УДК 519.632

АНАЛОГ ФОРМУЛЫ ПУАССОНА ДЛЯ РЕШЕНИЯ УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА¹⁾

© 2024 г. А. О. Савченко^{1,*}

¹630090 Новосибирск, пр-т Акад. Лаврентьева, 6, ИВМ и МГ, Россия *e-mail: savch@ommfao1.sscc.ru

Поступила в редакцию 16.05.2024 г. Переработанный вариант 26.06.2024 г. Принята к публикации 06.07.2024 г.

Получены аналоги формулы Пуассона решения внутренних и внешних краевых задач с граничными условиями Дирихле или Неймана на сфере для уравнения Гельмгольца, в которых ядра интегралов представлены в виде рядов. Библ. 5.

Ключевые слова: уравнение Гельмгольца, сферические гармоники, краевые задачи для сферы, формула Лапласа.

DOI: 10.31857/S0044466924110106, EDN: KGKHKQ

ВВЕДЕНИЕ

Решение краевых задач Гельмгольца для сферы известно в виде разложения по сферическим гармоникам, для нахождения которых необходимо определить коэффициенты разложения функции граничного условия по сферическим функциям (см. [1], [2]).

В данной работе получены другие формулы решения внутренних и внешних краевых задач Дирихле и Неймана уравнения Гельмгольца для сферы. Эти формулы являются аналогом формулы Пуассона для уравнения Лапласа, в которых ядро интеграла представлено в виде ряда.

Полученные формулы значительно проще по виду и по применению при численном решении вышеуказанных задач. В отличие от известных формул, при численной реализации для получения приближенного решения не требуется вычисления коэффициентов Фурье от граничной функции, и достаточно вычислить интеграл только один раз, что значительно экономит вычислительные ресурсы при численном решении краевых задач для уравнения Гельмгольца.

1. ЗАДАЧА ДИРИХЛЕ ДЛЯ УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА

Рассмотрим задачу Дирихле для уравнения Гельмгольца внутри сферической области S, ограниченной сферой ∂S радиуса R:

$$\Delta u + k^2 u = 0, \quad \mathbf{r} \in S,
u(R, \theta, \varphi) = f(\theta, \varphi),$$
(1)

и вне сферической области $\bar{S} = S \cup \partial S$:

$$\Delta u + k^{2}u = 0, \quad \mathbf{r} \in \mathbb{R}^{3} \backslash \bar{S},$$

$$u(R, \theta, \varphi) = f(\theta, \varphi),$$

$$\lim_{r \to \infty} r\left(\frac{\partial u}{\partial r} - iku\right) = 0,$$
(2)

где $\mathbf{r}=(r,\theta,\phi)$. Здесь и далее предполагается, что функция f непрерывна и ее квадрат интегрируем по сфере ∂S , а коэффициент k является вещественным числом. Решение этих задач в сферических координатах следующий имеет вид (см. [1], [2]):

$$u(r, \theta, \varphi) = \sum_{n=0}^{\infty} \Phi_n(r) Y_n(\theta, \varphi),$$
(3)

¹⁾ Работа выполнена в рамках государственного задания ИВМиМГ СО РАН FWNM- 2022-0001.

где

$$Y_n(\theta, \varphi) = \sum_{m=-n}^{n} f_{nm} Y_n^m(\theta, \varphi),$$

 $Y_{n}\left(\theta,\phi\right)$ — сферические гармоники, $f_{n\,m}$ — коэффициенты Фурье функции $f\left(\theta,\phi\right)$,

$$f_{n\,m} = \frac{1}{\|Y_n^m\|^2} \int_0^\pi \int_0^{2\pi} f\left(\theta_0, \varphi_0\right) Y_n^m \left(\theta_0, \varphi_0\right) \sin \theta_0 \, d\theta_0 \, d\varphi_0,$$

$$Y_{n}^{m}(\theta, \varphi) = \begin{cases} P_{n}(\cos \theta), & m = 0, \\ P_{n}^{m}(\cos \theta) \sin m\varphi, & m > 0, \\ P_{n}^{|m|}(\cos \theta) \cos m\varphi, & m < 0, \end{cases}$$

$$\|Y_n^m\|^2 = \frac{2\pi (1 + \delta_{0m})}{2n + 1} \frac{(n + |m|)!}{(n - |m|)!}, \quad \delta_{ij} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases},$$

 $P_{n}\left(x \right)$ — многочлен Лежандра n-ой степени, $P_{n}^{m}\left(x \right)$ — присоединенная функция Лежандра.

При решении внутренней краевой задачи (1) функция $\Phi_n(r)$ в формуле (3) равна

$$\Phi_{n}(r) = \Phi_{n}^{D \text{ int }}(r) = \sqrt{\frac{R}{r}} \frac{J_{n+1/2}(k r)}{J_{n+1/2}(k R)},$$
(4)

где $J_{v}(x)$ — функции Бесселя.

При решении внешней краевой задачи (2) функция $\Phi_n(r)$ в (3) равна

$$\Phi_n(r) = \Phi_n^{D \, ext}(r) = \sqrt{\frac{R}{r}} \frac{H_{n+1/2}^{(1)}(k \, r)}{H_{n+1/2}^{(1)}(k \, R)},\tag{5}$$

где $H_{n+1/2}^{(1)}\left(x
ight)$ — функции Ганкеля первого рода.

Получим другие, более простые формулы решения краевых задач Дирихле для уравнения Гельмгольца, являющиеся аналогами формулы Пуассона для уравнения Лапласа.

Из (3) следует, что

$$u\left(R,\theta,\varphi\right) = f\left(\theta,\varphi\right) = \sum_{n=0}^{\infty} \Phi_n\left(R\right) Y_n\left(\theta,\varphi\right).$$

Но, как следует из формул (4) и (5), $\Phi_n(R) = 1$ для любых значений индекса n как для внутренней (1) так и для внешней (2) краевой задачи. Поэтому

$$f(\theta, \varphi) = \sum_{n=0}^{\infty} Y_n(\theta, \varphi), \tag{6}$$

т.е. функция $f(\theta, \phi)$ разлагается в ряд Фурье по сферическим гармоникам $Y_n(\theta, \phi)$. Тогда для гармоник в разложении (6) справедлива формула Лапласа [2, 3]

$$Y_n(\theta, \varphi) = \frac{(2n+1)}{4\pi} \int_0^{\pi} \int_0^{2\pi} f(\theta_0, \varphi_0) P_n(\cos \gamma) \sin \theta_0 d\theta_0 d\varphi_0, \tag{7}$$

$$\cos \gamma = \cos \theta \cos \theta_0 + \sin \theta \sin \theta_0 \cos (\varphi - \varphi_0), \tag{8}$$

где γ — угол между векторами \overrightarrow{OM} и $\overrightarrow{OM_0}$, а точка O расположена в центре шара, $M=(r,\theta,\phi), M_0=(R,\theta_0,\phi_0).$ Подставив формулу для гармоник (7) в формулу (3), получим

$$u(r, \theta, \varphi) = \frac{1}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} f(\theta_0, \varphi_0) \Phi(M, M_0) \sin \theta_0 d\theta_0 d\varphi_0,$$
 (9)

где

$$\Phi\left(M,M_{0}\right)=\sum_{n=0}^{\infty}\left(2n+1\right)\ \Phi_{n}\left(r\right)\ P_{n}\left(\cos\gamma\right).$$

При решении внутренней краевой задачи (1) функция $\Phi_n(r)$ определена формулой (4), и

$$\Phi(M, M_0) = \Phi^{D \text{ int }}(M, M_0) = \sqrt{\frac{R}{r}} \sum_{n=0}^{\infty} (2n+1) P_n(\cos \gamma) \frac{J_{n+1/2}(k r)}{J_{n+1/2}(k R)}.$$
 (10)

При решении внешней краевой задачи (2) функция $\Phi_n(r)$ определена формулой (5), и

$$\Phi(M, M_0) = \Phi^{D ext}(M, M_0) = \sqrt{\frac{R}{r}} \sum_{n=0}^{\infty} (2n+1) P_n(\cos \gamma) \frac{H_{n+1/2}^{(1)}(k r)}{H_{n+1/2}^{(1)}(k R)}.$$
 (11)

Значения произведения k^2 , при которых знаменатель дроби в формуле (10) обращается в нуль, равны собственным значениям внутренней задачи Дирихле для сферы радиуса R с нулевым граничным условием. Действительно, собственными значениями являются $\lambda_{m,n}^D = \left(\frac{\mathbf{v}_m^{(n)}}{R}\right)^2$, где $\mathbf{v}_m^{(n)}$ — корни уравнения $J_{n+1/2}(x) = 0$ [1].

Поэтому коэффициент k должен удовлетворять неравенству $k R \neq v_m^{(n)}$, или $J_{n+1/2}(k R) \neq 0$.

Отметим, что при $x \to 0$ функция $J_{\rm v}\left(x\right) \to 0$ как $\frac{1}{\Gamma({\rm v}+1)}\left(\frac{1}{2}x\right)^{\rm v}$ при ${\rm v}>0$ [4]. По этой причине $\lim_{k\to 0}\frac{J_{n+1/2}(k\,r)}{J_{n+1/2}(k\,R)}=$ $=\left(\frac{r}{R}\right)^{n+1/2}$. Тогда при k=0 функция $\Phi_n^{D\,{\rm int}}\left(r\right)$ из (4) принимает вид $\Phi_n^{D\,{\rm int}}\left(r\right)=\left(\frac{r}{R}\right)^n$ и формула (9) совпадает с решением внутренней задачи Дирихле на сфере для уравнения Лапласа при R=1, приведенным в [3].

2. ЗАДАЧА НЕЙМАНА ДЛЯ УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА

Рассмотрим задачу Неймана для уравнения Гельмгольца внутри сферической области S, ограниченной сферой ∂S радиуса R:

$$\Delta u + k^2 u = 0, \quad \mathbf{r} \in S,$$

$$\frac{\partial u}{\partial r}\Big|_{r=R} = f(\theta, \varphi),$$
(12)

и вне сферической области $\bar{S} = S \cup \partial S$:

$$\Delta u + k^{2}u = 0, \quad \mathbf{r} \in \mathbb{R}^{3} \backslash \bar{S},$$

$$\frac{\partial u}{\partial r}|_{r=R} = f(\theta, \varphi),$$

$$\lim_{r \to \infty} r(\frac{\partial u}{\partial r} - iku) = 0.$$
(13)

Будем искать решение этих задач в виде разложения по сферическим гармоникам (3). Выберем сферические гармоники $Y_n\left(\theta,\phi\right)$ для решения задач (12) и (13) в виде (7), и перейдем к определению функций $\Phi_n\left(r\right)$.

Рассмотрим внутреннюю краевую задачу (12). Подставив выражение для искомой функции (3) в уравнение Гельмгольца и произведя разделение переменных, получим, с условием ограниченности решения при r=0, что $\Phi_n\left(r\right)=A_n\frac{J_{n+1/2}\left(k\,r\right)}{\sqrt{r}}$ [1]. Для нахождения коэффициентов A_n воспользуемся формулой [4]

$$\Psi_{\mathbf{v}}'(x) = \Psi_{\mathbf{v}-1}(x) - \frac{\mathbf{v}}{x} \Psi_{\mathbf{v}}(x), \qquad (14)$$

где $\Psi_{\rm v}\left(x
ight)$ – любая из функций $J_{
m v}\left(x
ight)$, $Y_{
m v}\left(x
ight)$, $H_{
m v}^{(1)}\left(x
ight)$, $H_{
m v}^{(2)}\left(x
ight)$. Тогда

$$\Phi'_{n}(r) = A_{n} \frac{1}{\sqrt{r}} \left(k J_{n-1/2}(k r) - \frac{n+1}{r} J_{n+1/2}(k r) \right).$$

Выберем коэффициенты A_n так, чтобы выполнялось граничное условие в уравнениях (12). Для этого определим их из условия

$$\Phi_n'(R) = 1,\tag{15}$$

откуда следует, что

$$A_{n} = \frac{\sqrt{R}}{\left(k J_{n-1/2} (k R) - \frac{n+1}{R} J_{n+1/2} (k R)\right)}.$$

Тогда

$$\Phi_{n}(r) = \Phi_{n}^{N \text{ int }}(r) = \sqrt{\frac{R}{r}} \frac{J_{n+1/2}(k r)}{\left(k J_{n-1/2}(k R) - \frac{n+1}{R} J_{n+1/2}(k R)\right)}.$$
 (16)

Решение задачи (12) имеет вид

$$u\left(r,\theta,\varphi\right) = \frac{1}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} f\left(\theta_{0},\varphi_{0}\right) \left[\sum_{n=0}^{\infty} \left(2n+1\right) \Phi_{n}^{N \text{ int }}\left(r\right) P_{n}\left(\cos\gamma\right)\right] \sin\theta_{0} d\theta_{0} d\varphi_{0},\tag{17}$$

поскольку оно удовлетворяет граничному условию $\frac{\partial u}{\partial r}\big|_{r=R}=f\left(\theta,\phi\right)$ ввиду формул (3), (6) и $\Phi'_n^{N\,\mathrm{int}}\left(R\right)=1$. Значения произведения k^2 , при которых знаменатель дроби в формуле (16) обращается в нуль, равны соб-

ственным значениям внутренней задачи Неймана для сферы радиуса R с нулевым граничным условием. Дей-

ствительно, собственными значениями являются $\lambda_{m,n}^N = \left(\frac{\mu_m^{(n)}}{R}\right)^2$, где $\mu_m^{(n)}$ — корни уравнения [5]

$$2xJ'_{n+1/2}(x) - J_{n+1/2}(x) = 0. (18)$$

Запишем уравнение (18), согласно формуле (14), в виде $xJ_{n-1/2}\left(x\right)-\left(n+1\right)J_{n+1/2}\left(x\right)=0.$ Если какой-либо корень этого уравнения равен kR, то для него справедливо $kRJ_{n-1/2}\left(kR\right)-\left(n+1\right)J_{n+1/2}\left(kR\right)=0$, и для таких значений произведения kR знаменатель дроби в (16) равен нулю. Поэтому коэффициент k должен удовлетворять неравенству $k R \neq \mu_m^{(n)}$ или

$$kJ_{n-1/2}(kR) - \frac{n+1}{R}J_{n+1/2}(kR) \neq 0.$$

Перейдем к решению внешней краевой задачи Неймана (13). Подставив выражение для искомой функции (3) в уравнение Гельмгольца и произведя разделение переменных, получим, с учетом последнего условия в

уравнениях (13), что $\Phi_n\left(r\right)=B_n\frac{H_{n+1/2}^{(1)}\left(k\,r\right)}{\sqrt{r}}$ [1]. Из (14) следует, что

$$\Phi'_{n}(r) = B_{n} \frac{1}{\sqrt{r}} \left(k H_{n-1/2}^{(1)}(k r) - \frac{n+1}{r} H_{n+1/2}^{(1)}(k r) \right).$$

Так же, как и при нахождении решения внутренней краевой задачи, определим неизвестные коэффициенты B_n из условия $\Phi_{n}^{\prime}\left(R\right)=1.$ Тогда

$$\Phi_{n}(r) = \Phi_{n}^{N \, ext}(r) = \sqrt{\frac{R}{r}} \frac{H_{n+1/2}^{(1)}(k \, r)}{\left(k \, H_{n-1/2}^{(1)}(k \, R) - \frac{n+1}{R} H_{n+1/2}^{(1)}(k \, R)\right)}.$$

Решение задачи (13) имеет вид

$$u\left(r,\theta,\varphi\right) = \frac{1}{4\pi} \int\limits_{0}^{\pi} \int\limits_{0}^{2\pi} f\left(\theta_{0},\varphi_{0}\right) \left[\sum_{n=0}^{\infty} \left(2n+1\right) \Phi_{n}^{N \ ext}\left(r\right) P_{n}\left(\cos\gamma\right)\right] \sin\theta_{0} \ d\theta_{0} \ d\varphi_{0},$$

поскольку оно удовлетворяет граничному условию $\left. \frac{\partial \, u}{\partial \, r} \right|_{r=R} = f \left(\theta, \phi \right)$ ввиду формул (3), (6) и $\Phi'_n^{Next} \left(R \right) = 1$.

ЗАКЛЮЧЕНИЕ

В статье получены аналоги формулы Пуассона для решения внутренних и внешних задач Дирихле и Неймана на сфере для уравнения Гельмгольца. Обобщим полученные результаты. Для этого вынесем общий множитель у всех уравнений за знак интеграла и, в соответствие с этим, введем новые обозначения для функций $\Phi_n^{D \text{ int}}, \ \Phi_n^{D \text{ ext}}, \ \Phi_n^{N \text{ int}}, \ \Phi_n^{N \text{ ext}}.$

Решение краевых задач для сферы радиуса R для уравнения Гельмгольца имеет вид

$$u\left(r,\theta,\varphi\right) = \frac{1}{4\pi} \sqrt{\frac{R}{r}} \int_{0}^{\pi} \int_{0}^{2\pi} f\left(\theta_{0},\varphi_{0}\right) \Phi\left(M,M_{0}\right) \sin \theta_{0} d\theta_{0} d\varphi_{0},$$

где

$$\Phi(M, M_0) = \sum_{n=0}^{\infty} (2n+1) \Phi_n(r) P_n(\cos \gamma),$$

 $a\cos \gamma$ определен в формуле (8).

При решении внутренней краевой задачи Дирихле (1) функции $\Phi_{n}\left(r\right)$ имеют вид

$$\Phi_n(r) = \Phi_n^{D \text{ int }}(r) = \frac{J_{n+1/2}(k r)}{J_{n+1/2}(k R)}.$$

При решении внешней краевой задачи Дирихле (2) функции $\Phi_{n}\left(r\right)$ имеют вид

$$\Phi_{n}(r) = \Phi_{n}^{D \, ext}(r) = \frac{H_{n+1/2}^{(1)}(k \, r)}{H_{n+1/2}^{(1)}(k \, R)}.$$

При решении внутренней краевой задачи Неймана (12) функции $\Phi_n(r)$ имеют вид

$$\Phi_{n}\left(r\right) = \Phi_{n}^{N \, \text{int}}\left(r\right) = \frac{J_{n+1/2}\left(k \, r\right)}{\left(k \, J_{n-1/2}\left(k \, R\right) - \frac{n+1}{R} J_{n+1/2}\left(k \, R\right)\right)}.$$

При решении внешней краевой задачи Неймана (13) функции $\Phi_n\left(r\right)$ имеют вид

$$\Phi_{n}\left(r\right) = \Phi_{n}^{N \, ext}\left(r\right) = \frac{H_{n+1/2}^{(1)}\left(k \, r\right)}{\left(k \, H_{n-1/2}^{(1)}\left(k \, R\right) - \frac{n+1}{R}H_{n+1/2}^{(1)}\left(k \, R\right)\right)}.$$

Автор заявляет об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 2004.
- 2. Владимиров В.С. Уравнения математической физики. М.: Наука, 1981.
- 3. Соболев С.Л. Уравнения математической физики. М.: Наука, 1966.
- 4. *Oliver F.W., Lozier D.W., Boisvert R.F., Clark C.W.* NIST Handbook of mathematical functions. Cambridge Univer. Press, New York, 2010.
- 5. Бабич В.М., Капилевич М.Б., Михлин С.Г. и др. Линейные уравнения математической физики. М.: Наука, 1964.

AN ANALOGUE OF THE POISSON FORMULA FOR SOLVING THE HELMHOLTZ EQUATION

A. O. Savchenko*

630090 Novosibirsk, 6, Akademika Lavrentieva Ave., ICM-MG, SB RAS, Russia
*e-mail: savch@ommfao1.sscc.ru

Received: 16.05.2024 Revised: 26.06.2024 Accepted: 06.07.2024

Abstract. Analogs of the Poisson formula for solving internal and external boundary value problems with Dirichlet or Neumann boundary conditions on a sphere for the Helmholtz equation are obtained, in which the kernels of integrals are represented as series.

Keywords: Helmholtz equation, spherical harmonics, boundary value problems for a sphere, Laplace formula.