rusinov V.L.*, *Charushin V.N.*, *Chupakhin O.N.* // Russ. Chem. Bull. 2018. Vol. 67. N 4. P. 573. doi 10.1007/s11172-018-2113-8
- 15. *Машковский М.Д.* Лекарственные средства. М.: Новая волна, 2019. С. 30, 83, 84.
- 16. Ермакова Л.С., Грачева В.С., Майорова О.А., Дмитриев М.В., Белоглазова Ю.А., Глушков В.А. // Изв. АН. Сер. хим. 2024. Т. 73. С. 1072; Ermakova L.S., Gracheva V.S., Maiorova O.A., Dmitriev M.V., Beloglazova Yu.A., Glushkov V.A. // Russ. Chem. Bull. 2024. Vol. 73. P. 1072. doi 10.1007/s11172-024-4222-x
- 17. CrysAlisPro, Rigaku Oxford Diffraction, 2022. Version 1.171.42.74a.
- Sheldrick G.M. // Acta Crystallogr. (A). 2015. Vol. 71.
 P. 3. doi 10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol 71.
 P. 3. doi 10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H.J. // Appl. Cryst. 2009. Vol 42. P. 339. doi 10.1107/S0021889808042726

Synthesis of 2-Alkyl-1,2,4-triazolo[3,4-a]isoquinolin-2-ium Bromides and Hexafluorophosphates

L. S. Ermakova¹, N. O. Leont'ev², M. S. Denisov¹, I. A. Borisova¹, M. V. Dmitriev², and V. A. Glushkov^{1,2,*}

¹ Institute of Technical Chemistry, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences,
Perm, 614068 Russia

² Perm State National Research University, Perm, 614099 Russia

*e-mail: glusha55@gmail.com

Received October 2, 2024; revised December 8, 2024; accepted December 16, 2024

Alkylation of 1,2,4-triazolo[3,4-*a*]isoquinolines with 1-bromoalkanes was carried out under microwave synthesis conditions; the resulting 2-alkyl-1,2,4-triazolo[3,4-*a*]isoquinolin-2-ium bromides were converted into hexafluorophosphates and characterized by high-resolution mass spectrometry, ¹H, ¹³C NMR spectroscopy and X-ray diffraction analysis.

Keywords: 1,2,4-triazoles, isoquinolines, alkylation, microwave synthesis