УЛК 597.8:574.23

СТРАТЕГИЯ ЗИМОВКИ ДАЛЬНЕВОСТОЧНОЙ ЖЕРЛЯНКИ BOMBINA ORIENTALIS F. SYLVATICA (AMPHIBIA, ANURA)

© 2024 г. Н. А. Булахова^{а, b, *}, Е. Н. Мещерякова^{а, **}

^а Институт биологических проблем Севера ДВО РАН, Магадан, 685000 Россия ^b Институт цитологии и генетики СО РАН, Новосибирск, 630090 Россия

*e-mail: sigma44@mail.ru

**e-mail: kameshky@mail.ru Поступила в редакцию 20.07.2024 г. После доработки 25.07.2024 г. Принята к публикации 05.08.2024 г.

Изучены холодостойкость, отношение к дефициту растворенного в воде кислорода и стратегия зимовки особей одной из выделенных на юге Приморья форм дальневосточной жерлянки *Bombina orientalis* f. *sylvatica*. Установлено, что в исследованной популяции жерлянка не переносит снижения уровня растворенного в воде кислорода ниже 6 мг/л и мало устойчива к отрицательным температурам — способна выживать лишь в течение 1-4 суток при -1.1 ± 0.1 °C. Подтверждено мнение, что основной стереотип переживания холодного времени года особями *Bombina orientalis* f. *sylvatica* — наземная гибернация. Аналогичные исследования на второй форме вида — *Bombina orientalis* f. *praticola* — перспективны для подтверждения обоснованности выделения двух этих экологических форм в пределах *B. orientalis*.

Ключевые слова: амфибия, условия зимовки, гипоксия, холодостойкость

DOI: 10.31857/S0044513424110058, **EDN:** tkzhmj

Дальневосточная жерлянка (Bombina orientalis (Boulenger 1890)) — один из двух представителей семейства Bombinatoridae, обитающих на территории России. Всего в мировой фауне насчитывается восемь видов семейства, пять из которых населяют юго-восточную Азию и только B. orientalis встречается на Дальнем Востоке России. Ареал B. orientalis включает острова Цусима и Кюсю в Южной Японии, изолированный участок на Шаньдунском полуострове, весь Корейский полуостров и прилегающую территорию Северо-Восточного Китая, Приморский и частично – Хабаровский края России (https://amphibiaweb.org/species/2045). К северу от г. Хабаровска известно считанное число находок, и наиболее северные популяции располагаются у 49° с.ш. в бассейне оз. Гасси (в среднем течение рек Картанга и Пихца) и р. Анюй (пойма р. Моади близ пос. Арсеньево) (Adnagulov, Oleinikov, 2006; Тагирова и др., 2020).

Считается, что современный ареал *B. orientalis* сложился в результате постепенного естественного расселения особей после последнего ледникового максимума из рефугиумов на юге Корейского полуострова и некоторых горных участков Северо-Восточного Китая, что подтверждает анализ

генетического разнообразия популяций на юге и в центре ареала (Fong et al., 2016; Yu et al., 2021). На этих территориях дальневосточная жерлянка один из самых обычных и многочисленных видов герпетофауны. Она заселяет разнообразные биотопы – леса, равнинные луга, долины рек, берега ручьев и стоячих водоемов, залитые водой болота и рисовые поля (Шалдыбин, 1981; Емельянов, 2018; Fei et al., 2012). На севере ареала (в российской его части) на основании различий распространения, биотопического распределения, морфологии и некоторых черт экологии выделяют две недифференцируемые генетически формы B. orientalis, считавшиеся ранее даже подвидами: луговую (f. praticola) и лесную (f. sylvatica). По мнению Кузьмина с соавторами (2010), f. praticola распространена только на крайнем юге Приморья (юг Хасанского и частично Лазовский административные районы) и заселяет исключительно осоково-тростниковые и разнотравные луга без древесной и кустарниковой растительности, а f. sylvatica встречается в остальной части Приморья и в Хабаровском крае и, в отличие от f. praticola, обитает и в лесах различного типа (Коротков, 1972; Коротков, Короткова, 1981; Кузьмин, Маслова, 2005; Кузьмин и др., 2010).

Еще одно фундаментальное различие указанных форм — стратегия зимовки. Считается, что f. praticola зимует в воде, а f. sylvatica, напротив, круглогодично (за исключением сезона размножения) обитает на суше, где также и зимует (Кузьмин и др., 2010). Эти экологические особенности могут свидетельствовать о коренных различиях физиологии, подтверждающих обоснованность выделения указанных форм B. orientalis. Предполагается, что зимующие в холодных зимой регионах в наземных убежищах виды земноводных в той или иной мере холодостойки, а виды, не переносящие отрицательные температуры, переживают зиму в водоемах или глубоко в почве и грунтах (Voituron et al., 2005; Берман и др., 2017; Storey, Storey, 2017). При этом зимовка в водоемах сопряжена с возможным воздействием еще одного критического фактора среды – дефицита кислорода в воде (Bradford, 1983; Tattersall, Boutilier, 1997; Bickler, Buck, 2007; Tattersall, Ultsch, 2008; Берман и др., 2017а; Берман, Булахова, 2019; Berman et al., 2019). Однако ни для одной из форм дальневосточной жерлянки до настоящего времени ни устойчивость к отрицательным температурам, ни к дефициту кислорода в воде не были изучены.

Цель нашего исследования — в лабораторных экспериментах определить устойчивость особей одной из форм *B. orientalis* к отрицательным температурам, выяснить роль холодостойкости в заселении наиболее северных в ареале территорий и проверить стереотипность выбора зимовки.

МАТЕРИАЛ И МЕТОДЫ

Отлов и содержание животных до экспериментов

Bombina orientalis (55 половозрелых и 18 ювенильных особей) были отловлены в середине августа в окрестностях пос. Тигровой Партизанского района Приморского края (около 43° с.ш., 132° в.д.) во временных водоемах. В соответствии с данными о географическом распространении двух форм вида, животные относятся к B. orientalis f. sylvatica (Кузьмин, Маслова, 2005; Кузьмин и др., 2010). Животные были перевезены в ИБПС ДВО РАН, где проведены все исследования. В лаборатории жерлянок рассадили по две особи в 0.2-литровые пластиковые контейнеры, на 2/3 заполненные субстратом из почвы и влажного опада, и провели ступенчатую акклимацию в охлаждающих термостатах ТСО-1/80 (СПУ, Россия) по схеме: при 14...17°C – 4 сут, при 12°C – 4 сут, 10°C – 10 сут, 5° С -20 сут, 3° С -20 сут. Перед экспериментами по определению холодостойкости животных дополнительно содержали 20 сут при 0...1°C. Перед экспериментами по определению устойчивости к дефициту кислорода животных (n = 35),

акклимированных ранее в субстрате к 3° С, на 7 сут поместили в открытую емкость с небольшим слоем воды (высотой 1-1.5 см, содержание кислорода 11-12 мг/л), размещенную в холодильной камере с температурой 3° С. Все последующие исследования проводили на акклимированных животных.

Определение холодостойкости

У дальневосточной жерлянки были измерены стандартные характеристики холодостойкости - пороги длительно переносимых отрицательных температур ($\Pi\Pi T$) и температура максимального переохлаждения (T_{π}) в испытательных камерах WT 64/75 (Weiss Umwelttechnik GmbH, Германия). При определении ППТ амфибий (14 половозрелых и 12 ювенильных) охлаждали в контейнерах с субстратом, в которых они проходили акклимацию, со скоростью 0.05°C в час. Для контроля возможных градиентов температур в контейнеры рядом с животными помещали тарированные температурные логгеры DS1922L (ЭлИн, Россия). Их индивидуальная погрешность в 0°C составила +0.2°C (декларированная производителем погрешность ± 0.5 °C). По разработанным в лаборатории протоколам охлаждения разных видов лягушек и жаб максимальная температура (порог) -1° С, шаг эксперимента 1° С, время экспозишии в каждой температуре 1—4 сут. После охлаждения до пороговой температуры проводили оценку состояния животных через 24, 48, 72 и 96 ч пребывания в ней. После замерзания жерлянок нагревали до 4° C со скоростью 0.5° C в час и подсчитывали долю выживших. Температура максимального переохлаждения определена у шести взрослых и шести ювенильных особей. Животных без субстрата охлаждали на манганин-константановых термопарах (диаметр проводов 0.12 мм) со скоростью 0.1°С в час. Спай термопары крепился бумажным скотчем на брюшной стороне амфибии между передними конечностями. Сигналы с термопар записывались компьютером в виде кривых охлаждения (термограмм). Шесть особей охлаждали до полного замерзания, на шести других оценивали возможность выживания при частичном замерзании. Подробности примененной методики и используемое оборудование описаны ранее (Berman et al., 2019a; Bulakhova et al., 2020).

Определение устойчивости к дефициту кислорода в воде

Для определения устойчивости дальневосточной жерлянки к дефициту кислорода десять половозрелых особей, акклимированных ранее к воде с температурой 3°С, переместили в герметичные 6.3-литровые емкости, заполненные водой с содержанием кислорода 11—12 мг/л и температурой

3°С. В каждую емкость помещалась одна жерлянка. Вследствие дыхания животных содержание кислорода в воде постепенно уменьшалось, его концентрацию измеряли один раз в сутки с помощью оксиметра HQ30D Flexi с люминесцентным датчиком LDO с точностью 0.1 мг/л (Hach Instruments, Германия). Каждая серия измерений состояла из 4—5 повторностей (до достижения стабильных показателей оксиметра), после чего в емкостях восполняли объем вытесненной датчиком воды и герметично закрывали до следующего измерения.

Состояние амфибий (двигательная активность, уровень поведенческих расстройств, например потеря ориентации в пространстве) отслеживали визуально через прозрачные стенки емкости каждые сутки перед измерением кислорода. Подробно применяемый метод и оборудование описаны ранее (Berman et al., 2019; Shekhovtsov et al., 2020).

Определение стратегии зимовки

Определение стратегии зимовки (водная или наземная) проведено в соответствии с методом, использованным Light (1991) для решения аналогичной задачи в отношении лягушек Rana pipiens Schreber 1782 и R. sylvatica LeConte 1825. Двадцать пять предварительно прошедших акклимацию половозрелых *B. orientalis* пересадили из контейнеров с водой (3°C) в две открытые емкости объемом 11 л (размеры 35 x 23 x 18 см), заполненные на 2/3 высоты водой такой же температуры, и оставили в этих условиях на 15 сут. На поверхность воды опустили четыре небольших (5 х 5 см) плотика из пенопласта, чтобы на них могли забираться жерлянки, если предпочтут остаться на суше. Поведение животных отслеживали несколько раз в сутки на протяжении всего времени эксперимента. Содержание кислорода в воде контролировали один раз в двое суток указанным выше оксиметром HQ30D.

Статистический анализ

Статистический анализ проводился с использованием стандартных методов в программе Statistica v.10. Все средние значения приведены со стандартной ошибкой.

РЕЗУЛЬТАТЫ

Черты экологии вида

В окрестностях пос. Тигровой жерлянки были встречены и отловлены во временных водоемах в долине одноименной реки, в подавляющем большинстве случаев — на открытых пространствах (на залежах, лугах, покосах) в лужах на проезжих дорогах, заполненных водой придорожных кюветах и старых колеях. На лесных дорогах жерлянки

отмечены лишь в тех случаях, когда рядом располагался открытый участок (опушка, обширный прогал в древесном пологе), а лужи хорошо освещались солнцем; в затененных пологом леса водоемах B. orientalis не встречались. Поведение жерлянок в воде было таким же, как описывал Емельянов (2018): "В солнечные дни можно видеть отдельные экземпляры жерлянок, распластавшихся в непринужденных позах на поверхности воды с растянутыми в разные стороны ногами. При приближении чего-либо угрожающего, они моментально погружаются в воду и стараются спрятаться на дне водоёма в иле. И на поверхности вновь появляются лишь через продолжительное время, выставив из воды только переднюю часть своей мордочки (c. 201-202)". Мы так же встречали жерлянок в водоемах с возможным дефицитом кислорода — широких и глубоких непроточных колеях от вездеходной техники, заполненных водой с не оседающей взвесью глинистых частиц и толстым слоем густого осадка. При приближении наблюдателей животные надолго ныряли на дно и появлялись на поверхности лишь через 7-10 мин. Подобное поведение, как и в наблюдениях Емельянова (2018), может свидетельствовать о толерантности жерлянок к дефициту кислорода в воде.

Поведение дальневосточной жерлянки в процессе акклимации и охлаждения

При понижении температуры до 5° С жерлянки оставались активными — передвигались по поверхности субстрата, но не закапывались в него, при открывании контейнера пытались выбраться. При температуре 3° С животные стали менее подвижными, сидели на поверхности почвы или в ее толще, иногда заползали в щель между стенкой контейнера и заполнявшим его субстратом, но при прикосновении перемещались. Такое поведение сохранилось и при дальнейшем понижении температуры вплоть до -1° С.

Хололостойкость

Из-за градиентов внутри климатической камеры температуры в контейнерах с животными колебались от -1.0 до -1.3°C (среднее значение -1.1 ± 0.1 °C). После суток пребывания при этой температуре шесть особей (четыре взрослые и две ювенильные) замерзли — покровы потемнели, тело и конечности отвердели. У других шести амфибий (две половозрелые и четыре ювенильные) замерзание было только частичным — отвердели задние конечности, помутнели глаза и прекратилась двигательная активность, но сохранился естественный цвет покровов и на прикосновение животные реагировали слабыми движениями туловища и передних конечностей. Остальные животные (восемь

П	Номер особи											
Параметр	1	2	3	4	5	6	7	8	9	10	11	12
Масса, г	2.0	1.0	1.2	1.6	3.6	3.8	2.0	2.2	2.6	3.1	4.7	3.7
T_n , °C	-3.3	-3.0	-3.0	-3.0	-3.0	-3.0	-2.7	-2.7	-2.7	-2.7	-2.7	-1.9

Таблица 1. Температуры максимального переохлаждения дальневосточных жерлянок (*Bombina orientalis*) разного размера

взрослых и шесть ювенильных) оставались в переохлажденном состоянии: располагались в толще субстрата или на его поверхности и при прикосновении перемещались по контейнеру. На субстрате и коже всех жерлянок были видны многочисленные кристаллы льда, но цвет покровов был естественным, тела и конечности – мягкими. Через двое суток при -1.1 ± 0.1 °C замерзла половина особей выборки (13 из 26), три взрослые жерлянки были частично замерзшими, десять остальных (по 5 половозрелых и неполовозрелых) оставались переохлаждёнными. Через трое суток замерзла большая часть животных, только пять ювенильных жерлянок оказались переохлажденными и две взрослые — частично замерзшими. На четвертый день эксперимента замерзли все взрослые и большая часть (10 из 12) неполовозрелых особей; лишь две оставались переохлажденными. После понижения температуры до следующего порога (-2° C) все они погибли в течение часа.

Для оценки выживания животных нагревали или сразу после фиксирования замерзания (четыре особи), или через сутки (22 особи). В эксперименте выжили две из четырех жерлянок, нагретых сразу (при последующем содержании их в 1—3°С в течение месяца каких-либо повреждений от воздействия холода у них не проявилось). Все жерлянки, находившиеся в замерзшем состоянии в течение суток, оказались погибшими.

Температура максимального переохлаждения $(T_{\rm n})$ *B. orientalis* находилась в диапазоне от -1.9 до -3.3° С (среднее значение $-2.8 \pm 0.1^{\circ}$ С) и не зависела от массы животного (r=0.45, p=0.15) (табл. 1).

Судя по положению пика выделения тепла на термограмме, замерзание жидкостей тела у разных особей B. orientalis массой от 1.2 до 4.7 г завершается уже через 3—5 ч после начала кристаллизации. Ни одно из животных не выдержало полного замерзания. Для выяснения способности переносить частичное замерзание у шести B. orientalis охлаждение было прервано до завершения процесса кристаллизации. Две взрослые ($T_{\Pi} = -3.0 \text{ и} -3.0^{\circ}\text{C}$) и две ювенильные ($T_{\Pi} = -2.7 \text{ и} -2.7^{\circ}\text{C}$) особи, охлажденные в течение 1-4 ч после прохождения T_{Π} до -1.6 ... -1.9°C и затем нагретые до 4°C , ожили. Две другие неполовозрелые жерлянки ($T_{\Pi} = -3.0 \text{ и} -3.0 \text{ особи}$)

и -3.3° С), охлажденные после достижения T_{Π} до -2.3 и -2.1° С и переведенные затем в условия с положительной температурой, погибли.

Устойчивость к гипоксии в воде

Определить отношение B. orientalis к содержанию кислорода в воде удалось лишь у двух особей из 10 участвовавших в исследовании, которые после помещения их в воду опустились на дно. Остальные восемь жерлянок на протяжении нескольких суток держались в верхнем слое воды под крышкой емкости и при открывании ее для измерения содержания кислорода сразу же всплывали на поверхность и вдыхали атмосферный воздух. Из-за невозможности соблюсти условия протокола эксперимента (осуществить переход животных на дыхание растворенным в воде кислородом) мы были вынуждены вывести этих особей из эксперимента. Две жерлянки, на которых удалось провести тестирование, прожили в условиях понижающегося с 11—12 мг/л содержания кислорода 11 и 14 суток и погибли при концентрациях 5.9 и 6.9 мг/л, соответственно.

Выяснение стереотипности зимовочной стратегии

Из двадцати пяти особей, находившихся в открытых емкостях с водой (температура 3°С, содержание кислорода в воде 9—12 мг/л), лишь четыре особи (16% выборки) в первые — вторые сутки опустились на дно, остальные (21 особь) в течение 15 суток плавали на поверхности воды, периодически забираясь на пенопластиковые плотики.

ОБСУЖДЕНИЕ

Стереотип зимовки

В отличие от нехолодостойких видов бесхвостых амфибий бореальной зоны, для которых известны зимовки как в воде, так и на суше (Флякс, 1991; Tattersall, Ultsch, 2008; Берман и др., 2017; Berman et al., 2019), для *В. orientalis* зимовка в водоемах почти не описана. Лишь Шалдыбин (1981) сообщил о трех находках жерлянок в Лазовском заповеднике в местах выхода геотермальных радоновых источников, где животные были активны на протяжении

всей зимы. Вероятно, что в данном случае дальневосточная жерлянка была представлена формой praticola, присутствие которой в Лазовском заповеднике (42°54′ с.ш., 133°41′ в.д.) отмечал Кузьмин с соавторами (2010). Берман с соавторами (2016), впоследствии проводившие исследования в этом районе (в октябре 2012 г. и феврале—марте 2014 г.), жерлянок в источниках не обнаружили. В отличие от f. praticola, для f. silvatica обитание в воде характерно лишь в период размножения, после чего она переходит на сушу. В конце лета она расселяется на расстояние нескольких сотен метров от воды (Кузьмин и др., 2010).

В эксперименте по определению стратегий зимовки все исследованные нами особи *В. orientalis* либо располагались на пенопластиковых плотиках, либо плавали на поверхности воды, опустившиеся на дно 4 особи погибли. Таким образом, они не демонстрировали поведения, типичного для всех зимовавших в лабораторных условиях водных видов лягушек. После перемещения из контейнеров с субстратом в емкости с водой *Rana temporaria* L. 1758, *R. amurensis* Boulenger 1886, *R. dybowskii* Gunther 1876, *R. macrocnemis* Boulenger 1885 располагались на дне и всплывали к поверхности лишь изредка. Результаты эксперимента дают основание заключить, что исследованным нами особям зимовка в воде не свойственна.

Можно предположить, что препятствием к водной гибернации B. orientalis f. silvatica служит неспособность переносить снижение концентрации кислорода в воде, которое часто происходит зимой подо льдом (Tattersall, Boutilier, 1997; Bickler, Buck, 2007; Tattersall, Ultsch, 2008; Берман и др., 2017а; Берман, Булахова, 2019; Berman et al., 2019). Хотя данные Емельянова (2018) и наши натурные наблюдения — пребывание животных летом в условиях гипоксии на илистом дне водоемов – могут свидетельствовать об обратном. Вместе с тем, как показали лабораторные эксперименты, B. orientalis оказалась очень чувствительна к длительному недостатку кислорода в воде — она погибает уже при концентрациях 6-7 мг/л, в то время как зимующие в воде виды амфибий способны продолжительное время (десятки суток) переносить пониженное содержание кислорода (до 3—4 мг/л — R. dybowskii и R. temporaria и до полного отсутствия кислорода — R. amurensis) (Берман и др., 2017а; Берман, Булахова, 2019; Berman et al., 2019; наши неопубликованные данные).

Холодостойкость

Дальневосточная жерлянка оказалась слабоустойчивой к отрицательным температурам, как и большинство исследованных видов бесхвостых амфибий (Pelobates fuscus (Laurenti 1768), Rana amurensis, R. dybowskii, R. temporaria, R. macrocnemis, Pelophylax ridibundus (Pallas 1771), Pelophylax lessonae

(Camerano 1882), Pelophylax esculentus (L. 1758) и др.), которые не выдерживают температур ниже -2... -2.5°С (Voituron et al., 2005: Берман идр., 2017; Berman et al., 2019; Bulakhova et al., 2020). Однако при общей с перечисленными видами стратегии холодоустойчивости (непереносимость полного замерзания и способность выживать при кратковременной частичной кристаллизашии жилкостей тела) лальневосточная жерлянка оказалась крайне чувствительной даже к малым субнулевым температурам. В то время как Rana amurensis, R. dybowskii, R. temporaria способны длительно (не менее 10 суток) пребывать при -1.5° С и в течение трех суток — при -2.5°C (Xiao et al., 2008; Берман и др., 2017), лишь отдельные особи дальневосточной жерлянки до пяти суток могут выдержать температуру -1.1 ± 0.1 °C. Будучи переохлажденной, жерлянка способна передвигаться, но при начале замерзания теряет подвижность, в отличие, например, от малоазиатской лягушки (Bulakhova et al., 2020). В целом, по неспособности длительно переживать субнулевые температуры она более всего похожа на обыкновенную чесночницу (Berman et al., 2019).

Соотношение холодостойкости дальневосточной жерлянки и температур в почве

Ареал B. orientalis не заходит на территории с вечной мерзлотой, но вид успешно обитает в районах с сезонно промерзающими грунтами. По данным метеостанций Приморья, средние многолетние температуры почв в регионе составляют на глубине 20 см -5.0... -6.6°C, а на глубине 40 см -2.2... -5.4°C (Справочник по климату СССР, 1966). По данным самописцев-логгеров в девяти биотопах окрестностей пос. Лазо почти бесснежной зимой 2013-2014 г. температуры на глубине 1 см варьировали от -4.0 до -13.0°C, на 10 см – от -1.5 до -9.5°C, на 20 см – от 1.5до -8.5° C, на 40 см – от 3.5 до -6.5° C (Берман и др., 2016). Очевидно, что выявленная устойчивость дальневосточной жерлянки к отрицательным температурам недостаточна для ее существования на глубине 10 см, а на 20 см успешная зимовка возможна лишь в наиболее теплых биотопах (например, в понижениях рельефа). Вопреки тому, что температурные условия в почве зимой неблагоприятны для зимовки дальневосточная жерлянки в районе пос. Лазо, она здесь многочисленна. Объяснение этому кроется, очевидно, в мозаичности распределения температур, связанной с микрорельефом, типами почв, наличием водоемов и т.д.

В.Х. Крюков (2020) проводил измерение температур в естественных и искусственных наземных зимовках амфибий в 12 биотопах на территории Лазовского заповедника в течение шести зим (табл. 2). Им

№ биотопа	Высо	та, см	Глубина	Минимальная температура, °С		
№ опотопа	листового опада	слоя гумификации	почвы, см			
1	10	1	15	-3.5		
2	5	10	10	-0.5		
3	15	5	15	-4.5		
4	10	1	15	-5.0		
5	_	_	5	-5.0		
6	10	_	5	-3.0		
7	15	10	10	-1.0		
8	15	5	1	-1.0		
9	20	5	_	-3.5		
10	10	_	10	-3.5		
11	25	10	5	0.0		
12	_	_	15	0.0		

Таблица 2. Характеристики наземных зимних убежищ амфибий на территории Лазовского заповедника (по: Крюков, 2020)

Очевидно, что в природе животные могут выбирать места для зимовки, условия в которых более благоприятны, чем на фоновых территориях. Например, для *P. lessonae* и *P. esculentus* было так же показано, что температура почвы в фактических местах зимовки была значительно выше, чем в случайно выбранных контрольных местах (Holenweg, Reyer, 2000).

Yoon et al. (2008) указывают, что даже в климатических условиях юга ареала (Корейский п-ов) дальневосточная жерлянка зимует не в водоемах и не у поверхности почвы, а в глубине ее или под заглубленными в почву камнями, уходя от отрицательных температур.

Кажется удивительным, что дальневосточная жерлянка успешно зимовала в биотопах, где минимальные температуры опускались до -1° С и ниже (Крюков, 2020), поскольку в экспериментах при $-1.1 \pm 0.1^{\circ}$ С она прожила лишь несколько суток. Ответом на это несоответствие служит предположение, что *B. orientalis* может по полостям уходить в глубь почвы по мере ее промерзания, которое в исследованном районе длится

от трех до 17 суток (Берман и др., 2016). Способность *В. orientalis* незначительно перемещаться даже при отрицательных температурах, пребывая в переохлажденном состоянии, показана в эксперименте. Вполне вероятно, что отсутствие упоминаний о зимовке дальневосточной жерлянки в глубине грунтов или в норах млекопитающих связано с недостаточной исследованностью ее зимовочных убежищ — для европейского вида жерлянок (*В. bombina*) такая зимовка обычна.

Таким образом, лабораторные эксперименты подтвердили, что B. orientalis f. silvatica для зимовки однозначно выбирает наземные укрытия, избегая пребывания в воде. При этом вид оказался мало холодостойким – жерлянка переносит не более пяти суток температуру от -1.0 до -1.3°C в переохлажденном состоянии и погибает после полного замерзания. Параметры холодостойкости свидетельствуют о крайне ограниченных возможностях зимовки B. orientalis f. silvatica на суше в районах, где зимой почвенные температуры опускаются ниже -1°C. Зимовка на суше может быть успешной лишь в местах под надувами снега, в понижениях с толстым слоем опада и т.п., во влажных почвах или в глубине грунтов. Недостаточная холодостойкость, избегание зимовки в водоемах, а также малое число стаций, в которых температуры зимой не опускаются ниже 0...-1°C, могут ограничивать распространение B. orientalis на Дальнем Востоке. Пока неизвестно отношение второй формы вида — B. orientalis f. praticola – ни к отрицательным температурам, ни к гипоксии в воде, ни ее стереотип зимовки (водоемы или наземные укрытия). Исследования, аналогичные проведенным нами на f. silvatica, перспективны для подтверждения обоснования выделения указанных форм B. orientalis.

БЛАГОДАРНОСТИ

Авторы благодарят научного руководителя Д.И. Бермана за постановку задачи, Е.А. Дунаева и юннатов ЗМ МГУ — за помощь в сборе животных.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование устойчивости *B. orientalis* к гипоксии выполнено при поддержке Российского научного фонда (РНФ) [грант № 21-74-20050].

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Экспериментальные протоколы одобрены Комиссией по биоэтике Института биологических проблем Севера Дальневосточного отделения Российской академии наук, Магадан (заключение № 003/021), отлов животных проведен в соответствии со Свидетельством № 225-0051320.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы данной работы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Берман Д.И., Алфимов А.В., Крюков В.Х., 2016. Температурный фон зимовки амфибий на юго-востоке Приморья // Вестник СВНЦ ДВО РАН. № 1. С. 100-106.
- *Берман Д.И., Булахова Н.А.*, 2019. Граница на заморе, или что не пускает травяную лягушку из Европы в Азию // Природа. № 7. С. 12—26.
- *Берман Д.И., Булахова Н.А., Балан И.В.*, 2017а. Самая сибирская лягушка // Природа. № 8. С. 3—17.
- Берман Д.И., Булахова Н.А., Мещерякова Е.Н., 2017. Адаптивные стратегии бурых лягушек (Amphibia, Anura, *Rana*) в отношении зимних температур на севере Палеарктики // Зоологический журнал. Т. 96. № 11. С. 1392—1403.
- *Емельянов А.А.*, 2018. Амфибии и рептилии Советского Дальнего Востока. Владивосток: Дальнаука. 416 с.
- Коротков Ю.М., 1972. К биологии дальневосточной жерлянки, восточного и палласова щитомордника в Приморском крае // Зоологические проблемы Сибири. Новосибирск. 302 с.
- Коротков Ю.М., Короткова Е.Б., 1981. Экология дальневосточной жерлянки (Bombina orientalis) // Редкие и исчезающие животные суши Дальнего Востока. Владивосток. С. 46—51.
- Кузьмин С.Л., Маслова И.В., 2005. Земноводные российского Дальнего Востока. М.: Товарищество научных изданий КМК. 434 с.

- *Кузьмин С.Л., Поярков Н.А., Маслова И.В.,* 2010. Об изменчивости жерлянок Дальнего Востока // Вестник МГУ, сер. 16. Биол. № 1. С. 40—45.
- Крюков В.Х., 2020. Экологические условия зимовок амфибий в юго-восточном Приморье // Биологическое разнообразие: изучение и сохранение: материалы XIII Дальневосточной конференции по заповедному делу, Хабаровск. Ч. 1. Владивосток: Всемирный фонд дикой природы. С. 50—52.
- Справочник по климату СССР, 1966. Вып. 26. Ч. II.
- Тагирова В.Т., Готванский А.В., Андронова Р.С., 2020. О находках дальневосточной жерлянки (Anura, Amphibia) в Хабаровском крае // Биологическое разнообразие: изучение и сохранение: материалы XIII Дальневосточной конференции по заповедному делу, Хабаровск. Ч. 1. Владивосток: Всемирный фонд дикой природы. С. 115—117.
- Флякс Н.Л., 1991. Биология бесхвостых амфибий Южного Сахалина в условиях антропогенного воздействия на естественные биоценозы. Дис. ... канд. биол. наук. Л.: ЗИН АН СССР. 270 с.
- Шалдыбин С.Л., 1981. Зимовка и численность амфибий и рептилий в Лазовском заповеднике // Герпетологические исследования на Дальнем Востоке. Л.: ЗИН АН СССР. С. 123—124.
- Adnagulov E.V., Oleinikov A.Y., 2006. On the distribution and ecology of amphibians and reptiles in the South of the Russian Far East // Russian Journal of Herpetology. V. 13. № 2. P. 101–116.
- Berman D.I., Bulakhova N.A., Meshcheryakova E.N., 2019. The Siberian wood frog survives for months underwater without oxygen // Scientific Reports. V. 9. 13594.
- Berman D.I., Bulakhova N.A., Meshcheryakova E.N., Yermokhin M.V., Tabachishin V.G., 2019a. Cold-hardiness of the common spadefoot *Pelobates fuscus* (Pelobatidae, Anura, Amphibia) // Cryo Letters. V. 40. № 5. P. 284–290.
- *Bickler P.E., Buck L.T.,* 2007. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability // Annual Review of Physiology. V. 69. № 1. P. 145–170.
- *Bradford D.F.*, 1983. Winterkill, oxygen relations and energy metabolism of a submerged dormant amphibian, *Rana muscosa* // Ecology. V. 64. P. 1171–1183.
- Bulakhova N.A., Mazanaeva L.F., Mescheryakova E.N., Berman D.I., 2020. Resistance of Iranian long-legged wood frog Rana macrocnemis (Amphibia, Anura) to negative temperatures on land and to hypoxia in water during overwintering // Herpetology Notes. V. 13. P. 1079–1086.
- Fei L., Ye C.Y., Jiang J.P., 2012. Colored atlas of Chinese amphibians and their distributions. Chengdu, China: China Science and Technology Press.
- Fong J.J., Li P.P., Yang B.T., Zhou Z.Y., Leaché A.D., Min M.S., Waldman B., 2016. Influence of geology and human activity on the genetic structure and

- demography of the Oriental fire-bellied toad (*Bombina orientalis*) // Molecular Phylogenetics and Evolution. V. 97. P. 69–75.
- Holenweg A.K., Reyer H.U., 2000. Hibernation behavior of Rana lessonae and R. esculenta in their natural habitat // Oecologia (Berl). V. 123. P. 41–47.
- Light L.E., 1991. Habitat selection of Rana pipiens and Rana sylvatica during exposure to warm and cold temperatures // American Midland Naturalist. P. 259–268.
- Storey K.B., Storey J.M., 2017. Molecular physiology of freeze tolerance in vertebrates // Physiological Reviews. V. 97. № 2. P. 623–665.
- Shekhovtsov S.V., Bulakhova N.A., Tsentalovich Y.P., Zelentsova E.A., Yanshole L.V., Meshcheryakova E.N., Berman D.I., 2020. Metabolic response of the Siberian wood frog Rana amurensis to extreme hypoxia // Scientific Reports. V. 10, 14604.
- *Tattersall G.J., Boutilier R.G.,* 1997. Balancing hypoxia and hypothermia in cold-submerged frogs // Journal of Experimental Biology. V. 220. P. 1031–1038.

- *Tattersall G.J., Ultsch G.R.*, 2008. Physiological ecology of aquatic overwintering in ranid frogs // Biology Reviews. V. 83. P. 119–140.
- Voituron Y., Joly P., Eugène M., Bareé H., 2005. Freezing tolerance of the European water frogs: the good, the bad, and the ugly // American Journal of Physiology Regulatory, Integrative and Comparative Physiology. V. 288. P. 1563–1570.
- Xiao X., Zheng D., Yang C., Chai L., 2008. Survival and metabolic responses to freezing temperature in the northeast forest frog *Rana dybowskii* // Asiatic Herpetological Research. V. 11. P. 147–152.
- Yoon S.I., Park C.J., Bhan Y.H., Gye M.C., 2008. Amphibian biotope planning to research on reproduction of *Bombina orientalis* // Korean Journal of Environmental Biology. V. 26. № 1. P. 22–29.
- Yu L., Zhao S., Meng F., Shi Y., Xu C., 2021. Dispersal and mating patterns determine the fate of naturally dispersed populations: evidence from Bombina orientalis // BMC Ecology and Evolution. V. 21. № 111.

OVERWINTERING STRATEGY OF THE ORIENTAL FIRE-BELLIED TOAD, BOMBINA ORIENTALIS F. SYLVATICA (AMPHIBIA, ANURA)

N. A. Bulakhova^{1, 2, *}, E. N. Meshcheryakova^{1, **}

¹Institute of Biological Problems of the North, Far East Branch, Russian Academy of Sciences, Magadan, 685000 Russia

²Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia *e-mail: sigma44@mail.ru

**e-mail: kameshky@mail.ru

The cold tolerance, the attitude to dissolved oxygen depletion in water, and the overwintering strategy of individuals of one of the intraspecies forms of the Oriental fire-bellied toad, *Bombina orientalis* f. *sylvatica* were studied in the south of Primorye, Russian Far East. It was revealed that individuals of the study form were unable to tolerate a decrease in the level of dissolved oxygen in water below 6 mg/l, and slightly resistant to negative temperatures (surviving only for 1-4 days at -1.1 ± 0.1 °C). The main stereotype of overwintering of the *Bombina orientalis* f. *sylvatica* was confirmed to be terrestrial hibernation. Similar studies on the second form of the species, f. *praticola*, may by confirm the validity of the segregation these two ecological forms within *B. orientalis*.

Keywords: amphibian, hibernation conditions, hypoxia, cold hardiness