
117

ЖУРНАЛ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ,  2025, том 75, № 1,  с.  117–128

УДК 612.821

ИССЛЕДОВАНИЕ  
ВОЗМОЖНОГО УЧАСТИЯ МЕХАНИЗМА  
ДЕПРИВАЦИОННОЙ ПОТЕНЦИАЦИИ  

В КОНСОЛИДАЦИИ ПАМЯТИ ВО ВРЕМЯ СНА

© 2025 г.  В. А. Попов1, *, В. А. Коршунов1, ** 
1Федеральное государственное бюджетное учреждение науки  

«Институт высшей нервной деятельности и нейрофизиологии РАН», Москва, Россия
*e-mail: v-lad-i-mir@yandex.ru
**e-mail: vkorshunov@ihna.ru

Поступила в редакцию 04.04.2024 г.
После доработки 20.08.2024 г.

Принята к публикации 09.09.2024 г.

Работа посвящена проверке гипотезы об участии механизма депривационной потенциации, разви-
вающейся при длительном синаптическом покое, в консолидации памяти во время покоя/сна жи-
вотного после однодневного обучения в водном лабиринте, с использованием фармакологического, 
генетического и электрофизиологического факторов, препятствующих ее развитию. Через 7 дней про-
веряли способность животного к сохранению приобретенного навыка (тест на консолидацию). Экс-
перименты не подтвердили предположение об участии депривационной потенциации в консолидации 
памяти, и вместе с тем продемонстрировали способность к пространственному обучению и длительному 
сохранению навыка у мышей с нокаутом гена паннексина 1.
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ВВЕДЕНИЕ

Преобладающей догмой современной ней-
робиологии является предположение о том, что 
в  основе обучения и  памяти лежит синаптиче-
ская пластичность  – долговременное усиление 
эффективности синаптической передачи (Bliss, 
Collingridge, 1993; Morris et al., 2003; Dudai, 2004). 
После открытия длительной потенциации (LTP) 
в гиппокампе (Bliss, Lømo, 1973), структуре, уча-
ствующей в  процессах обучения (Виноградова, 
1975; Кичигина, 2022; Scoville, Milner, 1957), фе-
номен длительного увеличения синаптической 
эффективности после кратковременной высоко-
частотной стимуляции стал широко исследуемой 
моделью синаптических изменений, происходя-
щих во время обучения (Bliss, Collingridge, 1993; 
Hölscher, 1999; Morris et al., 2003). Другим вари-
антом гиппокампальной активность-зависимой 
пластичности является феномен длительной де-
прессии (LTD) (Lynch et al., 1977). В эксперимен-
тах на срезах гиппокампа in vitro нами был открыт 

новый вид активность-зависимой пластичности, 
сопоставимой с LTP и способной вступать с ней 
в  конкурентные взаимоотношения, а  также об-
ладающей способностью к длительному сохране-
нию, – феномен депривационной потенциации 
(ДеП), который проявляется в  увеличении эф-
фективности синаптической передачи вследствие 
длительного синаптического покоя (Попов, 1994; 
Попов, Маркевич, 2001, 2014; Niu et  al., 1999). 
При исследовании механизмов ДеП были выде-
лены два независимых компонента: кратковре-
менный (кДеП) с входо-специфичным пресинап-
тическим механизмом и долговременный (дДеП) 
с циклическим постсинаптическим N-метил-D-
аспартат (NMDA)-рецептор-независимым, аде-
нозинтрифосфат (АТФ)-, кальций (Ca2+)- и про-
теин киназа С (ПКС)-зависимым механизмом, 
опосредуемым паннексином 1 (Panx1) и пурино-
выми P2-рецепторами (Попов, Маркевич, 2001, 
2014; Попов, 2016, 2020). Тем не  менее данные 
исследования активность-зависимой потенциа-
ции в  структуре мозга, связанной с  обучением, 
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оставляли открытым вопрос о ее роли в естествен-
ных физиологических условиях при свободном по-
ведении животного.

В целом поведение млекопитающих разделяют 
на два чередующихся периода – активности и по-
коя, включая сон обычный (медленный) и пара-
доксальный (быстрый) (Ковальзон, 2012). Обуче-
ние происходит в период активности и приводит 
к формированию памяти. Согласно современным 
представлениям, механизм памяти включает в себя 
кодирование (реорганизацию синаптических свя-
зей во время обучения), консолидацию (закрепле-
ние памяти после ее приобретения) и извлечение 
(воспроизведение сохраненной памяти) (Morris 
et al., 2003; Born et al., 2006). Двухэтапная модель 
памяти предполагает, что новая память вначале 
кодируется и  временно хранится в  гиппокампе, 
а  затем консолидируется  – постепенно перево-
дится в долговременное хранилище, в основном 
представленное неокортексом (Dudai, 2004; Born, 
Wilhelm, 2012; Goto et al., 2021; Mizuseki, Miyawaki, 
2023). Накопились убедительные доказательства 
того, что процессу консолидации способствует 
сон как автономный режим обработки информации 
и что консолидация гиппокамп-зависимой памяти 
в первую очередь связана с медленным сном, харак-
теризуемым низкой активностью нейронов (Доро-
хов и др., 2011; Дорохов, Пучкова, 2022; Born et al., 
2006; Born, Wilhelm, 2012).

Известно, что во время бодрствования в клетках 
мозга поддерживается стабильный уровень АТФ 
(Veech et al., 1979). Вместе с тем было показано, 
что в течение нескольких часов во время естествен-
ного и наркотического сна крыс в ряде областей 
мозга (включая гиппокамп), в которых во время 
бодрствования была выраженная нейронная ак-
тивность, происходит возрастание уровня АТФ 
(Dworak et al., 2010; Dworak et al., 2011), что авто-
ры связали с уменьшением использования энергии 
АТФ в период медленного сна, когда активность 
нейронов понижена. Это согласуется с клеточной 
моделью циклического механизма ДеП, индукция 
которого требует минимального времени синап-
тического покоя (латентного периода ДеП), в те-
чение которого снижение расхода АТФ приводит 
к его накоплению в цитоплазме и последующему 
выходу через Panx1-каналы во внеклеточное про-
странство, а также активации близлежащих P2-
пуринорецепторов, опосредующих повышение 
концентрации цитозольного кальция (Попов, 
2020). Кроме того, нами была продемонстрирова-
на возможность развития ДеП в условиях in vivo 
у крыс, находящихся в состоянии наркотического 
сна (Попов, Маркевич, 1999). Все вышеизложен-
ное дало основание для предположения об уча-
стии механизма ДеП в  консолидации памяти 
во время сна животного после гиппокамп-зави-
симого обучения.

МЕТОДИКА

Экспериментальные животные

В экспериментах на крысах были использованы 
взрослые самцы линии Long-Evans (ИПРАН) ве-
сом 300–430 г. По сравнению с альбиносами крысы 
данной линии вследствие нормально пигментиро-
ванной радужной оболочки имеют хорошее зрение 
(Prusky et al., 2002), что играет основную роль при 
решении пространственных задач в водном лаби-
ринте (бассейне Морриса) (Whishaw, 2004).

В экспериментах на мышах были использованы 
взрослые самцы двух линий возрастом 7–10 меся-
цев и весом 28–32 г: 8 мышей, нокаутных по гену 
Panx1 (Panx1–/–) (Dvoriantchikova et al., 2012; Battu-
lin et al., 2021); в качестве контроля использовали 
7 мышей дикого типа C57Bl/6j (Panx1+/+).

Животные содержались при естественном су-
точном цикле и  имели свободный доступ к  воде 
и пище. При всех манипуляциях с животными со-
блюдались Директива 2010/63/EU о защите живот-
ных, используемых для экспериментальных и дру-
гих научных целей, и положение Института ВНД 
и НФ о работе с экспериментальными животными.

Поведение

Эксперименты проводили в бассейне глубиной 
50 см и диаметром 150 см для крыс и 100 см для мы-
шей, бассейн на 25 см заполняли теплой (25 ± 1 °С) 
водой. Для решения животным эгоцентрической 
задачи на платформу устанавливали темную насадку 
диаметром 10 см, возвышающуюся на 1 см над водой. 
Для решения аллоцентрической задачи использовали 
невидимую прозрачную платформу диаметром 10 см, 
расположенную на 1 см ниже уровня воды.

Для сокращения количества визуальных стиму-
лов бассейн с двух сторон был отгорожен черны-
ми занавесками таким образом, чтобы животное 
могло видеть только две светлые и  две темные 
поверхности.

В первой попытке оценивали физическое 
состояние животного (плавание до  обучения). 
В следующие 3–5 попыток с видимой платформой 
животные обучались решению эгоцентрической 
задачи – нахождению платформы и восприятию 
ее как единственной возможности спасения: жи-
вотное забиралось на платформу (реакция избав-
ления) и в течение нескольких секунд оставалось 
на ней, после чего экспериментатор снимал жи-
вотное с  платформы. Затем животное обучали 
решению аллоцентрической задачи – нахожде-
нию расположенной на том же месте невидимой 
платформы (3–5 попыток). Неспособных к обу-
чению животных выбраковывали. Обученных жи-
вотных переносили в домашнюю клетку, где они 
в течение 3 ч пребывали в свободном поведении, 
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переходя в состояние покоя/сна, определяемое 
экспериментаторами визуально.

Через 7 дней после обучения животных однократ-
но тестировали в бассейне с невидимой платформой 
(тест на консолидацию памяти). В отдельных случа-
ях для оценки длительности сохранения следа памя-
ти производили дополнительный тест с невидимой 
платформой через 21 день после обучения. Каждый 
запуск животного осуществляли с разных позиций. 
Заплывы длились до 60 с, интервал между заплывами 
составлял от 10 до 30 мин – для отдыха животного. 
Все сеансы обучения крыс записывали на веб-камеру 
(LG, Korea), дальнейший анализ осуществляли с по-
мощью программы трекинга (Коршунов, 2014).

При анализе поведения мы использовали не-
сколько критериев:

1) нахождение животным невидимой платфор-
мы в течение 60 с заплыва (в значении «да»/«нет»);

2) для оценки динамики обучения  – индекс 
обученности (ИО) (отношение длины траектории 
плавания к окружности бассейна): у наивных жи-
вотных ИО больше 1, а когда крыса меняет стра-
тегию поведения на  целенаправленный поиск 
платформы, его значение становится меньше 1 
(Коршунов, 2019);

3) индекс дирекциональности (ИД) – отноше-
ние длины траектории плавания к кратчайшему 
расстоянию между исходным положением живот-
ного и платформой: чем этот показатель ближе к 1, 
тем прямолинейнее путь животного к платформе. 
ИД является наиболее адекватным параметром для 
оценки пространственного гиппокамп-зависимого 
поведения в аллоцентрических задачах, поскольку 
не зависит от физического состояния, двигатель-
ной активности и места запуска животного в бас-
сейне, что позволяет сравнивать между собой как 
отдельные попытки разных животных независимо 
от места старта, так и усредненные данные (Кор-
шунов, 2014, 2019; Коршунов, Узаков, 2022).

Статистический анализ

Для ненормального распределения данных мы ис-
пользовали тест Манна–Уитни (Mann–Whitney 
U-test) и Вилкоксона (Wilcoxon Matched Pairs Test), 
различия p < 0.05 принимались как достоверные. 
При обработке данных использовали программу 
Statistica 10.

Операция

Животных анестезировали золетилом (Valdeph-
arm, Франция) (35 мг/кг, внутрибрюшинно) 
с  предварительным введением миорелаксанта 
(рометар, Bioveta, Чешская Республика) (01 мг/
кг, внутримышечно), скальпирование проводи-
ли под дополнительной новокаиновой блокадой 
(1 мл 2%-ного раствора). Биполярные электроды 

изготавливали из скрученной нихромовой прово-
локи 80 мкм в эмалевой изоляции.

Биполушарное вживление электродов произ-
водили согласно координатам атласа (Paxinos, 
Watson, 1998): регистрирующие электроды вживля-
ли под физиологическим контролем (по спонтан-
ной нейронной активности) структуры гиппокам-
пальной формации (ГФ): биполушарно в область 
нейронов зубчатой фасции (ЗФ) (AP = –3.8; L = 2.0; 
H = 2.8–3.4 от кости) и в область нейронов поля 
СА1 дорсального гиппокампа (правое полушарие, 
AP =  –3.8; L = 2.8; H = 2.2–2.5 от  поверхности 
мозга); стимулирующие электроды вживляли под 
физиологическим контролем (по вызванным отве-
там) биполушарно в область медиального перфо-
рантного пути (МПП) (AP = –8.4; L = 4.0; H = 3.0 
от кости) и в вентро-гиппокампальную комиссу-
ру (ВГК) (правое полушарие, AP = –1.3; L = 1.0; 
H = 4.0 от bregma). Глубину погружения стимули-
рующих электродов корректировали по амплитуде 
вызванных ответов. Для фиксации электродов ис-
пользовали зуботехническую пластмассу.

Стимуляция

Через 3–4 дня после операции проводили под-
бор параметров стимуляции (амплитуда стимула – 
400–500 мкА, длительность – 100 мкс), на следую-
щий день животное обучали.

Сразу после обучения животное помещали 
в  домашнюю клетку, где оно в  течение 3 ч  на-
ходились в  свободном поведении, в  том числе 
в состоянии покоя/сна. В течение этого времени 
осуществляли циклическую электростимуляцию 
внутригиппокампальных связей с интервалом 10 с 
в последовательности:

МППлев→ ВГК→ МППпр→ ВГК→ МППлев→ …

Регистрацию вызванных ответов осуществляли 
для физиологического контроля стимуляции. Для 
усиления активации ГФ использовали стимуляцию 
парными импульсами с межстимульным интерва-
лом 20 мс.

Препараты

В работе использовали мембрано-проника-
ющий хелатор кальция, 1,2-Bis(2-amino-5-flu-
orophenoxy)ethane-N,N,N',N'-tetraacetic acid 
tetrakis(acetoxymethyl) ester (BAPTA-AM) (Invitrogen, 
США), и  ингибитор Panx1-каналов пробенецид 
(probenecid – TCI, Япония); в качестве раствори-
теля использовали диметилсульфоксид (ДМСО) 
(димексид  – ООО «Тульская фармацевтическая 
фабрика», Россия). Пробенецид и  BAPTA-AM 
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предварительно растворяли в ДМСО, после чего 
разбавляли в изотоническом растворе до 10%-ного 
раствора ДМСО. Введение препаратов осущест-
вляли внутрибрюшинно (в/б): пробенецид (25 мг/
кг), BAPTA-AM (5 мг/кг). В качестве контроля ис-
пользовали внутрибрюшинную инъекцию 10%-ного 
раствора ДМСО. Используемые дозы и временно́е 
соотношение в/б инъекций пробенецида и BAPTA-
AM соответствовали таковым в  экспериментах 
на крысах с обучением в бассейне Морриса (Tonkikh 
et al., 2006). Согласно данным (Saucier et al., 1996; 
Ouanounou et al., 1996), ДМСО не оказывает вли-
яния на двигательную активность и способность 
к обучению крыс в водном лабиринте.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Для проверки предположения об участии ме-
ханизма ДеП в консолидации памяти во время 
сна мы использовали модель однодневного обу-
чения животных решению гиппокамп-зависимой 
задачи нахождения невидимой платформы в бас-
сейне Морриса.

Фармакологическое воздействие

В экспериментах на крысах в/б инъекцию про-
никающего хелатора кальция, BAPTA-AM, осу-
ществляли на  завершающей стадии обучения, 
когда животное демонстрировало признаки обу-
ченности; за 30–40 мин до введения BAPTA-AM 
производили в/б инъекцию пробенецида (ингиби-
тора Panx1 и пролонгатора BAPTA-AM). В контро-
ле вместо пробенецида и BAPTA-AM осуществляли 
две в/б инъекции ДМСО с дозами, эквивалентными 
расчетным для данного животного в пробенециде 
и BAPTA-AM соответственно. Дополнительным 
контролем служили эксперименты без введения 
препаратов.

Схема эксперимента, примеры обучения 
в опыте и контроле с видимой и невидимой плат-
формами, инъекция препаратов и тестирование 
консолидации через 7 дней показаны на рис. 1. 
На верхней части представлены примеры траек-
торий плавания, на нижней – значения ИО при 
каждой попытке в опыте (а) и контроле (б). После 
второй инъекции препарата дополнительную 
попытку производили для проверки того, что 
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Рис. 1. Примеры динамики индивидуального обучения крыс в бассейне Морриса и тест на воспроизведение навыка 
(консолидацию памяти) в опыте (а) и контроле (б). По оси абсцисс – номер попытки/заплыва (N); 1 – первая по-
пытка (тест физического состояния животного и способности плавать), последующие попытки – обучение, Т – тест 
на долговременную память (консолидацию) через 7 дней после обучения. По оси ординат – индекс обученности 
(ИО). Пунктирная линия соответствует значению ИО = 1 (если значение данного индекса стабильно < 1, животное 
обучено). Показана динамика обучения с видимой платформой (черные кружки) и с невидимой (белые кружки). 
Минус в кружке означает, что в течение 60 с плавания платформа животным не была найдена, по умолчанию (отсут-
ствие знака) – платформа была найдена. Стрелками обозначены инъекции препаратов. Наверху показаны траекто-
рии движения крыс при плавании в опыте (попытки 1, 10 и Т) и контроле (попытки 1, 9 и Т). Подробности в тексте.
Fig 1. Dynamic of individual learning in Morris water maze and recall of memory in experiment (a) and control (б). N – num-
ber of trial; 1 – first trial (test for physical condition of the animal); rest trials – learning; T – memory test 7 days later. ИО – 
index of learning. Dotted line – ИО=1 (ИО<=1 means that the rat had learned the task). Black circle – visible platform, white 
one – invisible platform; “–” in the circle means that the rat didn’t find the platform in particular trial, empty circle – the 
animal had found the platform. Arrows – intraperitoneal injections. Trajectories of swimming are shown above: experiment 
(trials 1, 10, T), control (trials 1, 9, T). For more details see the text.
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препарат и/или стресс от инъекции не нарушили 
приобретенную память.

Три этапа обучения и смены животным стра-
тегии решения задачи отражены на  рис. 1 (а). 
На первом этапе крыса ищет выход, плавая преи-
мущественно вдоль края бассейна, при случайном 
обнаружении платформы животное не восприни-
мает ее как спасение и продолжает поиск выхо-
да. На втором этапе с видимой платформой кры-
са меняет стратегию и использует платформу для 
спасения. На третьем этапе (невидимая платфор-
ма) животное меняет эгоцентрическую стратегию 
поиска платформы на аллоцентрическую: вначале 
крыса дезориентирована (попытка 6) и не находит 
платформу, но затем находит ее и в последующих 
попытках целенаправленно плывет к невидимой 
платформе (ИО8 = 0.14).

Подобная картина обучения со сменой страте-
гии решения задач с некоторыми вариациями была 
и в контроле (рис.1 (б)).

Из 27 крыс в процессе обучения 5 были выбра-
кованы из-за плохой обучаемости, остальные соста-
вили 3 группы: опыт, контроль и без инъекции пре-
паратов. Из 8 крыс в опыте все 8 достигли научения, 
из них 7 выявили длительное сохранение приобре-
тенного навыка (консолидацию памяти); из 6 крыс 
в контроле все 6 достигли научения, из них 5 вы-
явили консолидацию; из 8 крыс без инъекции пре-
паратов все 8 достигли научения и выявили кон-
солидацию. Таким образом, по показателю обуча-
емости и способности к длительному сохранению 
навыка (консолидации) значимых различий между 
животными трех групп не выявлено. На рис. 2 пред-
ставлена суммарная гистограмма значений ИД трех 
групп крыс (опыт, контроль и без препаратов): ис-
ходные значения (наивные животные, плавание 
до обучения), после обучения – последняя попытка 
(обученные) и при тестировании консолидации че-
рез 7 дней после обучения (тест).

Попарное сравнение ИД (тесты Вилкоксона 
и Манна – Уитни) показало:

а) отсутствие значимых отличий при сравнении 
наивных крыс в парах опыт/контроль (z = 0.00, 
p  >0.5) и  опыт  / без препаратов (z = 0.367574, 
p > 0.5) свидетельствует о достаточной однородно-
сти животных трех групп (Манн – Уитни);

б) значимые отличия при сравнении наивные/
обученные в группах: опыт (z = 2.5205042, p < 0.05), 
контроль (z = 2.2013981, p < 0.05), без препаратов 
(z = 2.38047624, p < 0.05) – свидетельствуют о том, 
что крысы всех трех групп достигли научения 
(Вилкоксон);

в) отсутствие значимых отличий при сравне-
нии обученных крыс в  группах опыт/контроль 
(z = –0.580948, p > 0.5) и опыт / без препаратов 
(z = –0.735147, p > 0.5) свидетельствует о том, что 
инъекция (пробенецид + BAPTA-AM) не оказала 
значимого влияния на обучение (Манн – Уитни);

г) значимые отличия при сравнении наивные/
тест в  группах: опыт (z = 2.5205042, p < 0.05), 
контроль (z = 1.9917412, p < 0.05), без препара-
тов (z = 2.24044824, p < 0.05) – свидетельствуют 
о  консолидации памяти у  крыс всех трех групп 
(Вилкоксон);

д) отсутствие значимых отличий при сравне-
нии теста через 7 дней в  парах опыт/контроль 
(z = –0.968246, p > 0.5) и опыт / без препаратов 
(z = 0.210042, p > 0.5) свидетельствует об отсут-
ствии влияния препаратов на консолидацию па-
мяти (Манн – Уитни).

Таким образом, результаты данной серии экс-
периментов показали, что пробенецид и BAPTA-
AM, разными путями препятствующие развитию 
дДеП в экспериментах in vitro, не оказали значи-
мого влияния на консолидацию гиппокамп-за-
висимой памяти во время покоя/сна крыс после 
обучения.
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Рис. 2. Препараты (пробенецид и BAPTA-AM), пре-
пятствующие развитию депривационной потенциа-
ции, не оказывают значимого влияния на консоли-
дацию памяти у крыс во время покоя/сна. ИД – ин-
декс дирекциональности. Н  – наивные животные 
(1-я попытка); О  – обученные животные (послед-
няя попытка обучения с невидимой платформой); 
Т – результат тестирования с невидимой платфор-
мой через 7 дней после обучения. Темные столбцы – 
опыт (крысы, которым производили в/б инъекцию 
пробенецида и BAPTA-AM) (n = 8); заштрихованные 
столбцы – контроль (двойная в/б инъекция ДМСО) 
(n = 6); белые столбцы – дополнительный контроль 
(без инъекции препаратов) (n = 8). Остальные объ-
яснения в тексте.
Fig. 2. Probenecid and BAPTA-AM do not impair mem-
ory consolidation in rats during sleep. ИД – index of di-
rectionality, Н – naive animals (first trial), O – expe-
rienced animals (last trial after learning), T – memory 
test 7 days later. Dark boxes – probenecid+BAPTA-AM, 
n = 8; shadow boxes – control (DMSO x 2) n = 6; light 
boxes – additional control (no drugs) n = 8. For more 
details see the text.
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Генетически модифицированные животные

Исследование проводили на  линии мышей, 
нокаутных по  гену Panx1 (опыт, n = 8), в  каче-
стве контроля использовали мышей дикого типа 
C57Bl/6j (n = 7). В связи с необходимостью исполь-
зовать модель однодневного обучения, более мел-
кими размерами и худшими способностями к обу
чению у мышей по сравнению с крысами диаметр 
бассейна был уменьшен до 100 см.

Оценка двигательной активности и способности 
к плаванию в 1-й попытке показала, что мыши обе-
их групп обладали хорошей подвижностью и спо-
собностью к плаванию, кроме эпизодов «зависания» 
на воде (торпора). В опыте из 8 мышей торпор про-
являлся у 3, в контроле из 7 мышей торпор был у 4. 
Торпор сам по себе не служил обязательным ос-
нованием для выбраковки животного, поскольку 
не влиял на индекс w/m, а лишь замедлял выпол-
нение задачи. Мышь выбраковывали в случае, если 
она большую часть времени «зависала» в воде и не 
пыталась найти платформу.

Из 8 Panx1–/–-мышей 1 была выбракована 
по причине длительного торпора и плохой обуча-
емости, остальные 7 достигли научения и выявили 
консолидацию (положительный тест), кроме того, 
4 мыши были дополнительно протестированы че-
рез 21 день после обучения и обнаружили плат-
форму. Из 7 Panx1+/+-мышей выбракованы были 
две (длительный торпор и плохая обучаемость), из 
5 обученных 4 выявили консолидацию.

Суммарные результаты показаны на  рис. 3. 
Большой разброс значения ИД у Panx1–/–-мышей 
при наивном плавании связан с  тем, что часть 
из них случайно находила невидимую платформу 
и залезала на нее, а у Panx1+/+-мышей это происхо-
дило реже. Случайное обнаружение животным не-
видимой платформы при первой попытке не обяза-
тельно приводило к ускорению процесса обучения.

Попарное сравнение ИД (тесты Вилкоксона 
и Манна – Уитни) показало:

а) значимые различия при сравнении мы-
шей наивные/обученные в опыте (z = 2.36643195, 
p < 0.05) и контроле (z = 2.022599697, p < 0.05) сви-
детельствуют о способности обеих групп мышей 
к обучению (Вилкоксон);

б) значимые различия при сравнении мышей 
наивные/тест в  опыте (z = 2.02837014, p < 0.05) 
и контроле (z = 2.022599697, p < 0.05) (Вилкоксон), 
а также

в) отсутствие значимых различий при сравнении 
мышей обученные/тест в опыте (z = 0.67612338, 
p > 0.05) и контроле (z = 1.752919674, p > 0.05) сви-
детельствуют о способности мышей обеих групп 
к длительному сохранению приобретенного навы-
ка (консолидации) (Вилкоксон);

г) сравнение пар мышей в опыте/контроле: наи-
вные (z = –1.07143, p > 0.05), обученные (z = 0.785714, 

p > 0.05) и тест (z = –0.642857, p > 0.05) – показа-
ло, что Panx1–/–-мыши и Panx1+/+-мыши значимых 
различий в их способности к плаванию, обучению 
и консолидации не имеют (Манн – Уитни).

Дополнительное тестирование способности 
к длительному сохранению приобретенного навы-
ка у четырех нокаутных мышей через 21 день после 
обучения дало положительные результаты.

Электрофизиологическое воздействие

В данной серии экспериментов в течение 3 ч 
покоя/сна животного после обучения применяли 
электрическую стимуляцию афферентов ГФ.

В предварительных экспериментах до обучения 
животного производили операцию по вживлению 
стимулирующих электродов в область МПП обоих 
полушарий, имеющих большое представительство 
в ГФ (McNaughton, 1980), и регистрирующих элек-
тродов в область ЗФ. Результаты показали большой 
разброс, что могло быть следствием как ложнопо-
ложительного результата (индивидуальной неспо-
собности животного к длительному сохранению 
приобретенного навыка), так и ложноотрицатель-
ного (активируемая область не  затрагивала уча-
ствующих в обучении синапсов).

Для снижения вероятности таких ошибок 
мы  модифицировали протокол эксперимента. 
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Рис. 3. Обе группы мышей (нокаутные и дикого типа) 
показали одинаковую способность к пространствен-
ному обучению и сохранению навыка. Значимых раз-
личий нет. На гистограмме представлены суммарные 
данные: темные столбцы – опыт (нокаутные мыши) 
(n = 7); белые столбцы  – контроль (мыши дикого 
типа линии C57Bl/6J) (n = 6). Остальные обозначе-
ния как на рис. 2, пояснения в тексте.
Fig. 3. Both groups (knockout and wild type mice) dem-
onstrate close results of  spatial learning in Morris water 
maze. No significant differences were observed. Histogram 
shows summary results: dark boxes – experimental group 
(Panx1-/- mice) n=7; light boxes – control group (wild type 
mice) n = 6. All symbols have the same meaning as they 
do in fig. 2. For more details see the text.
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На предварительном этапе производили обучение 
крыс в бассейне Морриса и отбирали способных 
к обучению и длительному сохранению приобре-
тенного навыка. Отобранных крыс оперировали. 
Для расширения активируемой области ГФ  до-
полнительно вживляли стимулирующие электро-
ды в область ВГК и регистрирующие – в область 
поля СА1 гиппокампа. После периода реабилита-
ции крыс обучали нахождению невидимой плат-
формы, расположенной на новом месте, после чего 
животное помещали в домашнюю клетку и в тече-
ние 3 ч покоя/сна производили циклическую по-
переменную стимуляцию МППлев→ ВГК→ МППпр→ 
ВГК→МППлев… Через 7 дней проверяли способность 
животных к длительному сохранению вновь приоб-
ретенного навыка (тест на консолидацию).

После предварительного отбора 3 крысы из 8 
были выбракованы, остальные 5 были проопериро-
ваны и обучены находить невидимую платформу, 
расположенную на новом месте. Результаты обуче-
ния и теста животного в опыте сравнивали с тако-
выми в предварительном отборе (контроль).

На рис. 4 (а) показаны примеры ответов ней-
ронов ЗФ и поля CA1 гиппокампа на стимуляцию 
ВГК и МПП. Диапазон усредненных значений 
(n = 5) амплитуд вызванных ипси- и  контрла-
теральных ответов (популяционных спайков) 
трех структур ГФ в зависимости от расположения 
стимулирующих и  регистрирующих электро-
дов у 5 экспериментальных животных составил: 
МПП-ЗФипси (от 0.57 ± 0.17 до 7.27 ± 0.10 мВ); 
МПП-ЗФконтр (от 0.33 ± 0.06 до 0.64 ± 0.46 мВ); 
МПП-СА1 (от 0.37  ±  0.03 до 5.67  ±  1.38 мВ); 
ВГК-ЗФипси (от 4.68  ±  0.61 до 5.06  ±  0.44 мВ); 
ВГК-ЗФконтр (от 3.93 ± 0.65 до 5.72 ± 0.62 мВ); 
ВГК-СА1 (от 3.10 ± 0.37 до 3.54 ± 0.39 мВ).

Суммарные результаты экспериментов (n = 5) 
представлены на рис. 4 (б).

Попарное сравнение ИД (тест Вилкоксона) 
у животных в контроле (предварительный отбор) 
и опыте (переучивание + стимуляция) показало:

а) значимые отличия при сравнении наивных/
обученных крыс в опыте (z = 2.022599697, p < 0.05) 
и контроле (z = 2.022599697, p < 0.05) свидетель-
ствуют, что животные как в опыте, так и в контро-
ле были обучены;

б) значимые отличия при сравнении крыс наив
ные/тест в опыте (z = 2.022599697, p < 0.05) и кон-
троле (z = 2.022599697, p < 0.05) свидетельствуют 
о консолидации как в опыте, так и в контроле;

в) отсутствие значимых отличий при сравнении 
тестируемых крыс через 7 дней после обучения 
в опыте/контроле (z = 1.483239651, p > 0.05) сви-
детельствует, что стимуляция в период покоя/сна 
животного после обучения не оказывала значимого 
влияния на консолидацию памяти.

Таким образом, эксперименты показали, что 
искусственное повышение активности нейронов 

ГФ во время покоя/сна крыс после обучения в во-
дном лабиринте не оказывало значимого влияния 
на длительное сохранение приобретенного навыка 
и консолидацию гиппокамп-зависимой памяти.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Исследования открытого нами феномена ДеП 
показали, что это сложный физиологический про-
цесс, который развивается без какого-либо воздей-
ствия при состоянии длительного синаптического 
покоя и обеспечивается двумя независимыми ме-
ханизмами с вовлечением таких клеточных струк-
тур, как митохондрии, Panx1, P2-пуринорецепторы 
и эндоплазматический ретикулум. В то же время 
роль ДеП в естественных физиологических услови-
ях при свободном поведении животного оставалась 
неисследованной.

Согласно нашим представлениям, ДеП, LTD 
и LTP образуют единый континуум активность-за-
висимой синаптической пластичности, в котором 
LTP и  ДеП являются двумя «полюсами» на  оси 
«употребления/неупотребления» синапса (По-
пов, 2016), что находит отражение в их отличии 
(табл. 1).

Теоретически, разные пути увеличения эффек-
тивности синаптической передачи в гиппокампе 
могут предопределять и разное участие LTP и ДеП 
в механизме памяти. Если LTP принято связывать 
с реорганизацией синаптических связей во время 
обучения, то  условие индукции ДеП исключает 
связь данного вида синаптической пластичности 
с обучением, но не с памятью в широком значении. 
Нами было высказано предположение об участии 
механизма ДеП в  консолидации приобретенной 
памяти во время медленного сна, который сопро-
вождается общей поведенческой бездеятельностью, 
отсутствием или значительным снижением уров-
ня афферентации и снижением расхода энергии, 
что отвечает условию развития ДеП. Регистрация 
ДеП в естественных условиях затруднена, и в на-
шей модели развитие ДеП во время естественного 
глубокого сна животного после обучения являет-
ся вероятным событием, которое не противоречит 
продемонстрированному нами развитию ДеП в це-
лостном мозге крыс in vivo во время наркотического 
сна (Попов, Маркевич, 1999), появлению во время 
глубокого естественного сна крыс вторичных попу-
ляционных ответов в поле CA1 гиппокампа (Зоси-
мовский, Коршунов, 2009, 2010), повышению в ряде 
структур мозга уровня АТФ во время естественного 
и наркотического сна (Dworak et al., 2010; Dworak 
et al., 2011), динамика которого в течение первых 
3 часов сходна с динамикой развития ДеП (Попов, 
Маркевич, 2001).

Для проверки гипотезы об участии механизма 
ДеП в консолидации гиппокамп-зависимой памяти 
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мы использовали критерий антероградных измене-
ний (Morris et al., 2003) с применением фармако-
логического, генетического и электрофизиологи-
ческого методов, направленных разными путями 
препятствовать развитию ДеП, что, согласно гипо-
тезе, должно негативно влиять на консолидацию 
приобретенной памяти. Использование нами од-
нодневной модели обучения животного в бассейне 

Морриса обеспечивало отсутствие периодов сна 
между сессиями обучения (Frick et al., 2000).

В первой серии экспериментов на крысах фар-
макологическая блокада дДеП с использованием 
проникающего хелатора кальция (BAPTA-AM) 
и блокатора Panx1-зависимого выхода АТФ (про-
бенецид) не оказала значимого влияния на кон-
солидацию памяти. Дополнительный контроль 
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Рис. 4. Электрофизиологическое воздействие, препятствующее развитию депривационной потенциации. (а) – 
примеры индивидуальных вызванных ответов (популяционных спайков) гиппокампальной формации у одного 
животного при стимуляции (по 10 стимулов) медиального перфорантного пути (МПП) и вентрогиппокампаль-
ной комиссуры (ВГК). ЗФп/ЗФл – зубчатая фасция (правое/левое полушарие); CA1 – поле CA1 гиппокампа. (б) – 
Стимуляция ГФ в течение 3 ч во время покоя/сна крысы после обучения (переучивания) в бассейне Морриса 
не оказывает значимого влияния на консолидацию гиппокамп-зависимой памяти. На гистограмме представлены 
суммарные данные двухэтапного эксперимента (n = 5). Предварительный ОТБОР животных, способных к кон-
солидации: обучение нахождения невидимой платформы, через 7 дней тестирование. ОПЫТ: после операции 
(вживление стимулирующих и регистрирующих электродов) и восстановительного периода крыс обучали нахож-
дению невидимой платформы на новом месте, после чего в течение 3 ч покоя/сна производили стимуляцию аф-
ферентных волокон ГФ (обозначено стрелками) и через 7 дней тестировали. Остальные обозначения как на рис. 2, 
пояснения в тексте.
Fig. 4. Electrophysiological effect that prevents the development of deprivation potentiation. (а) – еxamples of evoked respons-
es (population spikes) of the hippocampal formation in the same animal during stimulation (10 stimuli) of the medial perforant 
path (MPP) and the ventrohippocampal commissure (VHC). DGr/DGl – dental gyrus (right/left hemispheres); CA1 – CA1 
area of ​​the hippocampus. (б) – Three hour electro-stimulation of hippocampal pathways in rats during sleep after spatial 
learning do not influence significantly on memory consolidation. Histogram illustrate summary results (n = 5) of two-step 
experiment. SELECTION – naive animals learned to find invisible platform. Memory test – 7 days later. EXPERIMENT – 
after surgery (electrode implantation) and recovery animals learned to find invisible platform in new position. Arrows show 
electro-stimulation of hippocampal pathways during rest/sleep for 3 hours. Memory test – 7 days later. All symbols have the 
same meaning as they do in fig. 2. For more details see the text.
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(животные без инъекций) показал отсутствие вли-
яния стресса от инъекций на консолидацию.

Во второй серии экспериментов мы  ис-
пользовали нокаутных мышей с  нарушением 
Panx1-опосредованного высвобождения АТФ. 
Panx1–/–-мыши продемонстрировали хорошую 
способность к пространственному гиппокамп-
зависимому обучению и длительному сохране-
нию приобретенного навыка. Наши результаты 
не подтвердили ранее полученных данных, со-
гласно которым потеря функции Panx1 у нокаут-
ных мышей вызывает ухудшение распознавания 
объекта и пространственного обучения (Proch-
now et al., 2012). Возможно, эти расхождения об-
условлены различием использованных методик 
и критериев оценки обученности в нашей работе 
и в работе Прочнова с соавторами: реакция избавле-
ния в аллоцентрической задаче в бассейне Морриса 
(критерий дирекциональности) и пищевое поведе-
ние в эгоцентрической задаче с визуальной и обо-
нятельной подсказками (временной критерий).

В исследовании (Battulin et al., 2021) было пока-
зано, что у Panx1–/–-мышей по сравнению с нормой 
(Panx1+/+) значительно увеличены двигательная ак-
тивность и время бодрствования, а доля медленного 
сна снижена. В наших экспериментах не было от-
мечено разницы в скорости плавания у нокаутных 
и нормальных мышей: без учета торпора усреднен-
ная скорость плавания у Panx1–/–-мышей (n = 7) и у 
Panx1+/+-мышей (n = 6) составила соответственно 
17.29 ± 1.3 см/с и 17.88 ± 1.81 см/с; тест Манна – 
Уитни: z = 1.124857, p > 0.1 (разница незначима). 
Кроме того, используемый нами критерий дирек-
циональности не зависит от физического состояния 
и двигательной активности животного. Снижение 
доли медленного сна у Panx1–/–-мышей, во время 
которого происходит консолидация (Born, Wilhelm, 
2012), могло скорее ухудшить способность к форми-
рованию долговременной памяти у нокаутных жи-
вотных, чего мы не наблюдали.

Использование блокаторов и  нокаутных жи-
вотных предполагало нарушение развития дДеП 
с постсинаптическим механизмом. Стимуляция аф-
ферентных волокон ГФ как имитация естественной 

афферентации у бодрствующего животного пре-
пятствует развитию в активируемых клетках обоих 
компонентов ДеП, что ранее было показано в кон-
трольных экспериментах in vitro и in vivo.

Известно, что при надводном (видимом) поло-
жении платформы животное использует зрительное 
восприятие платформы, связывая ее с единственной 
возможностью спасения, тогда как при подводном 
(невидимом) ее положении животное запоминает 
пространственные отношения во внешней среде при 
участии гиппокампа (Rauchs et al., 2005). Предложен-
ная нами модификация методики с предваритель-
ным обучением животных (отбор) и их последующим 
переучиванием (опыт) отвечает экспериментальному 
требованию решения животным гиппокамп-зависи-
мой задачи. Эксперименты показали, что электриче-
ская стимуляция афферентных путей ГФ в течение 
3 ч покоя/сна животного после обучения не оказы-
вала значимого влияния на консолидацию.

Теоретически, отрицательные результаты мо-
гут быть следствием методических ограничений. 
При в/б инъекции препаратов их  концентра-
ция в мозге со временем снижается, определить 
ее  конечное значение в  области клеток-мише-
ней в течение 3 ч покоя/сна животного невоз-
можно, и концентрация препаратов «в нужном 
месте и  в нужное время» может быть недоста-
точной для блокировки дДеП. Использование 
нокаутных животных позволяет избежать данно-
го концентрационно-временнóго ограничения. 
С другой стороны, эксперименты на нокаутных 
животных могут не учитывать возможности ком-
пенсации отсутствия гена в процессе взросления 
особи, в  результате чего различие с  животны-
ми дикого типа может быть сглажено (Hölscher, 
1999). Электрическая стимуляция МПП и  ВГК 
даже с учетом широкого представительства дан-
ных афферентных путей в ГФ не может гаранти-
ровать активации необходимого числа участвую-
щих в обучении и/или консолидации синапсов. 
Кроме того, отрицательные результаты могут быть 
следствием не только методических ограничений, 
но и ошибочности исходных положений о разви-
тии ДеП во время сна (это изменит трактовку, но не 

Таблица 1. Сопоставление механизмов индукции LTP (Bliss, Collingridge, 1993) и ДеП (Попов, 1994; 2016; 2020)
Table 1. Comparison between mechanisms of induction of LTP (Bliss, Collingridge, 1993) and DeP (Popov, 1994; 
2016; 2020)

LTP ДеП
Условие индукции Высокочастотная активация Депривация (покой)

Процесс Кратковременный Длительный (циклический)
Состояние постсинапт. мембраны Значительная деполяризация Потенциал покоя

Посредник Глутамат АТФ
Источник Пресинапт. терминаль Постсинапт. Panx1-канал

Мишень (Ca2+-канал) NMDA-рецепторы Пуриновые P2-рецепторы
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вывод), о достаточности для консолидации 3 ч сна 
(для нокаутных животных это ограничение неакту-
ально) и о критически важном значении сна при ре-
шении животным жизненно важной задачи спасения 
в воде (существуют сведения о консолидации памяти 
во время бодрствования (Brodt et al., 2023)).

ВЫВОДЫ

1) В рамках используемых модели и  методов 
эксперименты не подтвердили гипотезу о возмож-
ном участии механизма депривационной потенци-
ации в консолидации памяти во время покоя/сна 
животного после гиппокамп-зависимого простран-
ственного обучения в бассейне Морриса.

2) Эксперименты показали сохранность способ-
ности мышей, нокаутных по гену Panx1, к простран-
ственному обучению и  длительному сохранению 
навыка.

3) В работе был апробирован новый подход 
в экспериментах с обучением животного решению 
гиппокамп-зависимой задачи, позволяющий про-
извести предварительный отбор животных с хоро-
шими способностями как к  пространственному 
обучению, так и к длительному сохранению при-
обретенных навыков.
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INVESTIGATION OF THE POSSIBLE INVOLVEMENT  
OF THE DEPRIVATIONAL POTENTIATION MECHANISMS  

IN MEMORY CONSOLIDATION DURING SLEEP
V. A. Popova, #, V. A. Korshunova, ##
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Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
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We examine the hypothesis of the possible role of deprivational potentiation in memory consolidation during 
rest/sleep after one day learning in Morris water maze. We used pharmacologic, genetic and neurophysiologic 
factors which prevent deprivational potentiation. Seven days after learning we tested memory. Our experiments 
do not confirm the hypothesis that deprivational potentiation is involved in memory consolidation. Also 
we found that Pannexin1 knockout mice can learn both egocentric and allocentric spatial tasks in Morris 
water maze.

Keywords: rats, knockout mice, hippocamus, pannexin 1, deprivational potentiation, spatial learning, memory 
consolidation, BAPTA-AM, probenecid, electrostimulation
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