GIDRIROVANIE SO2 S ISPOL'ZOVANIEM Cu/Zn-KATALIZATOROV NA OSNOVE PORISTYKh AROMATIChESKIKh KARKASOV

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Углекислый газ представляет собой перспективный реагент для синтеза широкого круга ценных химических продуктов, в частности метанола. В настоящей работе впервые на основе как немодифицированных, так и модифицированных аминогруппами пористых ароматических каркасов синтезированы Cu/Zn-катализаторы для гидрирования CO2 в метанол. Рассмотрена взаимосвязь текстурных характеристик носителя и формирующихся в его структуре наночастиц активной фазы. Активность синтезированных в работе катализаторов исследована при 250°C и 40 атм (CO2/H2 = 1:3). Определен оптимальный состав катализатора, изучено влияние природы растворителя на его активность.

Sobre autores

D. Makeeva

Autor responsável pela correspondência
Email: daria.makeeva@chemistry.msu.ru
ORCID ID: 0000-0001-7750-7457

A. Maksimov

Email: daria.makeeva@chemistry.msu.ru
ORCID ID: 0000-0001-9297-4950

д.х.н., проф., акад. РАН

Bibliografia

  1. Агакама Н., Aresta M., Armor J. N., Barteau M. A., Beckman E. J., Bell A. T., Bereaw J. E., Creutz C., Dinjus E., Dixon D. A., Domen K., DuBois D. L., Eckert J., Fujita E., Gibson D. H., Goddard W. A., Goodman D. W., Keller J., Kubas G. J., Kung H. H., Lyons J. E., Manzer L. E., Marks T. J., Morokuma K., Nicholas K. M., Periana R., Que L., Rostrup-Nielson J., Sachtler W. M. H., Schmidt L. D., Sen A., Somorjai G. A., Stair P. C., Stults B. R., Tumas W. Catalysis research of relevance to carbon management: Progress, challenges, and opportunities // Chem. Rev. 2001. V. 101. N 4. P. 953–996. https://doi.org/10.1021/cr000018s
  2. Bulushev D. A., Ross J. R. H. Heterogeneous catalysts for hydrogenation of CO2 and bicarbonates to formic acid and formates // Catal. Rev. Sci. Eng. 2018. V. 60. N 4. P. 566–593. https://doi.org/10.1080/01614940.2018.1476806
  3. Максимов А. Л., Беленкая И. П. Диоксид углерода и «метанольная» экономика: Достижения в каталитическом синтезе метанола из СО2 // Успехи химии. 2024. Т. 93. № 1. С. RCR5101. https://doi.org/10.59761/RCR5101
  4. Tedeeva M. A., Kustov A. L., Batkin A. M., Garifullina C., Zalyardinov A. A., Yang D., Dai Y., Yang Y., Kustov L. M. Catalytic systems for hydrogenation of CO2 to methanol // Mol. Catal. 2024. V. 566. P. 114403. https://doi.org/10.1016/j.mcat.2024.114403
  5. Cui X., Kerr S. K. Thermodynamic analyses of a moderate-temperature process of carbon dioxide hydrogenation to methanol via reverse water-gas shift with in situ water removal // Ind. Eng. Chem. Res. 2019. V. 58. N 24. P. 10559–10569. https://doi.org/10.1021/acs.iecr.9b01312
  6. Ortner N., Zhao D., Mena H., Weij B., Lund H., Bartling S., Wohlrab S., Armbruster U., Kondratenko E. V. Revealing origins of methanol selectivity loss in CO2 hydrogenation over CuZn-containing catalysts // ACS Catal. 2023. V. 13. N 1. P. 60–71. https://doi.org/10.1021/acscatal.2c04480
  7. Zhang Y., Zhong L., Wang H., Gao P., Li X., Xiao S., Ding G., Wei W., Sun Y. Catalytic performance of spray-dried Cu/ZnO/Al2O3/ZrO2 catalysts for slurry methanol synthesis from CO2 hydrogenation // J. CO2 Util. 2016. V. 15. P. 72–82. https://doi.org/10.1016/J.JCOU.2016.01.005
  8. Jiang Y., Yang H., Gao P., Li X., Zhang J., Liu H., Wang H., Wei W., Sun Y. Slurry methanol synthesis from CO2 hydrogenation over micro-spherical SiO2 support Cu/ZnO catalysts // J. CO2 Util. 2018. V. 26. P. 642–651. https://doi.org/10.1016/J.JCOU.2018.06.023
  9. Lee K. H., Lee J. S. Effects of catalyst composition on methanol synthesis from CO2/H2 // Korean J. Chem. Eng. 1995. V. 12. N 4. P. 460–465. https://doi.org/10.1007/BF02705811
  10. Singh R., Tripathi K., Pant K. K. Investigating the role of oxygen vacancies and basic site density in tuning methanol selectivity over Cu/CeO2 catalyst during CO2 hydrogenation // Fuel. 2021. V. 303. P. 121289. https://doi.org/10.1016/J.FUEL.2021.121289
  11. Belgamwar R., Verma R., Das T., Chakraborty S., Sarawade P., Polshettiwar V. Defects tune the strong metal-support interactions in copper supported on defected titanium dioxide catalysts for CO2 reduction // J. Am. Chem. Soc. 2023. V. 56. N 2. P. 274–278. https://doi.org/10.1021/jacs.3c01336
  12. Wang J., Zhang Y., Ma Y., Yin J., Wang Y., Fan Z. Electrocatalytic reduction of carbon dioxide to high-value multicarbon products with metal-organic frameworks and their derived materials // ACS Mater. Lett. 2022. V. 4. N 11. P. 2058–2079. https://doi.org/10.1021/acsmaterialstett.2c00751
  13. Wang C., Kosari M., Xi S., Zeng H. C. Uniform Si-infused UiO-66 as a robust catalyst host for efficient CO2 hydrogenation to methanol // Adv. Funct. Mater. 2023. V. 33. N 13. P. 109–118. https://doi.org/10.1002/adfm.202212478
  14. Zhou H., Chen Z., Lopez A. V., Lopez E. D., Lam E., Tsoukalou A., Willinger E., Kuznetsov D. A., Mance D., Kierzkowska A., Donat F., Abdala P. M., Comas-Vives A., Copéret C., Fedorov A., Müller C. R. Engineering the Cu/Mo2C–Tx (MXene) interface to drive CO2 hydrogenation to methanol // Nat. Catal. 2021. V. 4. N 10. P. 860–871. https://doi.org/10.1038/s41929-021-00684-0
  15. Tian Y., Zhu G. Porous aromatic frameworks (PAFs) // Chem. Rev. 2020. V. 120. N 16. P. 8934–8986. https://doi.org/10.1021/acs.chemrev.9b00687
  16. Karakhanov E., Maximov A., Terenina M., Vinokurov V., Kulikov L., Makeeva D., Glotov A. Selective hydrogenation of terminal alkynes over palladium nanoparticles within the pores of amino-modified porous aromatic frameworks // Catal. Today. 2020. V. 357. P. 176–184. https://doi.org/10.1016/j.cattod.2019.05.028
  17. Kulikov L., Dubniuk A., Makeeva D., Egazaryanis S., Maximov A., Karakhanov E. Ruthenium catalysts based on porous aromatic frameworks synthesized by modified impregnation methods for hydrogenation of levulinic acid and its esters // Mater. Today Sustain. 2024. V. 25. P. 100637. https://doi.org/10.1016/j.mtsust.2023.100637
  18. Hei Z.-H., Huang M.-H., Luo Y., Wang Y. A well-defined nitro-functionalized aromatic framework (NO2-PAF-1) with high CO2 adsorption: Synthesis via the copper-mediated Ullmann homo-coupling polymerization of a nitro-containing monomer // Polym. Chem. 2016. V. 7. N 4. P. 770–774. https://doi.org/10.1039/CSPY016826
  19. Makeeva D., Kulikov L., Zolonikhina A., Maximov A., Karakhanov E. Functionalization strategy influences the porosity of amino-containing porous aromatic frameworks and the hydrogenation activity of palladium catalysts synthesized on their basis // Mol. Catal. 2022. V. 517. P. 112012. https://doi.org/10.1016/j.mcat.2021.112012
  20. Makeeva D. A., Kulikov L. A., Oskina E. D., Uvarov O. V., Maximov A. L., Karakhanov E. A. Palladium catalysts based on nitrogen-containing porous aromatic frameworks for hydrogenation of unsaturated compounds // Petrol. Chem. 2022. V. 62. N 10. P. 1183–1194. https://doi.org/10.1134/S0965544122090092
  21. Bazhenova M., Kulikov L. A., Bolnykh Y. S., Maksimov A. L., Karakhanov E. A. Palladium catalysts based on porous aromatic frameworks for vanillin hydrogenation: Tuning the activity and selectivity by introducing functional groups // Catal. Commun. 2022. V. 170. P. 106486. https://doi.org/10.1016/j.catcom.2022.106486
  22. Heldebrandt D. J., Koech P. K., Glezakou V.-A., Rousseau R., Malhotra D., Cantu D. C. Water-lean solvents for post-combustion CO2 capture: Fundamentals, uncertainties, opportunities, and outlook // Chem. Rev. 2017. V. 117. N 14. P. 9594–9624. https://doi.org/10.1021/acs.chemrev.6b00768
  23. Alenazi M. H., Helal A., Khan M. Y., Khalil A., Khan A., Usman M., Zahir M. H. Covalent organic frameworks (COFs) for CO2 utilizations // Carbon Capture Sci. Technol. 2025. V. 14. N January. P. 100365. https://doi.org/10.1016/j.ccst.2025.100365
  24. Thommes M., Kaneko K., Neimark A. V., Olivier J. P., Rodriguez-Reinoso F., Rouquerol J., Sing K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure Appl. Chem. 2015. V. 87. N 9–10. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
  25. Kothandaraman J., Heldebrant D. J. Towards environmentally benign capture and conversion: Heterogeneous metal catalyzed CO2 hydrogenation in CO2 capture solvents // Green Chem. 2020. V. 22. N 3. P. 828–834. https://doi.org/10.1039/c9ge03449h

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».