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В статье приведены результаты сравнения выраженности изменений молекулярных маркеров систе-
могенеза при актуализации систем доменов опыта достижения и избегания, отличающихся уровнем 
вовлечения стресс-реализующих механизмов. С помощью анализа содержания нейротрофического 
фактора мозга (BDNF) в медиальных зонах префронтальной коры были получены различия, обу-
словленные мотивацией формируемого поведения: достижения или избегания. Работа проведена 
на взрослых крысах Long Evans. BDNF выявляли непрямым иммунопероксидазным методом на кри-
огенных срезах мозга. После предварительного поведенческого фенотипирования были сформирова-
ны две группы обучения поведению нажатия на педаль: 1) для запуска кормушки и получения пищи; 
2) для отключения тока и избегания боли. Количественный анализ иммунореактивности в прелим-
бической и инфралимбической зонах префронтальной коры выявил значимо меньшее число BDNF-
иммунопозитивных клеток у животных группы обучения поведению избегания по сравнению с груп-
пой обучения поведению достижения. Также обнаружена связь уровня BDNF с индивидуальными 
различиями, такими как тревожность и исследовательская активность. Делается вывод о вовлечении 
медиальных зон префронтальной коры в обеспечение поведения достижения, а также поведения из-
бегания, но в значимо меньшей степени. Обсуждается вероятная роль стресс-индуцированного ней-
ровоспаления в полученных различиях.
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Ранее нами было показано, что реализация сход-
ных актов, направленных на достижение противо-
положных результатов  – избегания угрозы или 
приближения к цели, – у людей и животных раз-
личается на уровне как поведенческих, так и ней-
рофизиологических показателей (Alexandrov, Sams, 
2005; Александров, 2009; Sozinov et al., 2012; Bulava 
et al., 2016; Булава, Гринченко, 2017; Булава и др., 
2020). Кроме того, при исследовании динамики 
амплитудных характеристик вызванных потенци-
алов электроэнцефалограммы человека в поведе-
нии приближения/избегания нами были обнару-
жены аргументы в пользу предположения о том, 
что динамика процессов научения в соответствую-
щих доменах опыта (группах систем, объединенных 
общностью результатов), то есть включение вновь 
образующихся систем в  сравниваемые домены, 

различается (Alexandrov et al., 2007). С помощью 
определения числа и распределения нейронов, экс-
прессирующих транскрипционный фактор c-Fos – 
маркера вовлечения нейронов в формируемое по-
ведение (Анохин, 1997; Сварник и др., 2001), – про-
демонстрированы различия в степени вовлечения 
разных структур мозга при научении поведению из-
бегания в сравнении с научением поведению дости-
жения у животных: достоверное снижение вовлече-
ния ряда зон неокортекса (Bulava et al., 2016; Булава 
и др., 2020; Александров и др., 2022), а также палео-
кортекса (Булава, Гринченко, 2017) у крыс в группе 
обучения навыку активного избегания стрессового 
воздействия по сравнению с группой пищедобы-
вательного поведения. Мы предполагаем, что сни-
женная активность палеокортекса, в частности гип-
покампальной зоны СА1, в стресс-индуцированном 
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поведении может препятствовать формированию 
инструментального поведения избегания у животных 
после хирургической экстирпации неокортекса, в то 
время как инструментальное пищедобывательное по-
ведение формируется так же быстро, как и у живот-
ных с неповрежденным мозгом (см. (Oakley, 1979)). 
Результаты других исследований также указывают 
на связанные с типом используемого подкрепле-
ния различия нейрофизиологического обеспече-
ния формируемого поведения. Так, с  помощью 
функциональной магнитно-резонансной томогра-
фии (фМРТ) были продемонстрированы различия 
в степени вовлечения разных структур мозга у лю-
дей при научении в задачах с поощрением и на-
казанием (например, (Kim et al., 2015; Steel et al., 
2019) и мн. др.). При этом метаанализ результатов 
фМРТ-исследований выявил, что, кроме типа под-
крепления, модерирующей переменной являлось 
то, характеризовалась ли задача для испытуемого 
новизной, или была предварительно им освоена 
(Jauhar et al., 2021).

В связи со сказанным мы считаем, что систе-
могенез (Анохин, 1948)  – формирование новых 
функциональных систем в  процессе научения, 
в частности при формировании инструментально-
го поведения,  – связан с  характеристиками того 
домена опыта, системы которого актуализируются 
в данной ситуации, и предполагаем, что мозговое, 
в том числе молекулярное, обеспечение формиру-
емого поведения будет варьировать в связи с тем, 
актуализация систем какого домена опыта имеет 
место в данной ситуации: избегания или достиже-
ния, даже если поведение, формируемое для дости-
жения разных целей, внешне сходно. Поскольку 
системогенез характеризуется вовлечением нейро-
нов в обеспечение формируемого поведения и их 
специализацией в отношении системы этого по-
ведения (Швырков, 1988), он связан с изменением 
свойств нейронов на  молекулярно-генетическом 
и морфофункциональном уровнях и сопровождает-
ся процессами клеточной дифференциации: (нео)
нейрогенеза, дендрито-, аксоно- и синаптогенеза, 
а также синаптического прунинга (см., например, 
обзоры (Alexandrov et al., 2018; Alexandrov, Pletnikov, 
2022)). Поиск наиболее информативных маркеров 
выраженности процессов, обусловленных систе-
могенезом, представляет собой сложную задачу. 
Результаты исследований in  vivo демонстрируют 
критически важную роль нейротрофинов, в част-
ности нейротрофического фактора мозга (brain 
derived neurotrophic factor, BDNF), в нейро- и глио-
генезе на протяжении пре- и постнатального онто-
генеза ((Lee et al., 2002; Tyler et al., 2002; Gonzalez 
et al., 2016; Бородинова, Саложин, 2016; Ribeiro, 
Xapelli, 2021) и мн. др.). Важным результатом взаи-
модействия нейротрофинов с рецепторами к ним 
является активация транскрипционных факто-
ров (таких как CREB), изменяющих профиль 

экспрессии генов. Особое внимание уделяется 
двум типам рецепторов к BDNF, которые, соглас-
но исследованиям, являются функциональными 
(по эффекту) антагонистами: TrkB (tyrosine kinase 
receptor, тип В) и p75NTR (низкоаффинный pan-
neurotrophin receptors), активация которого пеп-
тидным предшественником BDNF инициирует 
процессы апоптоза (Tyler et al., 2002; Gehler et al., 
2004; Gonzalez et  al., 2016; Бородинова, Сало-
жин, 2016). Кроме того, показаны противополож-
ные эффекты двух основных активных изоформ 
BDNF: зрелого (mBDNF) и его предшественника 
(proBDNF). Оба индуцируют множественные сиг-
нальные каскады с участием различных вторичных 
посредников, при этом mBDNF связывается пре-
имущественно с рецептором группы тирозинки-
наз – TrkB, тогда как proBDNF преимущественно 
взаимодействует с рецептором семейства фактора 
некроза опухолей – p75NTR (Gehler et al., 2004; 
Бородинова, Саложин, 2016).

В эмпирическом исследовании с использова-
нием мышей, нокаутированных по гену рецептора 
p75NTR (Gehler et al., 2004), продемонстрирована 
плейотропия BDNF относительно морфогенеза 
дендритов. Инкубация нейронов сетчатки нокау-
тированных мышей (p75–/–) с нейротрофинами 
не оказала влияния на длину филоподий, однако 
предварительно не инкубированные с нейротро-
финами нейроны сетчатки (p75–/–) продемон-
стрировали рост филоподий, сопоставимый с ро-
стом филоподий дендритов, инкубированных 
с BDNF нейронов контрольных мышей (p75+/+). 
Авторы пришли к выводу, что свободный рецеп-
тор p75NTR (не связанный с  BDNF) оказывает 
негативное влияние на длину филоподий, которое 
отсутствует у нокаутированных по гену p75NTR 
мышей (Gehler et al., 2004). Ингибирование ней-
ротрофина BDNF приводит к «аберрантному» ней-
рогенезу: мутантные нейроны характеризуются 
меньшим числом, толщиной и длиной дендритных 
ветвей, а также меньшей плотностью дендритных 
шипиков (Gao et al., 2009).

Интратекальное введение BDNF в  спинной 
мозг крыс с поврежденным позвоночником спо-
собствовало научению в задаче формирования по-
ведения избегания электроболевого раздражения. 
Когда лапа крысы вытягивалась за пределы уста-
новленного порога, по ней наносили удар током, 
однако при введении в  спинной мозг BDNF на-
блюдалось постепенное увеличение продолжитель-
ности сгибания лапы, что приводило к минимиза-
ции воздействия тока (Gómez-Pinilla et al., 2007). 
В то же время интракраниальное введение ингиби-
рующих BDNF антител в прелимбическую и инфра-
лимбическую зоны медиальной префронтальной 
коры нарушает формирование памяти о прекраще-
нии электроболевого раздражения у крыс в зада-
че на «угасание» поведения избегания. Животных 
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обучали находиться на безопасной платформе в те-
чение 10 дней. На 11-й день всем животным через 
имплантированные в мозг канюли вводили сы-
воротку (контрольным – без ингибитора) и пре-
кращали подавать ток. Чтобы дотянуться до кор-
мушки, депривированные на пищу крысы должны 
были сойти с платформы. Животные контрольной 
и опытной групп демонстрировали статистически 
не различающуюся динамику снижения времени 
пребывания на платформе в течение эксперимен-
тальной сессии в  первый день отсутствия тока. 
Однако на второй день животные группы инги-
бирования BDNF демонстрировали выраженное 
поведение избегания, то  есть длительность на-
хождения на платформе не отличалась от таковой 
в первый день отсутствия тока. На третий день раз-
ница во времени нахождения на платформе между 
контрольной и опытной группами отсутствовала 
(Rosas-Vidal et al., 2018).

Вышеописанные результаты исследований де-
монстрируют участие BDNF в регуляции основных 
процессов клеточной дифференциации нейронов, 
пролиферации клеток предшественников (Ribeiro, 
Xapelli, 2021; Gao et al., 2009), их миграции (Snapyan 
et al., 2009), дендрито- и синаптогенезе (Gehler et al., 
2004; Gao et al., 2009; Zagrebelsky et al., 2020), а так-
же апоптозе (Tyler et al., 2002; Gehler et al., 2004; 
Gonzalez et al., 2016; Бородинова, Саложин, 2016). 
В связи с этим BDNF может представлять опреде-
ленный интерес в исследованиях системогенеза.

Префронтальная область коры у человека ха-
рактеризуется большей продолжительностью со-
зревания по  сравнению с  другими животными 
(например, (Perica, Luna, 2023)). Эволюционный 
тренд на увеличение времени созревания неокор-
текса прослеживается на всех этапах антропогене-
за (Qiu et al., 2019). Вероятно, это обусловливает 
повышенные адаптационные возможности людей, 
что может выражаться в расширении поведенче-
ского репертуара. Однако данные структуры мозга, 
сравнительно более молодого онтогенетического 
возраста, оказываются наиболее чувствительны-
ми к отрицательным эффектам интенсивного и/
или хронического стресса (Берeзова и др., 2011; 
Arnsten et al., 2015; Bulava et al., 2017; Rosas-Vidal 
et al., 2018; Perica, Luna, 2023). Цитоархитектони-
ка и нейронная организация медиальных областей 
префронтальной коры в сопоставлении с данными 
об их эволюционно-морфологическом становлении 
(Kalimullina et al., 2015), а также указания на стресс-
индуцированные изменения, включая морфоме-
трические (например, (Belleau et al., 2019)), наблю-
даемые в случае развития тревожных и стрессовых 
расстройств, послужили обоснованием их выбора 
в качестве зон интереса для нашего исследования.

Таким образом, задачей работы, результаты ко-
торой приведены ниже, являлось сравнение вы-
раженности изменений молекулярных маркеров 

системогенеза в условиях актуализации систем до-
менов опыта достижения и избегания, отличаю
щихся уровнем вовлечения стресс-реализующих 
механизмов, с помощью анализа содержания ней-
ротрофического фактора мозга в медиальных зонах 
префронтальной коры.

МЕТОДИКА

30 половозрелых особей крыс Long Evans (200–
350 г) содержали в  стандартных лабораторных 
индивидуальных клетках (46 × 30 × 16 см) в ви-
варии при температуре 22  ±  1 °C и 12-часовом 
цикле день–ночь с  неограниченным доступом 
к воде и пище до этапа формирования поведения 
в эксперименте.

Поведенческие тесты. Для поведенческого фе-
нотипирования исходного состояния была про-
анализирована поведенческая активность живот-
ных в модифицированных тестах «открытое поле» 
и «новый объект» в течение 5 минут для каждого 
теста (Bulava et al., 2023). Оценивалась спонтан-
ная двигательная и исследовательская активность, 
а также выраженность поведения, связываемого 
с тревожностью (Antunes, Biala, 2012; Belovicova 
et al., 2017; Bulava et al., 2023). Время, затраченное 
на каждое поведенческое событие (продолжитель-
ность в секундах), было записано программным 
обеспечением RealTimer (RPC Open Science Ltd).

Инструментальное поведение. После поведен-
ческого фенотипирования животные были под-
вержены пищевой депривации при ежедневном 
контроле веса, суммарная потеря веса за все вре-
мя эксперимента не превышала 20% от исходной 
массы. Животные были обучены внешне сходному 
инструментальному поведению: группа 1 – нажа-
тие на педаль для получения пищи; группа 2 – на-
жатие на педаль для избегания боли. Группы были 
сбалансированы по уровню тревожности на основе 
результатов поведенческого фенотипирования ис-
ходного состояния животных. Для формирования 
инструментального поведения использовали соз-
данную ранее на базе института психологии РАН 
экспериментальную установку для обучения жи-
вотных инструментальным навыкам достижения 
(воды/пищи) и избегания (электроболевой стиму-
ляции). Безопасный уровень стрессирующего воз-
действия, мотивирующий активный поиск выхода 
из стрессовой ситуации, подбирался на популяции 
крыс Long Evans обоих полов на основе анализа во-
кализации и двигательной активности: 0.9 мА для 
самок и 1.2 мА  для самцов (Bulava et  al., 2020). 
С помощью операционного усилителя и полево-
го транзистора, работающего в линейном режиме, 
ток, протекающий через крысу, поддерживается 
на заданном уровне автоматически, что позволя-
ет регулировать интенсивность стрессирующего 
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воздействия и  нивелировать индивидуальные 
различия в электрическом сопротивлении кожи 
у экспериментальных животных (патент на изо-
бретение RU2675174C1, Булава и др., 2017).

Инструментальные навыки, которым обучали 
животных, внешне сходны, но отличаются резуль-
татом – либо получение пищи, либо отключение 
тока. Обучение проводили в  камере размером 
25 × 25 × 50 см, оборудованной рычагами-педа-
лями (инструменты для лап), автоматическими 
кормушками для подачи пищи при нажатии соот-
ветствующего рычага (пищедобывательное поведе-
ние) и электродным полом для подачи тока, отклю-
чаемого нажатием на рычаг (поведение избегания 
боли). Обучение проводилось ежедневно в течение 
30-минутных сессий. Критерий научения считал-
ся достигнутым, если животное выполняло десять 
эффективных циклов «инструмент–результат» 
подряд. После достижения критерия научения 
каждое животное выполняло дефинитивное по-
ведение в течение еще пяти дней. Таким образом, 
общее количество дней, проведенных в установке, 
варьировало и составило от 12 до 14. Анализ пове-
дения проводили с использованием специального 
программного обеспечения, разработанного Вол-
ковым С.В. (Bulava et al., 2020).

Через семьдесят пять минут после заключи-
тельной сессии животные были усыплены инга-
ляционным наркозом и  декапитированы, мозг 
был немедленно извлечен и фиксирован в парах 
жидкого азота для хранения при -72 oC. Живот-
ных группы интактного контроля брали из вива-
рия в сопоставимое с группами обучения время 
дня. Временная шкала эксперимента в днях при-
ведена на рис. 1.

Иммуногистохимические процедуры. Выявление 
BDNF и NeuN на срезах мозга проводили с ис-
пользованием протокола непрямой иммуноги-
стохимии (IHC-Fr HRP). Коронарные срезы моз-
га толщиной 16 мкм готовили с использованием 
криомикротома Leica CM1100 (Leica Microsys-
tems, Германия). С каждого мозга брали 12 сре-
зов в соответствии с данными стереотаксического 
атласа мозга крысы (Paxinos, Watson, 2009) на ко-
ординатных уровнях от 4.20 до 3.00 мм от Брег-
мы (forebrain). Препараты фиксировали в течение 
10 минут в 4%-ном растворе параформальдегида 
при комнатной температуре, отмывали одно-
кратным раствором фосфатного буфера (PBS). 
Антигены демаскировали в  цитратном буфере 
0.01 М pH 6.0 на водяной бане при температуре 
буфера 95–99 °С в течение 10 минут. Для пода-
вления неспецифического связывания антител 
препараты мозга на предметных стеклах преин-
кубировали в 1%-ном растворе перекиси водо-
рода в PBS, отмывали и преинкубировали в PBS, 
содержащем 10% сыворотки донора вторых анти-
тел в течение 30 мин при комнатной температуре 
и перекладывали в установку для иммунной ре-
акции на срезах ткани (Thermo Scientific Shandon 
Sequenza Immunostaining Center), затем инкубиро-
вали с первичными поликлональными антителами 
к BDNF (1:200; PAA011Ra01, Cloud-Clone, KHP) 
в течение 15 часов. Часть препаратов инкубирова-
ли с первичными моноклональными антителами 
к NeuN (1:100; А60 MAB377, CA, США) в течение 
того же времени. Отмывали в PBS и инкубировали 
со вторичными антителами, конъюгированными 
с HRP (1:400, SAA544Rb19, Cloud-Clone, KHP для 
BDNF; sc-516102, 1:200, Santa Cruz Biotechnology 
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Период адаптации Поведенческое
фенотипирование           

Инструментальное
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ВРЕМЯ [ДНИ]

Группа 1: Получение 
пищи

Группа 2: Избегание 
боли

IHC-Fr HRP

Рис. 1. Временная шкала эксперимента (в днях). Период адаптации после рассаживания животных в индивидуальные клет-
ки вивария – не менее 5 дней. Поведенческое фенотипирование – модифицированные тесты «открытое поле» и «новый 
объект». Обучение животных навыку нажатия на педаль: группа 1 – для получения пищи, группа 2 – для отключения тока. 
IHC-Fr HRP – иммуногистохимическое выявление BDNF и NeuN на криостатных срезах мозга с иммунопероксидазным 
окрашиванием.
Fig. 1. Experimental timeline. Behavioral tests – the open-field and the novel object recognition modified tests. Instrumental learn-
ing – animals were trained food-acquisition (Group 1) or footshock-avoidance (Group 2) operant behavior. Pictures from the actual 
video recording during acquisition of operant behavior (food/footshock). IHC-Fr HRP – frozen brain sections immunoperoxidase 
staining of BDNF or NeuN.
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для NeuN) в  течение 2 часов. Отмывали в  PBS 
и помещали в раствор диаминобензидина (DAB) 
с  содержанием 0.3% перекиси водорода в  PBS 
на 3 минуты, отмывали проточной водой. Препа-
раты дегидрировали в спиртах восходящей кон-
центрации, просветляли в ксилоле и заключали 
под покровные стекла с использованием монтиру-
ющей среды (Thermo Scientific Shandon Mounting 
Media). Визуализацию и оцифровку микропрепа-
ратов мозга проводили на микроскопе Axio Star 
Plus (Carl Zeiss, Германия), с помощью камеры 
Axiocam и  программы Zeiss Efficient Navigation 
(ZEN, Германия). Окрашивание NeuN способ-
ствовало определению границ неокортикальных 
зон. Меченые клетки в исследуемых областях моз-
га считали с помощью морфометрической про-
граммы «Image Pro Plus 3.0» (Media Cybernetics 
Inc., США).

Статистический анализ. В связи с малыми раз-
мерами выборок групп сравнения были приме-
нены непараметрические критерии. Наличие 
статистически достоверных различий между ин-
тактной и опытными группами животных опре-
деляли с помощью критерия Краскела–Уоллиса 
(multiple two-sided Kruskal–Wallis test), для оцен-
ки различий между конкретными группами при-
меняли критерий Манна–Уитни (Mann–Whitney 
U Test). Для заключения о значимости, степени 
(силы) и направленности взаимосвязи между по-
веденческими показателями и уровнями BDNF 
в мозге животных разных групп применяли ко-
эффициент ранговой корреляции Спирмена 
(Spearman Rank Order Correlations). Различия 
считались достоверными при p ≤ 0.05. Статисти-
ческие процедуры с построением графиков про-
ведены с  использованием статпакета Statistica 
12.0 (StatSoft Inc., США).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Уровень нейротрофина BDNF в  медиальных 
зонах префронтальной коры крыс групп обучения 
поведению достижения и  избегания выше, чем 
у группы интактного контроля (критерий Краске-
ла–Уоллиса, для прелимбической зоны p = 0.0001; 
для инфралимбической зоны p = 0.00001).

При этом число BDNF-иммунопозитивных 
клеток в  прелимбической и  инфралимбической 
зонах префронтальной коры значимо ниже у жи-
вотных группы обучения поведению избегания 
(рис. 2в, Манна–Уитни, Z = 2.95, p = 0.003; Z = 
3.15, p = 0.001 соответственно).

Обнаружена связь между индивидуальными 
различиями, выявленными с помощью поведен-
ческого фенотипирования, и  уровнем нейро-
трофического фактора мозга в зонах префрон-
тальной коры (рис.  2  (г)). Суммарное время 

замирания в тесте «Открытое поле» отрицатель-
но связано с количеством BDNF в прелимбиче-
ской (коэф. Спирмена, r = –0.56, p = 0.007) и ин-
фралимбической (коэф. Спирмена, r = –0.53, 
p = 0.012) зонах префронтальной коры. При этом 
обнаружена сильная прямая связь уровня BDNF 
с выраженностью исследовательской активности 
(коэф. Спирмена для прелимбической: r = 0.78, 
p = 0.00002; для инфралимбической: r  = 0.77, 
p = 0.00003).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Исследовательский дизайн с обучением живот-
ных поведению избегания, в частности электро-
болевого раздражения, традиционно используется 
в качестве инструмента для разработки моделей, 
воспроизводящих спектр симптомов стрессовых 
расстройств, включая депрессию и посттравмати-
ческое стрессовое расстройство (Bali, Jaggi, 2015). 
Результаты исследований показывают, что экспе-
риментальные модели на животных, имитирующие 
стресс-индуцированные состояния, приводят к по-
веденческим и нейрохимическим изменениям, со-
поставимым с таковыми у людей (Goff, 2013; Bali, 
Jaggi, 2015).

Ранее опубликованные нами результаты анали-
за выраженности индуцированной новизной экс-
прессии гена c-fos, которая связывается с форми-
рованием специализаций нейронов при научении 
(Анохин, 1997; Сварник и др., 2001), позволили 
выявить эффекты хронического стресса в моде-
ли неизбегаемого электроболевого раздражения 
на степень вовлечения цингулярной зоны коры пе-
реднего мозга в формирование нового опыта непо-
средственно после окончания стрессового периода 
(Bulava et al., 2016).

Кроме того, была показана связь тревожности 
и  исследовательской активности с  числом Fos-
экспрессирующих нейронов в глубоких и поверх-
ностных слоях дисгранулярной зоны ретросплени-
альной коры (Bulava et al., 2023). Таким образом, 
были продемонстрированы количественные раз-
личия в числе нейронов структур разного фило- 
и онтогенетического возраста при их вовлечении 
в системогенез, зависящие от индивидуальных раз-
личий и степени вовлечения стресс-реализующих 
механизмов в обеспечение формируемого поведе-
ния. Результаты многочисленных исследований 
(как на людях, так и на животных моделях) сви-
детельствуют о том, что в стрессе происходит сме-
щение к более примитивным, ранее сформирован-
ным моделям поведения, при этом новый высоко-
дифференцированный опыт частично блокируется 
(Schwabe, Wolf, 2013; Булава и др., 2020; Алексан-
дров и др., 2022). На нейрональном уровне этот 
процесс характеризуется временным снижением 
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показателей активности неокортикальных, а также 
гиппокампальных структур и увеличением показа-
телей активности подкорковых структур, таких как 
миндалевидный комплекс, ядра таламуса и гипо-
таламуса (Sawchenko et al., 1996; Ossewaarde et al., 
2011; Булава, Гринченко, 2017; Bulava et al., 2017; 
Булава и др., 2020).

В настоящей работе выявлены различия в уров-
не нейротрофического фактора мозга в  меди-
альных зонах префронтальной коры в  условиях 
формирования поведения достижения и избега-
ния: BDNF-иммунопозитивных клеток значимо 
меньше в группе обучения поведению избегания 
по  сравнению с  группой обучения поведению 
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Рис. 2. Число BDNF-иммунопозитивных клеток в зонах медиальной префронтальной коры у животных разных групп. (а) – 
схема мозга крысы в координате 3.72 мм от Брегмы, сагиттальная (сверху) и фронтальная плоскости. Исследованные зоны 
префронтальной коры выделены серым: прелимбическая (PrL) и инфралимбическая (IL) области; (б) – репрезентативные 
микрофотографии иммуногистохимического окрашивания HRP DAB клеток прелимбической области медиальной префрон-
тальной коры антителами к нейрональному ядерному белку NeuN и нейротрофину BDNF, а также отрицательного контроля 
(contr-, все ИГХ-процедуры, исключая первичные антитела). Масштаб = 200 мкм; (в) – Связь типа научения (достижения/
избегания) и уровней BDNF в неокортексе крыс. Показаны квартили и средние значения интактной и опытных групп. Ap-
petitive – инструментальное пищедобывательное поведение (n = 13); Avoidance – инструментальное поведение избегания 
боли (n = 11); Группа пассивного контроля, интактные животные (n = 6). Kruskal–Wallis, PrL H(N30) = 19.6, p = 0.0001; 
IL H(N30) = 20.4, p = 0.00001. Mann–Whitney, *Z = 2.95, p = 0.003; **Z = 3.15, p = 0.001; (г) – графики корреляции между 
переменными поведенческого фенотипирования – временем замирания (freeze) и вертикальной активностью (vertical 
activity) – и числом BDNF-позитивных клеток в зонах префронтальной коры (PrL, IL). Spearman, Freeze +PrL r = –0.56, 
p = 0.007; ++IL r = -0.53, p = 0.012. Vertical activity #PrL r = 0.78, p = 0.00002; ##IL r = 0.77, p = 0.00003.
Fig. 2. (a) – schematic diagram of the rat brain (3.72 mm from Bregma), sagittal and frontal planes, region of interest are indicated; 
(б) – representative microphotographs of IHC-prepared tissue (HRP DAB) show NeuN and BDNF stained areas of medial prefron-
tal cortex (PrL), including negative controls (contr-, IHC excluding primary antibodies). Scale bar =200 µm; (в) – the relationship 
between learning and level of BDNF in rat neocortex. M ± SEM are shown. Appetitive – instrumental food-obtaining behavior 
(n = 13); Avoidance – instrumental footshock-avoidance behavior (n = 11); Int.contr – intact animals (n = 6). Kruskal–Wallis, 
PrL H(N30) = 19.6, p = 0.0001; IL H(N30) = 20.4, p = 0.00001. Mann–Whitney, *Z = 2.95, p = 0.003; **Z = 3.15, p = 0.001; 
(г) – graphs showing the correlations obtained between behavioral variables, such as freeze and vertical activity and the number 
BDNF-positive cells of the medial prefrontal cortex. Spearman, Freeze +PrL r = -0.56, p = 0.007; ++IL r = -0.53, p = 0.012. Vertical 
activity #PrL r = 0.78, p = 0.00002; ##IL r = 0.77, p = 0.00003.
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достижения. Также обнаружена связь между 
индивидуальными различиями, выявленными 
с  помощью поведенческого фенотипирования 
(такими как тревожность и  исследовательская 
активность), и  уровнем BDNF в  прелимбиче-
ской и инфралимбической зонах префронтальной 
коры. Наши результаты согласуются с данными 
о  наличии обратной связи между уровнем экс-
прессии BDNF во фронтальной коре и выражен-
ностью стресс-индуцированного депрессивнопо-
добного состояния у крыс в тесте вынужденного 
плавания (Берeзова и др., 2011). Предполагается, 
что нейровоспаление, опосредованное стресс-
реализующими механизмами, а именно чрезмер-
ная и/или затяжная продукция нейростероидов 
с возрастающим дисбалансом про- и противовос-
палительных факторов в сторону первых, может 
лежать в основе развития расстройств тревожно-
депрессивного спектра (Aktas et  al., 2005; Goff, 
2013; Гуляева, 2019; Gulyaeva, 2021), при этом 
хронический стресс становится основным факто-
ром риска. Стресс-индуцированная мобилизация 
длительное время характеризуется долгосрочны-
ми изменениями на нейроэндокринном и морфо-
функциональном уровнях, такими как увеличение 
плотности мембранных рецепторов к глюкокор-
тикоидам в клетках стресс-чувствительных струк-
тур мозга (например, обзор (Sapolsky et al., 2000)), 
уменьшение объема гиппокампа ((Gilbertson et al., 
2002; Teicher et al., 2012) и мн. др.), уменьшение 
объема серого вещества в ряде корковых структур 
и увеличение – в подкорковых (Van der Werff et al., 
2013). На  данный момент принято считать эти 
морфологические особенности следствием разви-
тия стрессового расстройства, а не его причиной 
(о механизмах гибели нервных клеток в результате 
хронического стресса см. обзоры (Aktas et al., 2005; 
Kasai et al., 2008; Гуляева, 2019; Gulyaeva, 2021)). 
Выше мы  отмечали многочисленные эффекты 
зрелого BDNF и его предшественника. Учитывая 
проапоптотическую активность предшественни-
ка BDNF, сравнительно низкий уровень зрелого 
BDNF при реализации поведения избегания мо-
жет свидетельствовать о развертывании процес-
сов стресс-индуцированного нейровоспаления. 
Регуляция транскрипции гена BDNF (включая 
различные промоторы) осуществляется с участи-
ем эпигенетических механизмов, что связывает 
транскрипционную активность BDNF с форми-
руемым индивидуальным опытом. Участие BDNF 
в  процессах нейропротекции, (нео)нейрогене-
за, дендрито- и  синаптогенеза, а  также апопто-
за не позволяет использовать его как показатель 
выраженности конкретных процессов, имеющих 
отношение к  системогенезу, но  позволяет оха-
рактеризовать выраженность требуемых измене-
ний в разных структурах мозга при их вовлечении 
в системогенез.

ЗАКЛЮЧЕНИЕ

На основании полученных результатов можно 
сделать вывод об интенсивном вовлечении меди-
альных зон префронтальной коры в обеспечение 
поведения достижения, а также поведения избега-
ния, но в значимо меньшей степени. То есть выра-
женность изменений в медиальных зонах префрон-
тальной коры ниже при вовлечении в системогенез, 
характеризующийся актуализацией систем домена 
опыта избегания, чем с актуализацией систем доме-
на опыта достижения. Однако с учетом ранее проде-
монстрированного нами снижения числа нейронов 
неокортекса, вовлекаемых в обеспечение поведе-
ния избегания при сохранении состояния стресса 
длительное время, а также проапоптотической ак-
тивности предшественника BDNF, уровень которо-
го в упомянутом исследовании не контролировался, 
сравнительно низкий уровень зрелого BDNF при 
реализации поведения избегания также может сви-
детельствовать о развертывании процессов стресс-
индуцированного нейровоспаления и апоптоза, что 
требует анализа дополнительных молекулярных 
маркеров системогенеза, включая показатели выра-
женности нейровоспаления и нейроапоптоза.
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LEARNING-DEPENDENT BDNF LEVELS  
IN THE RAT MEDIAL PREFRONTAL CORTEX:  

APPROACH VS. WITHDRAWAL

A. I. Bulavaa, b, #, Yu. I. Alexandrova

aShvyrkov Laboratory, Neural Bases of Mind,  
Institute of Psychology, Russian Academy of Sciences, Moscow, Russia

bMoscow Institute of Psychoanalysis, Moscow, Russia
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This article presents a comparison of changes in molecular markers of systemogenesis related to behavioral 
motivation: approach versus avoidance, differing in their stress levels. We conducted an immunohistochemical 
study of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex of adult Long-Evans rats. 
Two groups were trained in a bar-pressing task: 1) to activate a food dispenser and obtain food (approach); 
2) to terminate a shock and avoid pain (avoidance). The avoidance group showed significantly fewer BDNF-
immunopositive cells in the prelimbic and infralimbic prefrontal cortex compared to the approach group. 
Furthermore, BDNF levels correlated with individual differences in  anxiety and exploratory activity. 
We conclude that the medial prefrontal cortex is involved in both approach and avoidance behaviors, but 
to a significantly lesser extent in avoidance. The potential role of stress-induced neuroinflammation in these 
differences is discussed.

Keywords: systemogenesis, behavioral phenotyping, learning, approach/withdrawal, stress, medial prefrontal 
cortex, neurotrophins, BDNF
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